data(iris)
set.seed(123)
samples <- sample(nrow(iris), nrow(iris)*0.80)
train <- iris[samples,]
test <- iris[-samples,]
iris_nn <- nnet(Species ~ ., size = 2,data=train)
## # weights: 19
## initial value 135.090792
## iter 10 value 58.046705
## iter 20 value 16.784114
## iter 30 value 3.034567
## iter 40 value 0.346292
## iter 50 value 0.000433
## iter 60 value 0.000159
## final value 0.000100
## converged
table(test$Species,predict(iris_nn,test,type='class'))
##
## setosa versicolor virginica
## setosa 10 0 0
## versicolor 0 14 1
## virginica 0 0 5
The true positive rate is 96% and only 1 data point was incorrectly classified.
install_tensorflow()
##
## Installation complete.
install_keras()
##
## Installation complete.
There are many articles online with great explanations of how to use keras using the mnist dataset. I’m going to replicate some of those studies here to learn the package.
The mnist dataset is a set of 60,000 training images and 10,000 testing images. Each image represents a number. The y-label represents the number in the image.
library(keras)
mnist <- dataset_mnist()
images_training <- mnist$train$x
number_training <- mnist$train$y
images_testing <- mnist$test$x
number_testing <- mnist$test$y
Here is an example of what the image looks like:
image <- images_training[173,,]
number <- number_training[173]
print("The label for the below is image is:",str(number))
## int 9
## [1] "The label for the below is image is:"
plot(as.raster(image, max = 255))
Here we are flattening the data to be 60,000 rows by 784 instead of the original 60,000 x 28 x 28:
dim(images_training) <- c(nrow(images_training),dim(images_training)[2]*dim(images_training)[3])
dim(images_testing) <- c(nrow(images_testing),dim(images_testing)[2]*dim(images_testing)[3])
number_training <- to_categorical(number_training, 10)
number_testing <- to_categorical(number_testing, 10)
Here we are setting up 3 layers using the ReLU activation function for the first 2 followed by softmax. The shape of the network must be specified in the first layers. In our previous step we reshaped our data from 28 by 28 to a single object of length 784. You must pass in the shape of the data into the first layer.
model <- keras_model_sequential()
model %>%
layer_dense(units = 256, activation = "relu", input_shape = c(784)) %>%
layer_dense(units = 128, activation = "relu") %>%
layer_dense(units = 10, activation = "softmax")
summary(model)
## Model: "sequential"
## ________________________________________________________________________________
## Layer (type) Output Shape Param #
## ================================================================================
## dense_2 (Dense) (None, 256) 200960
## ________________________________________________________________________________
## dense_1 (Dense) (None, 128) 32896
## ________________________________________________________________________________
## dense (Dense) (None, 10) 1290
## ================================================================================
## Total params: 235,146
## Trainable params: 235,146
## Non-trainable params: 0
## ________________________________________________________________________________
model %>% compile(
loss = "categorical_crossentropy",
optimizer = optimizer_rmsprop(),
metrics = c("accuracy")
)
Now we will run our training data through our model. The epoch refers to how many times the model sees the entire dataset. Typically a lower number of epochs results in underfitting and too many epochs results in overfitting. We will plot the results to find the optimal epoch size.
The batch refers how many data points will go together to be run through the model. A single epoch will have multiple batches. (e.g. a dataset of 100 data points could have 4 batches of 25 points each). We will use a batch size of 128 data points.
a <- model %>% fit(
images_training,
number_training,
epochs = 30,
batch_size = 128,
validation_split = 0.2
)
The loss goes up as the number of epochs increase. The accuracy goes up slightly as the number of epochs increase and bounces around a bit. The accuracy is very close for all number of epochs. The loss function represents error in the model and how well the model works. Less loss is better.
plot(a)
## `geom_smooth()` using formula 'y ~ x'
Here is the loss and accuracy for the model:
model %>% evaluate(images_testing, number_testing,verbose = 0)
## loss accuracy
## 0.5218769 0.9708000
Here are the number predictions for our test data using our model:
pred_test <- model %>% predict_classes(images_testing)
pred_test
## [1] 7 2 1 0 4 1 4 9 6 9 0 6 9 0 1 5 9 7 3 4 9 6 6 5 4 0 7 4 0 1 3 1 3 4 7 2
## [37] 7 1 2 1 1 7 4 2 3 5 1 2 4 4 6 3 5 5 6 0 4 1 9 5 7 8 9 3 7 4 6 4 3 0 7 0
## [73] 2 9 1 7 3 2 9 7 7 6 2 7 8 4 7 3 6 1 3 6 9 3 1 4 1 7 6 9 6 0 5 4 9 9 2 1
## [109] 9 4 8 7 3 9 7 4 4 4 9 2 5 4 7 6 7 9 0 5 8 5 6 6 5 7 8 1 0 1 6 4 6 7 3 1
## [145] 7 1 8 2 0 7 9 9 5 5 1 5 6 0 3 4 4 6 5 4 6 5 4 5 1 4 4 7 2 3 2 7 1 8 1 8
## [181] 1 8 5 0 8 9 2 5 0 1 1 1 0 9 0 3 1 6 4 2 9 6 1 1 1 3 9 5 2 9 4 5 9 3 8 0
## [217] 3 6 5 5 7 2 2 7 1 2 8 4 1 7 3 3 8 8 7 9 2 2 4 1 5 5 8 7 2 3 0 2 4 2 4 1
## [253] 9 5 7 7 2 8 2 6 8 5 7 7 9 1 8 1 8 0 3 0 1 9 9 4 1 8 2 1 2 9 7 5 9 2 6 4
## [289] 1 5 8 2 9 2 0 4 0 0 2 8 4 7 1 2 4 0 2 7 4 3 3 0 0 3 1 9 6 5 2 5 9 7 9 3
## [325] 0 4 2 0 7 1 1 2 1 5 3 3 9 7 8 6 5 6 1 3 8 1 0 5 1 3 1 5 5 6 1 8 5 1 4 9
## [361] 4 6 2 2 5 0 6 5 6 3 7 2 0 8 8 5 4 1 1 4 0 3 3 7 6 1 6 2 1 9 2 8 6 1 9 5
## [397] 2 5 4 4 2 8 3 8 2 4 5 0 3 1 7 7 5 7 9 7 1 9 2 1 4 0 9 2 0 4 9 1 4 8 1 8
## [433] 4 5 9 8 8 3 7 6 0 0 3 0 2 0 6 9 9 3 3 3 2 3 9 1 2 6 8 0 5 6 6 6 3 8 8 2
## [469] 7 5 8 9 6 1 8 4 1 2 5 9 1 9 7 5 4 0 8 9 9 1 0 5 2 3 7 8 9 4 0 6 3 9 5 2
## [505] 1 3 1 3 6 5 7 4 2 2 6 3 2 6 5 4 8 9 7 1 3 0 3 8 3 1 9 3 4 4 6 4 2 1 8 2
## [541] 5 4 8 8 4 0 0 2 3 2 7 3 0 8 7 4 4 7 9 6 9 0 9 8 0 4 6 0 6 3 5 4 8 3 3 9
## [577] 3 3 3 7 8 0 2 8 1 7 0 6 5 4 3 8 0 9 6 3 8 0 9 9 6 8 6 8 5 7 8 6 0 2 4 0
## [613] 2 2 3 1 9 7 5 1 0 8 4 6 2 6 7 9 3 2 9 8 2 2 9 2 7 3 5 9 1 8 0 2 0 5 6 1
## [649] 3 7 6 7 1 2 5 8 0 3 7 7 4 0 9 1 8 6 7 7 4 3 4 9 1 9 5 1 7 3 9 7 6 9 1 3
## [685] 3 8 3 3 6 7 2 4 5 8 5 1 1 4 4 3 1 0 7 7 0 7 9 4 4 8 5 5 4 0 8 2 1 6 8 4
## [721] 5 0 4 7 6 1 7 3 2 6 7 2 6 9 3 1 4 6 2 5 9 2 0 6 2 1 7 3 4 1 0 5 4 3 1 1
## [757] 7 4 9 9 4 8 4 0 2 4 5 1 1 6 4 7 1 9 4 2 4 1 5 5 3 8 3 1 4 5 8 8 9 4 1 5
## [793] 3 8 0 3 2 5 1 2 8 3 4 4 0 8 8 3 3 1 7 3 5 9 6 3 2 6 1 3 6 0 7 2 1 7 1 4
## [829] 2 4 2 1 7 9 6 1 1 2 4 8 1 7 7 4 8 0 7 3 1 3 1 0 7 7 0 3 5 5 2 7 6 6 9 2
## [865] 8 3 5 2 2 5 6 0 8 2 9 2 8 8 8 8 7 4 9 3 0 6 6 3 2 1 3 2 2 9 5 0 0 5 7 8
## [901] 1 4 4 6 0 2 9 1 4 7 4 7 3 9 8 8 4 7 1 2 1 2 2 3 2 3 2 3 9 1 7 4 0 3 5 5
## [937] 8 6 3 2 6 7 6 6 3 2 7 8 1 1 7 5 6 4 9 5 1 3 3 4 7 8 9 1 1 5 9 1 4 4 5 4
## [973] 0 6 2 2 3 1 5 1 2 0 3 8 1 2 6 7 1 6 2 3 9 0 1 2 2 0 8 9 9 0 2 5 1 9 7 8
## [1009] 1 0 4 1 7 9 5 4 2 6 8 1 3 7 5 4 4 1 8 1 3 8 1 2 5 8 0 6 2 1 1 1 1 5 3 4
## [1045] 8 9 5 0 9 2 2 4 8 2 1 7 2 4 9 4 4 0 3 9 2 2 3 3 8 3 5 7 3 5 8 1 2 4 4 6
## [1081] 4 9 5 1 0 6 9 5 9 5 9 7 3 8 0 3 7 1 3 6 7 8 5 9 7 9 6 9 6 3 7 4 6 5 3 5
## [1117] 4 7 8 7 8 0 7 6 8 8 7 3 3 1 9 5 2 7 3 5 1 1 2 1 4 7 4 7 5 4 5 4 0 8 3 6
## [1153] 9 6 0 2 5 4 4 4 4 6 6 4 7 9 2 4 5 5 8 7 3 9 2 7 0 2 4 1 1 1 8 9 2 8 7 2
## [1189] 0 1 5 0 9 1 9 0 6 0 8 6 8 1 8 0 3 3 7 2 3 6 2 1 6 1 1 3 7 9 0 8 0 5 4 0
## [1225] 2 8 2 2 9 8 4 0 1 5 2 5 1 2 1 3 1 7 9 5 7 2 0 5 8 8 6 2 5 6 1 9 2 1 5 8
## [1261] 7 0 2 4 4 3 6 8 8 2 4 0 5 0 4 4 7 9 3 4 1 5 9 7 3 5 8 8 0 5 5 3 6 6 0 1
## [1297] 6 0 3 7 4 4 1 2 9 1 4 6 9 9 3 9 8 4 4 3 1 3 1 5 8 7 9 4 8 8 7 9 9 1 4 5
## [1333] 6 0 5 2 2 2 1 5 5 2 4 9 6 2 7 7 2 2 1 1 2 8 3 7 2 4 1 7 1 7 6 7 8 2 7 3
## [1369] 1 7 5 8 2 6 2 2 5 6 6 0 9 2 4 3 3 9 7 6 6 8 0 4 1 5 8 8 9 1 8 0 6 7 2 1
## [1405] 0 5 5 2 0 2 2 0 2 4 5 8 0 9 9 4 6 5 4 9 1 5 3 4 9 9 1 2 2 8 1 9 6 4 0 9
## [1441] 4 8 3 8 6 0 2 5 1 9 6 2 9 4 0 9 6 0 6 2 5 4 2 3 8 4 5 5 0 3 8 5 3 5 8 6
## [1477] 5 7 6 3 3 9 6 1 1 2 9 0 4 3 3 6 9 5 9 3 7 7 7 8 7 9 8 3 0 7 2 7 9 4 5 4
## [1513] 9 3 2 1 4 0 2 3 7 5 9 8 8 5 0 1 1 4 7 3 9 0 0 0 6 6 2 3 7 8 4 9 7 9 2 4
## [1549] 1 6 5 2 4 9 8 1 8 4 0 9 8 4 8 7 7 0 7 8 5 6 0 4 8 8 2 4 7 6 6 6 4 7 1 8
## [1585] 8 2 3 6 3 0 0 3 7 6 9 7 9 9 5 4 3 3 6 1 2 3 7 3 3 6 0 9 3 8 4 3 6 3 5 0
## [1621] 2 0 9 0 7 4 5 9 3 5 1 9 6 1 4 5 4 5 0 5 9 5 2 1 2 9 1 9 9 4 0 8 4 5 2 9
## [1657] 2 1 2 1 7 3 6 8 8 4 9 1 9 8 5 3 5 1 1 8 6 5 0 4 4 7 2 3 5 6 8 8 6 7 3 1
## [1693] 0 5 8 9 2 9 6 7 0 4 5 7 1 7 4 1 0 9 7 2 0 0 9 1 7 8 7 8 4 7 2 0 4 6 0 3
## [1729] 1 1 9 3 9 6 7 4 1 5 3 0 8 7 3 9 6 9 3 5 0 2 7 4 5 1 7 5 8 0 8 8 1 5 0 3
## [1765] 0 3 1 4 0 3 7 2 7 1 8 0 7 0 4 3 1 9 8 7 7 1 4 9 9 3 8 1 7 9 0 2 0 3 3 7
## [1801] 6 9 2 3 3 7 7 0 0 9 5 2 9 8 7 4 4 2 6 6 1 9 6 8 2 8 0 8 5 1 1 6 3 5 1 1
## [1837] 1 3 1 2 3 0 2 0 1 3 5 5 7 4 8 9 6 9 6 8 3 6 6 8 5 1 4 2 4 4 5 1 1 9 0 1
## [1873] 4 9 5 7 1 8 8 5 6 9 8 7 1 1 6 7 6 3 2 2 0 8 9 2 5 1 0 8 1 4 5 7 9 6 9 0
## [1909] 6 1 5 5 8 3 8 2 6 5 0 7 4 6 1 3 4 7 3 2 3 4 2 5 2 7 1 7 2 6 4 1 5 2 8 6
## [1945] 0 1 8 2 5 7 7 6 9 3 5 8 4 2 4 0 8 8 3 4 9 2 7 5 8 6 5 6 0 8 6 7 3 6 4 9
## [1981] 4 6 6 3 0 4 1 0 1 4 6 2 9 1 1 0 6 3 9 5 6 5 6 5 8 4 6 4 3 9 1 3 4 1 9 1
## [2017] 7 1 2 9 3 5 4 0 7 3 6 1 7 5 5 3 3 7 1 5 7 5 8 6 5 1 0 4 7 3 4 6 7 9 8 1
## [2053] 5 4 9 2 8 6 2 7 0 0 6 7 5 8 6 0 9 3 7 1 3 6 4 3 3 5 5 6 3 0 2 3 4 2 3 0
## [2089] 9 9 4 7 2 8 4 7 0 6 0 8 5 2 8 5 7 3 0 8 2 7 2 8 2 5 5 7 6 4 6 8 4 8 2 7
## [2125] 4 5 2 0 3 9 9 6 7 2 5 1 1 1 2 3 6 7 8 7 6 4 8 9 4 8 6 3 8 3 1 0 6 2 2 5
## [2161] 6 9 8 8 1 4 1 7 2 4 6 1 8 4 3 1 2 8 0 8 5 9 2 4 2 5 2 7 0 9 0 2 5 7 6 7
## [2197] 9 4 2 6 2 4 4 8 0 4 4 5 8 0 6 8 9 8 5 6 9 0 4 8 7 1 3 4 8 8 0 9 1 3 3 6
## [2233] 9 8 7 1 0 6 7 1 7 5 2 7 9 1 8 5 2 4 9 4 7 2 2 3 4 9 1 9 2 1 7 9 4 4 1 6
## [2269] 7 2 7 8 8 1 9 7 1 1 7 5 5 3 5 1 3 7 6 1 3 8 7 3 9 0 0 0 2 8 8 2 3 7 1 3
## [2305] 0 3 4 4 3 8 9 2 3 9 7 1 1 7 0 4 9 6 5 9 1 7 0 2 0 0 4 6 7 0 7 1 4 6 4 5
## [2341] 4 9 9 1 7 9 5 3 3 8 2 3 6 2 2 1 1 1 1 1 6 9 8 4 3 7 1 6 4 8 0 4 7 4 2 4
## [2377] 0 7 0 1 9 8 8 6 0 0 4 1 6 8 2 2 3 8 4 8 2 2 1 7 5 4 4 0 4 3 4 7 3 1 0 1
## [2413] 2 5 9 2 1 0 1 8 9 1 6 8 3 3 9 3 6 2 8 3 2 2 1 0 4 1 9 2 4 3 7 9 1 5 2 4
## [2449] 9 0 3 8 5 3 6 0 9 4 6 2 5 0 0 7 4 6 6 8 6 6 8 6 9 1 7 2 5 9 9 0 7 2 7 6
## [2485] 7 0 6 5 4 4 7 2 0 9 9 2 2 9 4 4 2 3 3 2 1 7 0 7 6 4 1 3 8 7 9 5 9 2 5 1
## [2521] 8 7 3 7 1 5 5 0 9 1 4 0 6 3 3 6 0 4 9 7 5 1 6 8 9 5 5 7 9 3 8 3 8 1 5 3
## [2557] 5 0 5 5 5 8 6 7 7 7 3 7 0 5 9 0 2 5 5 3 1 7 7 8 6 5 9 3 8 9 5 3 7 0 1 7
## [2593] 0 0 3 7 2 3 8 1 8 6 2 9 5 7 5 4 8 6 2 5 1 4 8 4 5 8 3 0 6 2 7 3 3 2 1 0
## [2629] 7 3 4 0 3 9 3 2 8 9 0 3 8 0 7 6 5 4 7 3 5 0 8 6 2 5 1 1 0 0 4 4 0 1 2 3
## [2665] 2 7 7 8 5 2 5 7 6 9 1 4 1 6 4 2 4 3 5 4 3 9 5 0 1 5 3 8 9 1 9 7 9 5 5 2
## [2701] 7 4 6 0 1 1 1 0 4 4 7 6 3 0 0 4 3 0 6 1 9 6 1 3 8 1 2 5 6 2 7 3 6 0 1 9
## [2737] 7 6 6 8 9 2 9 5 8 3 1 0 0 7 6 6 2 1 6 9 3 1 8 6 9 0 6 0 0 0 6 3 5 9 3 4
## [2773] 5 5 8 5 3 0 4 0 2 9 6 8 2 3 1 2 1 1 5 6 9 8 0 6 6 5 5 3 8 6 2 1 4 5 4 3
## [2809] 7 8 5 0 9 3 5 1 1 0 4 4 7 0 1 7 0 1 6 1 4 5 6 6 5 7 8 4 4 7 2 5 3 7 0 7
## [2845] 7 9 6 4 2 8 5 7 8 3 9 5 8 9 9 8 6 2 8 4 2 3 6 1 1 8 9 3 4 0 7 9 6 7 1 4
## [2881] 1 3 4 9 3 1 4 7 7 4 7 2 9 3 0 8 5 8 4 0 4 4 1 5 2 8 5 4 9 5 2 8 1 5 3 7
## [2917] 9 4 2 5 6 0 5 9 3 5 9 2 1 9 5 3 0 6 9 8 4 0 4 7 2 9 0 1 0 3 1 6 5 8 1 5
## [2953] 3 5 0 3 5 5 9 2 8 7 0 4 9 1 9 7 7 5 5 2 0 9 1 8 6 2 3 9 6 2 1 9 1 3 5 5
## [2989] 0 3 8 3 3 7 6 6 0 1 4 0 6 9 8 1 2 9 9 5 9 7 3 7 8 0 1 3 0 4 6 1 0 2 5 8
## [3025] 4 4 1 1 5 4 8 6 0 6 9 2 6 2 7 1 7 9 4 0 0 3 8 2 2 3 1 6 0 5 7 7 9 2 6 7
## [3061] 9 7 3 6 8 8 4 6 8 4 1 2 8 2 3 9 4 0 3 7 3 2 3 3 7 3 4 0 6 2 0 8 1 5 3 5
## [3097] 4 1 7 1 5 7 5 7 3 2 2 7 3 7 3 7 8 5 4 5 2 5 6 5 3 6 7 4 1 7 1 5 2 3 5 3
## [3133] 1 4 2 6 7 4 3 8 0 6 2 1 6 5 3 9 1 9 3 2 1 8 4 4 6 5 8 6 9 7 7 8 6 9 7 3
## [3169] 9 4 0 5 4 6 4 1 2 3 0 0 2 6 6 5 7 0 8 6 4 7 9 0 7 3 4 2 1 8 8 5 9 2 7 1
## [3205] 8 8 8 2 7 6 0 1 2 7 1 0 8 3 6 0 5 3 6 2 8 7 0 1 4 2 1 1 4 4 4 4 7 1 6 2
## [3241] 9 9 0 0 1 8 8 4 3 4 2 0 6 1 6 1 2 2 2 1 2 3 7 8 1 0 7 2 1 6 6 0 1 6 2 5
## [3277] 1 7 4 8 2 1 4 3 8 3 9 9 4 3 3 4 7 2 7 5 7 0 4 3 3 2 6 7 6 0 0 6 7 7 0 5
## [3313] 5 8 1 0 7 0 2 8 1 5 0 8 8 0 3 2 7 7 2 6 4 7 5 5 5 7 9 2 8 4 6 8 6 5 0 0
## [3349] 8 7 6 1 7 1 1 2 7 4 0 0 7 7 6 3 8 6 4 2 0 9 4 0 5 7 8 2 7 4 7 1 1 3 6 6
## [3385] 2 9 1 9 4 8 3 6 9 5 9 6 2 4 6 7 7 0 6 6 9 4 8 3 5 3 4 9 0 0 5 2 5 0 7 1
## [3421] 1 1 0 7 6 7 9 6 6 4 1 4 3 1 1 2 2 4 1 0 8 8 6 3 4 0 0 6 3 3 0 3 1 7 1 1
## [3457] 3 1 0 9 9 7 5 4 1 4 8 9 5 3 5 1 9 8 2 7 3 9 9 0 1 0 2 9 3 9 3 3 6 2 4 9
## [3493] 8 3 7 4 0 4 7 8 4 9 8 1 9 7 5 9 2 8 2 2 0 2 2 3 8 4 6 8 4 8 2 4 6 7 9 3
## [3529] 3 9 4 3 1 4 4 7 0 5 9 6 0 4 4 4 4 6 1 2 3 3 6 4 5 9 6 8 5 6 0 5 6 4 1 8
## [3565] 6 5 2 5 4 5 5 4 7 7 0 7 8 2 2 3 7 0 1 8 0 7 1 9 8 7 5 5 9 1 7 5 4 3 1 2
## [3601] 2 1 6 6 0 1 1 4 0 7 4 2 4 0 6 4 7 6 9 5 3 4 6 5 0 1 8 8 2 8 3 5 7 8 0 8
## [3637] 5 7 1 1 0 1 3 7 8 5 0 7 1 1 0 1 1 4 5 2 7 6 2 3 0 2 8 5 9 6 9 7 2 1 3 6
## [3673] 4 1 5 2 4 0 5 1 0 2 2 6 4 4 3 9 6 1 6 5 7 9 2 0 2 6 0 1 4 3 3 2 8 8 0 8
## [3709] 8 9 0 9 6 7 6 3 9 3 4 7 7 7 4 9 0 6 4 4 4 2 7 2 8 1 0 0 7 5 3 3 3 1 3 7
## [3745] 6 1 3 1 6 6 5 7 4 7 5 9 5 8 4 9 9 1 6 5 0 1 3 7 0 3 4 8 2 2 0 2 5 1 5 1
## [3781] 6 8 8 9 1 2 1 3 5 1 0 9 4 4 8 3 8 5 9 7 6 6 2 0 0 0 5 8 8 1 5 3 3 8 5 1
## [3817] 8 2 0 4 9 9 6 2 3 3 5 6 4 8 0 9 2 8 3 6 7 5 7 2 9 4 9 1 2 8 6 0 7 0 9 1
## [3853] 1 0 7 5 9 9 1 9 5 9 2 5 0 4 1 0 8 9 0 8 9 8 9 4 2 5 7 9 8 9 8 0 9 9 6 8
## [3889] 9 9 5 9 8 6 1 0 3 3 5 2 1 6 3 0 2 8 3 5 6 2 3 0 2 2 6 4 3 5 5 1 7 2 1 6
## [3925] 9 1 9 9 5 5 1 6 2 2 8 6 7 1 4 6 0 4 0 3 3 2 2 3 6 8 9 8 5 3 8 5 4 5 2 0
## [3961] 5 6 3 2 8 3 9 9 3 7 9 4 6 7 1 3 7 3 6 6 0 9 0 1 9 4 2 8 8 0 1 6 9 7 5 3
## [3997] 4 7 4 9 9 4 3 6 3 1 1 8 6 9 1 8 4 1 1 9 9 4 3 6 8 1 6 0 4 1 3 1 7 4 9 5
## [4033] 1 0 0 1 1 6 2 1 9 8 4 0 3 6 4 9 0 7 1 6 5 7 5 2 5 1 8 5 4 7 0 6 7 9 2 5
## [4069] 8 1 0 4 5 7 1 3 5 1 9 0 0 6 0 7 3 1 8 3 9 7 0 0 8 9 5 9 8 3 2 7 2 9 7 2
## [4105] 1 1 3 7 5 3 1 9 8 2 2 2 5 8 5 7 3 8 9 3 8 6 8 2 3 9 7 5 6 2 9 2 8 8 1 6
## [4141] 8 8 7 9 1 8 0 1 7 2 0 7 5 1 4 0 3 0 9 8 6 2 3 5 3 8 0 2 1 1 1 1 4 2 9 7
## [4177] 7 5 1 1 2 1 9 9 9 1 0 2 0 2 1 1 4 6 4 1 5 4 9 7 7 7 5 6 2 2 2 8 0 6 9 5
## [4213] 1 9 7 7 1 4 8 5 3 4 3 4 9 7 5 0 7 4 8 8 1 5 3 9 5 9 3 6 9 0 3 6 3 9 8 2
## [4249] 8 1 2 8 6 8 5 5 3 9 4 9 2 5 1 5 1 5 4 1 4 4 3 5 9 1 2 2 3 3 0 2 9 0 0 9
## [4285] 9 6 0 9 3 8 8 4 1 9 5 7 2 7 9 9 5 9 5 1 1 8 7 5 1 9 5 3 5 4 9 5 9 3 1 9
## [4321] 0 9 7 5 4 9 2 0 1 0 5 1 4 9 3 3 6 1 5 2 5 2 2 0 9 2 6 6 0 1 2 0 3 0 2 5
## [4357] 5 7 9 5 3 0 8 9 5 0 3 2 5 4 0 8 8 4 8 8 8 4 5 4 8 5 9 9 2 2 1 2 6 8 8 7
## [4393] 0 3 6 6 4 3 8 8 7 2 2 0 0 9 3 9 9 1 9 8 6 6 4 0 6 9 2 8 5 4 5 7 9 9 9 2
## [4429] 1 8 3 4 0 7 8 3 9 3 4 6 5 6 2 2 9 2 6 0 0 6 1 2 8 7 9 8 2 0 4 7 7 5 0 5
## [4465] 6 4 6 7 4 3 0 7 5 0 7 4 2 6 8 9 9 4 2 4 6 7 8 8 6 9 4 1 3 7 3 0 8 8 7 6
## [4501] 8 3 9 2 7 9 2 1 8 3 2 9 6 8 4 0 1 2 8 4 5 2 7 8 1 1 3 0 3 5 7 0 3 1 9 3
## [4537] 5 3 1 7 7 3 0 8 4 8 2 6 6 2 9 4 3 9 0 9 9 6 4 2 9 7 2 1 1 6 7 4 7 5 9 1
## [4573] 8 2 1 4 4 5 7 6 1 3 2 5 9 9 3 6 1 1 4 6 9 7 2 1 5 1 4 6 3 8 1 1 0 3 1 6
## [4609] 8 4 9 0 7 3 0 6 9 0 6 6 6 3 6 7 7 2 8 6 0 8 3 0 2 9 8 5 2 5 3 8 8 0 0 1
## [4645] 9 5 1 3 9 6 0 1 4 1 7 1 2 3 7 9 7 4 9 9 3 9 2 8 2 7 1 8 0 9 1 0 1 7 7 9
## [4681] 6 9 9 9 2 1 6 1 3 5 7 1 9 7 6 4 5 7 6 6 9 9 6 3 6 2 9 8 1 2 2 5 5 2 3 7
## [4717] 2 1 0 1 0 4 5 2 8 2 8 3 5 1 7 9 1 1 2 9 7 8 4 0 5 0 7 8 8 4 7 7 8 5 8 4
## [4753] 9 8 1 3 8 0 3 1 7 7 5 5 1 6 5 7 4 9 3 5 4 7 1 2 0 8 1 6 0 7 3 4 7 3 9 6
## [4789] 0 5 6 4 8 7 7 9 3 8 6 9 7 2 3 4 0 2 1 8 5 5 5 7 2 4 4 7 2 8 3 0 8 7 8 4
## [4825] 0 8 4 4 5 8 5 6 6 3 0 9 3 7 6 8 9 3 4 9 5 8 9 1 2 8 8 6 8 1 3 7 9 0 1 1
## [4861] 4 3 0 8 1 7 4 5 7 1 2 1 1 3 9 6 2 1 2 6 8 7 6 6 9 3 7 0 5 2 8 0 5 4 3 8
## [4897] 4 6 6 2 7 9 5 1 3 2 4 3 6 1 9 4 4 7 6 5 4 1 9 9 2 7 8 0 1 3 6 1 3 4 1 1
## [4933] 1 5 6 0 7 0 7 2 3 2 5 2 2 9 4 9 8 1 2 1 6 1 2 7 4 0 0 0 8 2 2 9 2 2 9 9
## [4969] 9 2 7 5 1 3 4 9 4 1 8 5 6 2 8 3 1 2 8 4 9 9 5 7 0 7 7 2 3 2 4 0 3 9 9 8
## [5005] 4 1 0 6 0 9 6 8 6 1 1 9 8 9 2 3 5 5 9 4 2 1 9 4 3 9 6 0 4 0 6 0 1 2 3 4
## [5041] 7 8 9 0 1 2 3 4 7 8 9 0 1 2 3 4 5 6 7 8 9 8 3 4 7 8 6 3 9 0 9 7 1 9 3 8
## [5077] 4 7 5 0 9 1 4 5 4 6 9 0 6 2 1 1 1 1 7 2 4 7 5 2 9 4 5 8 4 2 9 7 0 0 7 5
## [5113] 1 1 7 6 6 6 8 2 2 7 7 4 0 2 4 2 1 8 9 6 1 0 5 9 6 9 5 0 5 0 8 3 9 6 3 0
## [5149] 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 5 4 4 7 4 7 7 3 9 8
## [5185] 8 3 1 5 8 2 7 4 2 1 5 4 5 5 8 6 4 4 4 1 8 7 5 5 1 8 9 1 3 6 3 3 2 2 6 9
## [5221] 9 6 5 5 3 3 8 1 6 5 6 8 1 9 7 6 8 3 7 4 7 0 9 0 0 3 7 9 3 0 2 0 1 0 1 0
## [5257] 4 0 1 0 4 7 9 6 2 6 2 2 9 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
## [5293] 2 3 4 5 6 7 8 9 8 0 5 6 6 0 8 0 2 3 7 9 4 7 1 9 1 7 1 4 0 0 4 1 7 5 7 1
## [5329] 3 3 3 6 6 9 7 4 3 0 2 5 2 6 0 8 9 4 3 5 4 8 1 5 9 0 6 4 3 6 3 3 8 1 4 7
## [5365] 5 7 2 2 0 0 1 7 7 9 5 9 8 9 6 8 8 2 3 6 1 2 9 8 9 5 2 6 2 4 8 4 6 5 0 1
## [5401] 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 7 4 2 0 9 0 1 5 8 8 0
## [5437] 2 7 8 4 4 6 1 0 4 5 3 9 4 2 0 5 0 1 3 2 9 1 6 0 1 1 8 0 4 7 7 6 3 6 0 7
## [5473] 3 5 4 2 4 1 8 3 5 6 7 0 6 7 1 2 5 8 1 9 3 8 2 8 7 6 7 1 4 6 2 9 3 0 1 2
## [5509] 3 4 5 6 7 0 1 2 3 4 5 0 1 2 8 9 1 4 0 9 5 0 8 0 7 7 1 1 2 9 3 6 7 2 3 8
## [5545] 1 2 9 8 8 7 1 7 1 1 0 3 4 2 6 4 7 4 2 7 4 9 1 0 6 0 5 5 5 3 5 9 7 4 8 5
## [5581] 9 6 9 3 0 3 8 9 1 8 1 6 0 6 1 2 3 4 5 6 9 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
## [5617] 3 4 5 6 7 8 9 3 5 3 2 9 3 2 1 4 5 5 5 3 2 1 3 9 7 2 5 2 8 9 1 8 8 7 8 1
## [5653] 0 0 9 7 8 7 5 0 6 1 5 7 4 6 1 2 5 0 7 9 9 0 3 8 2 4 8 1 8 6 5 9 0 0 0 3
## [5689] 7 1 6 4 2 6 6 0 4 5 4 1 3 8 6 3 9 9 5 9 3 9 8 5 6 4 7 6 2 2 0 9 4 0 1 2
## [5725] 3 4 5 6 7 8 9 0 1 2 2 5 6 0 1 2 3 4 5 6 8 7 1 3 2 8 0 7 5 9 9 6 0 9 4 1
## [5761] 3 2 1 2 3 8 3 2 6 5 6 8 2 7 4 8 1 8 0 5 3 9 4 1 9 2 1 9 6 7 9 0 4 6 1 7
## [5797] 3 8 7 2 9 6 5 8 3 9 0 5 7 1 6 1 0 9 3 3 4 4 0 6 2 5 4 2 3 4 6 0 0 2 0 1
## [5833] 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 8 7 1 3 7 5 2 8 0 7 5
## [5869] 9 9 0 9 1 1 5 8 8 6 3 2 1 8 3 2 6 5 6 0 4 1 0 5 3 1 9 2 1 9 6 0 4 6 1 7
## [5905] 3 8 7 2 9 6 5 8 3 5 7 1 6 1 0 9 6 2 5 4 2 3 4 4 6 0 0 2 0 1 2 3 9 5 6 7
## [5941] 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 8 4 5 6 7 8 9 8 6 5 0 6 8 9 4 1 9 3 8 0 4
## [5977] 8 9 1 4 0 5 5 2 1 5 4 0 7 6 0 1 7 0 6 8 9 9 1 7 9 8 6 0 8 1 7 7 1 3 2 3
## [6013] 1 4 2 0 0 7 8 4 6 4 9 3 8 4 7 2 5 6 3 6 9 6 3 2 2 4 6 9 0 2 5 5 1 3 3 9
## [6049] 7 8 7 2 2 5 7 9 8 2 1 9 1 3 0 1 2 3 4 5 6 7 8 3 0 1 2 3 4 5 6 7 8 3 0 1
## [6085] 2 3 4 5 6 7 8 3 1 2 6 5 3 0 7 0 4 8 4 3 6 7 2 3 1 2 1 2 9 6 0 1 3 0 2 7
## [6121] 5 7 6 2 9 1 9 0 6 0 6 0 2 0 6 1 5 8 4 3 0 1 5 4 4 8 5 7 5 7 8 3 4 8 8 5
## [6157] 2 9 7 1 3 8 1 0 7 5 3 6 3 4 7 7 3 9 3 4 4 3 8 6 2 0 1 2 3 4 5 6 7 8 9 0
## [6193] 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 8 3 9 5 5 2 6 8 4 9 1 7 1 2 3 5
## [6229] 9 6 9 1 1 1 2 9 5 6 8 1 2 0 7 7 5 8 2 9 8 9 0 4 6 7 1 3 4 5 6 0 3 6 8 7
## [6265] 0 4 2 7 4 7 5 4 3 4 2 8 1 5 1 2 0 2 5 6 4 3 0 0 0 3 3 5 7 0 6 4 8 8 6 3
## [6301] 4 6 9 9 8 2 7 7 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7
## [6337] 8 2 1 7 2 5 0 8 0 2 7 8 8 3 6 0 2 7 6 6 1 2 8 8 7 7 4 7 7 3 7 4 5 4 3 3
## [6373] 8 4 1 1 9 7 4 3 7 3 3 0 2 5 5 6 6 3 5 2 5 9 9 8 4 1 0 6 0 9 6 8 8 5 6 1
## [6409] 1 9 8 9 2 3 5 5 9 4 2 1 9 3 9 2 0 6 0 4 0 0 1 2 3 4 7 8 9 0 1 2 3 7 8 9
## [6445] 0 1 2 3 4 7 8 9 7 3 0 3 1 8 7 6 4 0 2 6 8 3 2 8 1 2 0 7 1 0 4 4 5 8 0 6
## [6481] 2 3 1 5 1 8 5 9 4 0 7 5 8 8 3 8 9 2 6 2 5 3 1 7 3 4 1 9 9 6 0 3 9 2 8 1
## [6517] 4 3 5 2 9 2 5 8 9 5 0 1 2 4 5 6 0 1 2 3 4 5 6 7 1 2 3 4 5 1 0 4 5 6 6 3
## [6553] 4 4 2 9 1 0 6 4 9 7 2 3 3 9 2 0 9 3 3 9 1 5 6 3 7 7 8 4 0 2 4 0 2 4 7 8
## [6589] 0 7 0 6 9 3 2 8 6 7 5 7 5 1 0 8 1 6 7 2 9 7 9 5 8 6 2 6 2 8 1 7 5 0 1 1
## [6625] 3 7 4 9 1 8 6 8 5 0 1 2 3 4 5 6 7 5 9 0 1 2 3 4 7 8 9 5 1 7 8 9 9 8 9 8
## [6661] 4 1 7 7 3 3 7 6 6 6 1 9 0 1 7 6 3 2 1 7 1 3 9 1 7 6 8 4 1 4 3 6 9 6 1 4
## [6697] 4 7 2 4 4 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 9 0 1 2 3 4 7 8 1 3 5 1 7 7
## [6733] 2 1 4 8 3 4 4 3 9 7 4 1 2 3 5 9 1 6 0 1 0 0 2 9 7 1 1 4 0 4 7 3 6 8 0 3
## [6769] 7 4 0 6 9 2 6 5 8 6 9 0 4 0 6 6 9 2 0 9 5 1 3 7 6 9 3 0 2 2 0 1 2 3 4 5
## [6805] 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 2 1 7 2 5 0 8 0 2 7 8 8
## [6841] 3 0 6 0 2 7 6 6 1 2 8 8 7 7 4 7 7 3 7 4 5 4 3 3 8 4 5 4 1 1 9 7 4 3 7 3
## [6877] 3 0 2 5 5 6 3 1 5 2 5 9 9 8 4 1 0 6 0 9 6 8 8 5 6 1 1 9 8 9 2 3 5 5 9 4
## [6913] 2 1 9 4 9 1 3 9 2 0 6 0 4 0 6 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
## [6949] 1 2 3 4 5 6 7 8 9 3 8 0 7 1 0 7 5 5 6 9 0 1 0 0 8 3 4 3 1 5 0 0 9 5 3 4
## [6985] 9 3 7 6 9 2 4 5 7 2 6 4 9 4 9 4 1 2 2 5 8 1 3 2 9 4 3 8 2 2 1 2 8 6 5 1
## [7021] 6 7 2 1 3 9 3 8 7 5 7 0 7 4 8 8 5 0 6 6 3 7 6 9 9 4 8 4 1 0 6 6 0 1 2 3
## [7057] 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 7 4 0 4 0 1 7 9 5 1
## [7093] 4 2 8 9 4 3 7 8 2 4 4 3 3 6 9 9 5 8 6 7 0 6 8 2 6 3 9 3 2 8 6 1 7 4 8 8
## [7129] 9 0 3 3 9 0 5 2 9 4 1 0 3 7 5 8 7 7 8 2 9 7 1 2 6 4 2 5 2 3 6 6 5 0 0 2
## [7165] 8 1 6 1 0 4 3 1 6 1 9 0 1 4 5 6 7 8 9 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9
## [7201] 8 4 0 0 7 2 4 3 8 6 6 3 2 6 3 3 6 1 4 7 8 0 3 1 9 0 1 9 1 2 7 0 1 3 8 2
## [7237] 9 2 7 6 5 5 9 9 8 2 9 1 3 2 3 4 3 1 9 0 9 3 6 8 7 0 1 0 5 8 2 7 7 0 1 2
## [7273] 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 1 7 4 8 1 5 6 5 7
## [7309] 2 8 6 3 3 8 6 5 4 0 9 1 7 2 9 1 5 1 3 2 2 3 0 6 4 3 7 6 9 0 4 8 1 4 0 6
## [7345] 1 2 6 9 2 2 3 5 5 1 0 7 7 9 6 2 9 4 7 0 2 3 4 0 0 8 8 8 5 1 3 7 4 9 8 8
## [7381] 9 0 9 8 9 0 2 6 5 6 7 4 7 5 4 1 3 5 3 1 2 3 4 5 6 1 2 3 4 6 0 1 2 4 5 6
## [7417] 7 8 1 7 2 4 1 4 1 4 9 6 8 4 5 3 7 8 8 3 3 5 6 7 0 6 1 6 8 7 0 1 5 0 8 5
## [7453] 0 1 5 8 4 2 3 9 7 6 9 1 9 0 6 7 1 2 3 9 2 4 5 5 3 7 5 3 1 5 2 2 3 0 2 9
## [7489] 4 9 7 0 2 7 4 9 9 2 5 9 8 3 8 6 7 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
## [7525] 8 9 0 1 2 3 4 5 6 7 8 9 0 0 7 2 6 5 5 3 7 8 6 6 6 6 4 3 8 8 3 0 1 9 0 5
## [7561] 4 1 9 1 2 7 0 1 3 8 2 9 2 7 4 2 6 5 5 9 9 1 1 5 7 6 8 2 9 4 3 1 9 0 9 3
## [7597] 6 8 7 0 1 0 5 8 2 7 7 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 8 9 0 1 2 3 4 5 6
## [7633] 7 8 9 2 1 2 1 3 9 9 8 5 3 7 0 7 7 5 7 9 9 4 7 0 3 4 1 5 8 1 4 8 4 1 8 6
## [7669] 6 4 6 0 5 5 3 3 5 7 2 5 9 6 9 2 6 2 1 2 0 8 3 8 3 0 8 7 4 9 5 0 9 7 0 0
## [7705] 4 6 0 9 1 6 2 7 6 5 3 5 2 1 8 3 8 6 1 0 2 1 4 0 1 2 3 4 5 6 7 8 9 0 1 2
## [7741] 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 7 6 4 7 6 2 3 4 8 7 8 6 9 8 3 2 2 8 4
## [7777] 8 5 6 5 0 2 0 1 1 2 9 6 8 2 1 0 6 5 2 9 7 6 3 9 3 7 1 8 3 8 1 9 5 5 0 1
## [7813] 3 9 8 2 6 0 4 5 0 3 1 2 6 7 5 9 9 3 0 3 1 4 4 0 4 9 0 1 2 3 5 6 7 8 0 1
## [7849] 2 5 5 6 7 8 9 0 1 2 5 5 6 7 8 9 9 7 0 9 0 1 5 8 8 0 9 3 2 7 8 4 6 1 0 4
## [7885] 9 4 4 0 5 0 1 6 9 3 2 9 1 6 0 8 1 8 7 7 6 5 6 0 7 2 4 1 7 0 6 8 1 2 5 8
## [7921] 1 8 2 8 7 6 8 7 8 6 2 9 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
## [7957] 3 4 5 6 7 8 9 8 8 5 7 0 3 1 6 8 4 1 5 6 4 2 7 8 1 3 4 3 4 7 2 0 5 0 8 9
## [7993] 2 3 2 3 5 5 7 8 4 9 9 7 1 1 9 0 7 8 5 4 8 6 3 8 0 9 6 2 1 0 1 0 6 2 3 8
## [8029] 9 0 7 2 3 4 5 5 2 8 5 4 6 6 6 7 9 1 8 2 1 5 3 4 7 9 4 0 0 0 1 1 3 4 5 6
## [8065] 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 9 0 1 3 1 5 1 1 4 9 1 4 6 8 0 1
## [8101] 1 9 1 6 6 8 7 8 2 9 9 0 7 1 0 3 6 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
## [8137] 9 0 1 2 3 4 5 6 7 8 9 8 6 5 9 7 0 2 3 4 3 8 5 1 5 2 3 0 1 2 1 3 2 6 5 3
## [8173] 0 7 2 7 4 6 4 0 5 9 0 5 9 5 3 1 7 4 7 6 5 4 0 0 6 6 2 0 6 3 7 7 4 4 3 9
## [8209] 2 8 9 6 0 9 5 3 8 8 7 1 4 0 4 8 5 2 3 9 0 1 9 1 5 1 7 4 8 6 2 1 6 8 8 0
## [8245] 1 2 8 4 7 8 9 0 1 2 3 4 6 7 8 9 0 1 2 3 4 7 8 9 1 4 5 3 3 0 9 5 4 8 0 8
## [8281] 4 6 7 0 7 7 1 6 9 1 3 6 2 3 5 2 3 8 9 5 8 8 7 1 7 1 1 0 3 4 2 6 4 7 4 2
## [8317] 7 4 2 9 2 7 9 2 1 0 6 5 3 4 8 5 9 6 9 0 6 3 0 6 1 6 0 0 1 2 3 4 5 6 7 0
## [8353] 1 2 3 4 7 8 9 0 1 2 3 4 7 2 5 1 6 4 3 9 9 0 9 7 1 6 4 9 6 2 0 9 8 6 5 7
## [8389] 0 0 1 7 4 3 2 4 1 3 7 6 4 7 7 7 9 8 4 3 5 2 5 3 5 8 0 5 4 7 1 3 1 7 9 6
## [8425] 2 0 9 1 7 3 3 9 1 6 4 3 9 8 2 1 8 6 4 1 5 5 6 5 0 1 2 3 4 5 6 7 6 9 0 1
## [8461] 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 6 9 7 0 2 3 4 3 8 5 1 3 0 1 2 1 3 2
## [8497] 0 7 2 6 4 0 5 9 9 8 9 5 3 1 7 4 7 0 0 6 6 6 3 7 4 2 8 9 8 7 1 8 0 4 8 5
## [8533] 2 3 9 0 1 9 1 5 1 7 6 1 2 1 6 8 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 0
## [8569] 1 2 3 5 6 7 8 1 0 4 5 6 6 3 4 4 3 8 1 0 6 4 9 7 2 9 2 0 9 3 3 9 1 5 2 3
## [8605] 1 6 7 3 7 8 4 0 2 4 0 2 4 7 8 0 7 0 6 9 3 2 4 8 6 0 5 7 5 1 0 8 1 6 7 2
## [8641] 9 7 9 5 6 5 2 6 2 8 1 7 5 5 7 3 5 0 1 1 3 8 4 9 4 5 1 8 6 8 9 0 1 2 3 4
## [8677] 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 3 5 3 2 9 3 2 1 4 5 5
## [8713] 2 3 2 1 3 9 7 2 1 2 8 9 1 8 8 7 8 1 0 0 6 7 7 8 7 5 0 6 1 5 7 4 6 1 2 5
## [8749] 0 7 9 9 0 3 4 4 8 4 1 8 6 5 9 0 0 0 3 7 1 6 4 6 0 4 5 4 1 3 8 6 3 9 9 5
## [8785] 9 3 7 8 5 6 4 7 6 2 2 0 9 4 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
## [8821] 2 3 4 5 6 7 8 9 6 4 2 6 4 7 5 5 4 7 2 9 3 9 3 8 2 0 9 5 6 0 1 0 6 5 3 5
## [8857] 3 8 0 0 3 4 1 5 3 0 8 3 0 6 2 7 8 1 7 1 3 8 5 4 2 0 9 7 6 7 4 1 6 5 6 7
## [8893] 1 9 8 0 6 9 4 9 9 6 2 3 7 1 9 2 2 5 3 7 8 0 1 2 3 4 7 8 9 0 1 2 3 4 7 8
## [8929] 9 0 1 7 8 9 8 9 2 6 1 3 5 4 8 2 6 4 3 4 5 9 2 0 3 9 4 9 7 3 8 7 4 4 9 8
## [8965] 5 8 2 6 6 2 3 1 3 2 7 3 1 9 0 1 1 3 5 0 7 8 1 5 1 4 6 0 0 4 9 1 6 6 9 0
## [9001] 7 6 1 1 0 1 2 3 4 2 2 3 4 5 6 2 0 1 2 7 8 6 3 9 2 1 9 3 9 6 1 7 2 4 4 5
## [9037] 7 0 0 1 6 6 8 2 7 7 2 4 2 1 6 1 0 6 9 8 3 9 6 3 0 1 2 3 4 5 6 7 8 9 0 1
## [9073] 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 1 6 8 9 9 0 1 2 4 4 3 7 4 4 4 0 3 8
## [9109] 7 5 8 2 1 7 5 3 8 5 2 5 1 1 6 2 1 3 8 6 4 2 6 2 5 5 0 2 8 0 6 8 1 7 9 1
## [9145] 9 2 6 7 6 6 8 7 4 9 2 1 3 3 0 5 5 8 0 3 7 9 7 0 2 7 9 1 7 8 0 3 5 3 6 0
## [9181] 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 7 8 9 6 4 2 6 4 7 8 9 2
## [9217] 9 3 9 3 0 0 1 0 4 2 6 3 5 3 0 3 4 1 5 3 0 8 3 0 6 1 7 8 0 9 2 6 7 1 9 6
## [9253] 9 4 9 9 6 7 1 2 5 3 7 8 0 1 2 4 5 6 7 8 9 0 1 3 4 5 6 7 5 0 1 3 4 7 8 9
## [9289] 7 5 5 1 9 9 7 1 0 0 5 9 7 1 7 2 2 3 6 8 3 2 0 0 6 1 7 5 5 6 2 9 4 8 8 7
## [9325] 1 0 8 7 7 5 8 5 3 4 6 1 1 5 5 0 7 2 3 6 4 1 2 4 1 5 4 2 0 4 8 6 1 9 0 2
## [9361] 5 6 9 3 6 3 6 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 5 6 7 8 1
## [9397] 0 9 5 7 5 1 8 6 9 0 4 1 9 3 8 4 4 7 0 1 9 2 8 7 8 2 5 9 6 0 6 5 5 3 3 3
## [9433] 9 8 1 1 0 6 1 0 0 6 2 1 1 3 2 7 7 8 8 7 8 4 6 0 2 0 7 0 3 6 8 7 1 5 9 9
## [9469] 3 7 2 4 9 4 3 6 2 2 5 3 2 5 5 9 4 1 7 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
## [9505] 6 7 8 9 0 1 2 3 4 5 6 7 8 9 1 0 1 2 7 5 3 4 4 0 0 6 9 6 6 5 7 1 3 4 4 9
## [9541] 1 4 0 7 9 5 7 2 3 1 4 4 0 9 9 6 1 8 3 3 7 3 9 8 8 4 7 7 6 2 1 9 8 7 8 8
## [9577] 7 2 2 3 9 3 3 5 5 0 7 4 5 6 5 1 4 1 1 2 8 2 6 1 5 0 1 2 3 4 5 6 7 8 9 0
## [9613] 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 8 0 6 0 1 2 3 7 9 4 7 1 9 1 7 1 4 0
## [9649] 0 1 7 5 7 1 3 3 3 1 6 9 7 1 3 0 7 6 0 8 9 5 3 5 4 8 1 5 9 0 6 5 3 8 1 4
## [9685] 7 5 2 0 0 1 7 8 9 6 8 8 2 3 6 1 2 9 5 2 0 1 2 3 4 5 6 7 5 9 0 1 2 3 4 5
## [9721] 6 7 8 9 0 1 2 3 4 6 6 7 8 9 7 4 6 1 4 0 9 9 3 7 8 0 7 5 8 5 3 2 2 0 5 5
## [9757] 6 0 3 8 1 0 3 0 4 7 4 9 0 9 5 7 1 7 1 6 6 5 6 2 8 7 6 4 9 9 5 3 7 4 3 0
## [9793] 9 6 6 1 1 3 2 1 0 0 1 2 3 4 7 8 9 0 1 2 3 4 5 6 7 8 0 1 2 3 4 7 8 9 0 8
## [9829] 3 9 5 5 2 6 8 4 1 7 1 7 3 5 6 9 1 1 1 2 1 2 0 7 7 5 8 2 9 8 6 7 3 4 6 8
## [9865] 7 0 4 2 7 7 5 4 3 4 2 8 1 5 1 0 2 3 3 5 7 0 6 8 6 3 9 9 5 2 7 7 1 0 1 7
## [9901] 8 9 0 1 0 3 4 5 6 7 8 0 1 2 3 4 7 8 9 7 8 6 4 1 9 5 8 4 4 7 0 1 9 2 8 7
## [9937] 5 2 6 0 4 5 3 3 5 9 1 4 0 6 1 0 0 6 2 1 1 7 7 8 4 6 0 7 0 3 6 8 7 1 5 2
## [9973] 4 9 4 3 6 4 1 7 2 6 5 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
If we look at the first prediction then the actual first data item in our test data and see that they do match. Our prediction was correct.
pred_test[1]
## [1] 7
mnist$test$y[1]
## [1] 7