Impacto que tiene el sector de los peluqueros en la economía de Medellín.
Parcial 1 Estadística Bayesiana
Introducción
El auge que ha tomado el sector de belleza masculino, en especial los negocios dedicados al corte de pelo y barba exclusivos para los hombres, a través de los últimos años ha tenido un impacto impresionante en la ciudad de Medellín, el cual ha creado de alguna manera u otra cambios culturales que la sociedad ha percibido, pero más allá de esto, ha generado un impacto económico, el cual se desconoce, y en este momento nace la inspiración de intentar estudiarlo; porque este sector tiene una influencia sobre los rincones más ricos y más pobres de la cuidad, por tanto es necesario ir más allá e intentar descubrir qué porcentaje de la economía de Medellín puede estar protagonizada por este sector, pero lastimosamente este tipo de estudios es muy complejo manejarlos mediante la estadística clásica, ya que para hacer estimaciones adecuadas de este campo tan amplio se deben tomar tamaños de muestra muy grandes, lo cual es algo muy costoso y requiere mucho tiempo, por ello nos apoyamos de otras herramientas basadas en la estadística Bayesiana con la que podemos tener soluciones más factibles que nos pueden llevar a buenos resultados y son técnicas más viables las cuales valoran el conocimiento que expertos en el área tienen frente a este tema que se quiere estudiar.
Marco teórico
Una de las principales limitaciones de la estadística clásica o frecuentista es que no permite incorporar de manera coherente en el análisis estadístico la información extra-muestral o información previa que provenga de expertos en el área disponible, ya que se apoya únicamente en datos muestrales observados y en muchas casos esta información adicional puede ser de mucha utilidad, ya que viene directamente de personas que tienen una experiencia y experticie en el tema la cual puede tener una perspectiva más acertada del fenómeno que se está estudiando.
En la práctica, a menudo la incertidumbre o el desconocimiento sobre el tema de interés hace que la toma de decisiones sea en la mayoría de los casos muy compleja, por lo cual es común que las decisiones se apoyen en expertos que proporcionan información en forma de estimaciones de probabilidad con respecto a dichas incertidumbres. Las distribuciones de probabilidad son una de las representaciones más usadas de la incertidumbre que se tiene acerca de un tema de interés. Dichas distribuciones no son más que expresiones formales de lo que piensa o sabe un experto, por lo tanto, no es adecuado juzgarles como buenas o malas. La transformación mental de conocimiento subjetivo en una distribución de probabilidad es una tarea difícil (van Lenthe, 1993) y se deben tener en cuenta algunas técnicas para la captura de la información teniendo siempre en mente que es un proceso extremadamente delicado; En este caso puntual vamos a hacer uso de las técnicas popularmente utilizadas en la estadística Bayesiana llamadas elicitaciones (distribuciones no informativas).
El proceso de elicitación debe enfrentar un protocolo cuidadoso y profesional que le permita al analista documentar el proceso. En general, dicho protocolo no difiere mucho de los principios estándares de recolección de datos, donde se espera que el analista asegure la validez científica de sus datos.
En este estudio particular se hará uso de dos tipos de elicitaciones, las cuales tienen el nombre de: Elicitación gráfica a mano alzada y elicitación vía muestras hipotéticas.
Las elicitaciones como tal nos permiten hallar una distribución apriori para un parámetro el cual se está estudiando, de tal manera que mediante una distribución se pueda representar el conocimiento que tiene el experto bajo el problema de estudio.
Todo el proceso de elicitación requiere la selección de los expertos, la preparación de las preguntas, el entrenamiento de los expertos, las entrevistas, el análisis, la escritura de las justificaciones, documentación, etc.
Metodología
Se pretende desarrollar técnicas que permitan estimar el ingreso mensual de todo el sector de barberos en la ciudad de Medellín mediante elicitaciones, con estas se pretenden estimar distintas distribuciones de parámetros (número total de peluqueros, número promedio de servicios al mes, ingreso promedio por servicio) los cuales nos llevan a estimar el parámetro de interés que es el ingreso total del sector al mes, todo el proceso para obtener las estimaciones es implementado mediante el software R. El proceso de elicitación es planificado exhaustivamente siguiendo las pautas que el campo ha establecido como adecuadas de manera que el analista pueda llevar registro de todas estimaciones hechas por el experto y brindarle retroalimentación continua durante todo el proceso. Inicialmente se revisan los enfoques y desarrollos actuales para la cuantificación de la incertidumbre o creencias que un “experto” tiene sobre los parámetros a estudiar. Por medio de un proceso de elicitación de ensayo se prepara a los expertos hasta que tenga un entendimiento completo de cómo se desarrolla un proceso de elicitación y para la preparación de los analistas (facilitadores) se realiza lo que se conoce como una elicitación ficticia dado que la elicitación es un proceso complejo que exige al facilitador una serie de habilidades de entrevista y una comprensión razonable del campo en el que se realice la elicitación, de tal manera que ambas partes estén lo suficientemente aptas para realizar el proceso de elicitación. Después de recolectada la información se desarrolla algoritmos para la estimación de distribuciones apriori, en las cuales se desarrollaron procedimientos como: análisis de la distribuciones de probabilidad dadas por los expertos, sacar muestras mediante simulaciones a partir de estas distribuciones teniendo en cuenta el nivel de experiencia de cada experto, finalmente obteniendo una distribución de densidad promedio (distribución apriori) para el respectivo parámetro, el cual posteriormente se le realizan intervalos de probabilidad el cual nos permite entender y estimar los distintos parámetros y llegar a una estimación optima del parámetro de interés (ingreso del sector de barberos mensualmente a nivel de Medellín).
Características del estudio
El estudio está basado en el impacto de los peluqueros, barberos y estilistas que realizan procedimientos con el cabello del género masculino.
Solo se está centrado en los procedimientos sobre el género masculino ya que para el género femenino la variedad de procedimientos es muy amplio y complejo de estudiar.
La idea es intentar estudiar el ingreso total de todo el sector mensualmente.
Este estudio solo está basado en la ciudad de Medellín.
La idea es intentar hacer una estimación puntual, distribucional y realizar inferencias sobre el ingreso total mensual del sector a partir solamente del conocimiento que tengan tres expertos en el área.
Antecedentes y Preparación
Bajo este estudio se quiere llegar a la estimación distribucional de tres parámetros que salen a partir de la solución a las siguientes tres preguntas:
El número de peluqueros (se incluyen peluqueros, estilistas, y barberos) que hay en la ciudad de Medellín (Elicitación distribución discreta).
El número promedio de servicios a clientes (pueden ser los mismos clientes varias veces) que atiende cada peluquero en un mes. (elicitación distribución discreta).
ingreso promedio por servicio. (Elicitación distribución continua).
Las tres distribuciones elicitadas previamente serán las que ayudaran a la estimación distribucional a la pregunta que es realmente el interés bajo este estudio
“El ingreso total del sector por mes”
Definición de elicitación
En términos de análisis estadístico, elicitación es el proceso de formulación de los conocimientos de un experto sobre una afirmación o un tema en particular como una distribución de probabilidad, cuando los datos científicos no se encuentran, están dispersos o son poco informativos (Garthwaite et al., 2005). Una distribución de probabilidad elicitada es comúnmente usada como distribución apriori en el análisis bayesiano donde ésta representa las creencias iniciales acerca de los parámetros de un modelo. Es común en los procesos de elicitación la participación de una facilitador, quien ayuda al experto en la formulación de los conocimientos en forma probabilística.
El objetivo de la elicitación entonces es producir una distribución apriori útil que capture la opinión del experto y la integración de sus experiencias, dado que si un “experto” puede ordenar un conjunto completo de acontecimientos en una forma coherente, entonces la opinión de ese “experto” puede ser representada por una función de probabilidad.
Dado que el fin de la elicitación es representar la opinión del experto que está siendo elicitado, cualquier intento de validación deberá utilizar como datos únicamente otras declaraciones de fe por ese experto, pues el conocimiento se encuentra en la cabeza del experto, y no puede ser medido fácilmente (O’Hagan, 2005). Ahora, más allá de estas componentes, el principal criterio para validar un proceso de elicitación es el sentido práctico. Estos métodos se diferencian de otros, al no tratar de especificar que las estimaciones hechas por el experto son “correctas”. Todas las estimaciones auto consistentes o coherentes son admisibles siempre y cuando el experto sienta que correspondan con sus juicios, entonces toda vez que el método cumpla los criterios matemáticos básicos de coherencia e involucre algunas pruebas de fiabilidad, es un buen método, obviamente sin perder de vista que lo deseable en un proceso de elicitación es que sea lo más fácil posible para los expertos expresar sus creencias en términos probabilísticos, reduciendo al mismo tiempo el conocimiento que éste deba tener acerca de la teoría de probabilidad (Kadane y Wolfson, 1998).
Tipos de elicitaciones a utilizar
Elicitación gráfica a mano alzada Está basada en una gráfica que contiene expresiones verbales que miden el grado de incertidumbre que el experto tiene sobre un determinado valor. Es decir, en el “eje x” se le plantean valores posibles que puede tomar el parámetro a estudiar y en el “eje y” se presentan expresiones verbales las cuales entre más alto generan mayor nivel de seguridad de tal manera que el experto para cada valor en el “eje x” le debe asignar una expresión verbal del “eje y” y mediante esto construir una distribución del respectivo parámetro bajo estudio.
La distribución del número de peluqueros en la ciudad de Medellín fue elicitada mediante elicitación gráfica a mano alzada:
Los valores para el “eje x” es decir los valores que representan el número de peluqueros en la ciudad de Medellín toman valores de 1 a 100 mil (avanzando de a 2500 de manera equiespaciada) los cuales fueron considerados después de realizar una investigación y de analizar que fuera un rango de valores los cuales consideraran los valores que los expertos pensaban, de tal manera que la plantilla se estructuro de una manera inicial y posteriormente, de tener un dialogo con los expertos se mejoró para brindar a estos un rango amplio de valores y en el cual estuviera presente el que ellos consideraban como más probable.
Las expresiones del “Eje y” fueron consideradas por los analistas que están trabajando este estudio como las expresiones más adecuadas y fueron acomodadas a una altura que de verdad trasmitiera el nivel de seguridad correspondiente, este proceso fue realizado varias veces de tal manera que al final quedo de la manera más acertada para que cualquier persona lo asimilara correctamente.
| Altura | Expresión |
|---|---|
| 0 | Totalmente imposible |
| 5 | Me parece muy improbable |
| 15 | Me parece un poco improbable |
| 20 | No me genera seguridad |
| 35 | Es más bien algo incierto |
| 50 | Ni acuerdo ni en contra(50-50) |
| 60 | Pudiera ser, pero… |
| 75 | Me parece algo posible |
| 90 | Me parece demasiado viable |
| 95 | Estoy casi seguro |
| 100 | Absolutamente seguro |
Plantilla de elicitación para el número de peluqueros/barberos/estilistas en la ciudad de Medellín
La distribución del número promedio de servicios a clientes (pueden ser los mismos clientes varias veces) que atiende cada peluquero en un mes fue elicitada mediante elicitación gráfica a mano alzada:
Los valores para el “eje x”, es decir los valores que representan el número de servicios en un mes toma valores de 0 a 1000 (avanzando de a 25 de manera equiespaciada) los cuales fueron considerados después de realizar una investigación y de analizar, por lo tanto se considera el valor de 0 que es donde no atienden a clientes y 1000 es un caso en donde el especialista trabaja más de 15 horas diarias, atiende en muy poco tiempo a cada uno de sus clientes y además son turnos seguidos, es decir sin tiempo de descanso, por lo que se espera que este valor sea tan alto que sea poco probable y con este se da vía a que el valor promedio de clientes este entre el rango de valores disponibles y estuvieran en los valores que los expertos pensaban y efectivamente fue un rango adecuado.
Las expresiones del “Eje y” fueron consideradas por los analistas que están trabajando este estudio como las expresiones más adecuadas y fueron acomodadas a una altura que de verdad trasmitiera el nivel de seguridad correspondiente, este proceso fue realizado varias veces de tal manera que al final quedo de la manera más acertada para que cualquier persona lo asimilara correctamente.
| Altura | Expresión |
|---|---|
| 0 | Totalmente imposible |
| 5 | Me parece muy improbable |
| 15 | Me parece un poco improbable |
| 20 | No me genera seguridad |
| 35 | Es más bien algo incierto |
| 50 | Ni acuerdo ni en contra(50-50) |
| 60 | Pudiera ser, pero… |
| 75 | Me parece algo posible |
| 90 | Me parece demasiado viable |
| 95 | Estoy casi seguro |
| 100 | Absolutamente seguro |
Elicitación del número promedio de servicios en un mes de un peluquero/barbero/estilista de la ciudad de Medellín
Elicitación vía muestras hipotéticas Esta basada en la imaginación de una muestra de tamaño n, en la cual mediante casillas que presentan los valores posibles que puede tomar el parámetro de interés, se deben acomodar en cada uno de estos una porción de la muestra de tal manera que al sumar la cantidad presente en cada casilla debe dar un total de n, es decir, se debe repartir la muestra entre todos los valores que puede tomar la variable a estudiar, de tal manera que en valores más posible debe quedar una porción de la muestra más grande.
La distribución del ingreso promedio por servicio se realizó mediante la elicitación vía muestras hipotéticas:
Se consideró realizar este tipo de elicitación dado que para una persona natural es más difícil pensar en términos del pago promedio por servicio y mediante este tipo de elicitación va a pensar en algo que es más intuitivo que es en número de especialistas de 1000 disponibles que cobrarían por sus servicios cada uno de los precios que se le está proporcionando.
Dado que en este caso se manejan pesos colombianos, se crearon 21 casillas que tienen valores de 0 pesos a 50 mil pesos, las casillas tienen intervalos de a 2500, es decir, la primera casilla tiene de “0-2500”, la segunda de “2501-5000”, la tercera “5001-7500” y así sucesivamente siendo la última casilla “50001-más” de tal manera que al experto se le pide que se imagine una muestra de 1000 especialistas en el cabello de hombres(peluqueros/barberos/estilistas) y que acomode en cada uno de estos precios cuantos de los 1000 cobrarían entre esos intervalos, de tal manera que cuando acomode todos, el total le sume los 1000.
La plantilla se presenta a continuación:
Identificación y Contratación de Expertos
Expertos elegidos
Para realizar estos procesos de elicitación se requieren expertos reales es decir barberos, peluqueros o estilistas, debido a que este proceso no se le debe hacer por ejemplo a un cliente ya que este puede tener un punto de vista sobre el tema sesgado a su comportamiento particular sobre este entorno y no va a tener la dimensión sobre todo el campo como lo podría tener un especialista en el tema.
Para realizar las tres elicitaciones descritas anteriormente se buscan a tres expertos, a continuación se presenta su información y experiencia:
Experto 1.
Carlos Mario Bedoya
Barbero/peluquero del barrio Castilla de 32 años de edad, es un experto que lleva aproximadamente 1 año y medio en el campo, tiene su propio local muy bien acreditado y trabaja al lado de otros 3 barberos más, realmente siente gusto por lo que hace y es algo que visualiza para su vida muchos años más.
Experto 2
Marlon Hernández
Barbero/peluquero del barrio Castilla de 24 años de edad, es un experto que lleva aproximadamente 7 años en el campo, ha trabajado en 3 locales, los cuales han estado ubicado en el barrio Castilla y en el barrio Boyacá las brisas y actualmente se encuentra ejerciéndolo desde su propia casa, siente mucho gusto por el área, siente que es en algo que desempeña muy bien y día a día aprende cosas nuevas.
Experto 3
Mateo Rodríguez
Barbero/peluquero del barrio 12 de octubre de 22 años de edad, es un experto que lleva aproximadamente 4 años en el campo, inicio su aprendizaje de barbería al lado de su hermano el cual tenía un local en Itagüí y actualmente tiene su propio local en el barrio 12 de octubre con el que lleva 3 años.
Los tres expertos coinden en que mediante la barberia vieron una oportunidad de negocio en el mundo que no solo les aseguraba una fuente de ingreso, sino que les permitia desarrollar de forma apasionada un arte.
Diseño y validación de preguntas
Las preguntas que se le plantearon a cada uno de los expertos fueron las siguientes:
¿Cuántos barberos/peluqueros/estilistas que atienden hombres cree que hay en la ciudad de Medellín?
¿Cuántos clientes atiende en un mes en promedio un barbero/peluquero/estilista de la ciudad de Medellín, es decir, cuantos servicios tiene al mes?
¿Cuánto cree usted que en promedio cobran los barberos/peluqueros/estilistas por ofrecer un servicio (procedimiento sobre el cabello masculino)?
Recomendaciones que se tuvieron en cuenta a la hora de elicitar
La opinión de los expertos es la más valiosa para elicitar.
A los expertos se les debe pedir que expresen su opinión sobre cantidades observables.
A los expertos no se les debe pedir estimaciones de los momentos de una distribución.
Hay que proporcionarles retroalimentación frecuentemente durante el proceso de elicitación.
El objetivo es elicitar una distribución que represente el conocimiento presente del experto, y es útil tener un resumen sobre cuál es la justificación de este conocimiento.
Cualquier interés personal o financiero que el experto pueda tener en las inferencias o decisiones que dependerían (aun marginalmente) en la distribución del experto, debe ser declarado.
Debe proporcionarse un entrenamiento para familiarizar al experto con las interpretaciones probabilísticas y tanto con sus conceptos y propiedades que se requieran en la elicitación.
Es útil correr un ejercicio de elicitación ficticia para proporcionar práctica en el protocolo que el facilitador se propone utilizar.
Un registro debe llevarse de la elicitación. Este debe idealmente contener todas las preguntas que fueron realizadas por el facilitador junto con las respuestas del experto, también como el proceso con el que se ajustó la distribución de probabilidad con estas respuestas.
Roles en el proceso de elicitación
- Para realizar este proceso hay que tener en cuenta los dos roles que se presentan que son de facilitador y experto:
Facilitadores: En este caso son los analistas que van a preguntar y guiar en el proceso de elicitación.
Expertos: Especialistas en el campo, es decir, barberos, peluqueros y estilistas escogidos para diligenciar las plantillas de elicitaciones.
Elicitación ficticia
Teniendo en cuenta los roles descritos anteriormente se procede con una de las recomendaciones:
Es útil correr un ejercicio de elicitación ficticia para proporcionar práctica en el protocolo que el facilitador se propone utilizar.
Mediante esta recomendación los dos facilitadores encargados de la investigación proceden a hacer una elicitación ficticia, en la cual uno de los analistas desempeña el rol de facilitador y el otro el rol de experto y realizan las tres elicitaciones planteadas para este caso de estudio, esta fue registrada mediante un video.
El video lo pueden visitar en el siguiente link…Elicitación ficticia del sector peluqueros
Mediante esta elicitación ficticia se pretende preparar a los dos analistas para desempeñar un buen rol de facilitador, prepararse en las preguntas que se le van a proporcionar a los expertos, la información que se le va a otorgar a los mismos y correcciones que se deban hacer en el proceso de elicitación, como mejorar las plantillas de elicitación y demás anormalidades que se perciban en la prueba ficticia.
Los aspectos a mejorar después de realizar la elicitación ficticia son:
- Organizar el rango de valores en la plantilla de elicitación del número de peluqueros en la ciudad de Medellín.
- Mejoramiento de la forma de dirigirse a los expertos, para darse a entender de una manera más acertada ya que tienen muy poco conocimiento estadístico, por lo tanto, es necesario el uso de terminología más generales.
- Brindar la información adecuada para que el experto tenga unas estimaciones acordes a lo que piensa y coherente con la realidad.
Para el proceso de elicitación ficticia y los procesos de elicitación real se pretende otorgarle información a los expertos que le permitan ubicarse mejor en el contexto y responder de una manera más acertada en cada una de las elicitaciones
1) Mapa de Medellín: con la finalidad de que el experto dimensione el lugar donde labora en comparación con la dimensión que es toda la ciudad de Medellín
El cuál esta compuesto por:
- 6 zonas
- 16 comunas
- 249 barrios
- Tiene aproximadamente 2’500.000 habitantes de los cuales el 47% son hombres
2) Se le proporciona la información de los especialistas a tener en cuenta bajo el problema de estudio, los cuales de alguna manera u otra ellos ya tienen conocimiento:
Barbero. Hombre que tiene por oficio afeitar, cortar y arreglar la barba, el bigote y el pelo a los hombres… como se enlistan las prioridades, es el orden de sus aptitudes, no decimos que no sean buenos cortando el pelo, pero simplemente lo suyo es la barba y el bigote, así que si lo que buscas es tener un estilo en tu barba, ya sabes con quien ir.
Peluquero. Persona que tiene por oficio peinar, cortar y arreglar el cabello. Este profesional tiene únicamente conocimientos sobre el cabello, por lo que solo deberías de ponerte en sus manos si quieres darle mantenimiento general a tu cabello; ellos no tienen un toque tan fino como los estilistas.
Estilista. Persona que tiene por oficio cuidar el estilo y la imagen. Como su nombre lo dice, es una persona que busca darle estilo a las personas, tomando en cuenta el tipo de cara, cuerpo y personalidad. Ellos se fijan mucho en facetas en las que los peluqueros o barberos no son tan meticulosos, por ejemplo, retomando el aspecto de la cara, su alineación y hasta la distribución de cada una de sus partes, lo cual hacen que un look se vea perfecto.
Para más información consultar en el siguiente link… ESTILISTA, BARBERO O PELUQUERO, DEFINICIONES Y ¿CUÁL ES LA DIFERENCIA?
Aplicación del Método de Elicitación
Momento de elicitar a nuestros expertos
- Los resumenes que salen despúes de cada elicitación son sacados a partir de las notas que pudo obtener cada facilitador en todo el proceso.
Experto 1
Este fue elicitado por:
Facilitador 1: Jennifer Salazar Galvis
A este experto se acudió hasta su local, en el cual se le pidió la colaboración en el proceso de elicitación a cambio de pagarle el tiempo de un corte de cabello el cual corresponde a 12.000 pesos colombianos, muy amablemente, el experto ofreció gran parte de su tiempo para realizar bien este proceso.
A el experto se le explico cómo debía realizar cada uno de los procesos de elicitación, se le dieron las pautas y toda la información necesaria para ayudar a guiarlo en su proceso de estimación, el facilitador lo estuvo acompañando aproximadamente 3 horas en las que el experto estuvo analizando con mucha calma todo, luego de eso, se comenzó a la realización del proceso de elicitación el cual fue grabado para que los facilitadores después pudieran hacer uso de este recurso y utilizarlo en su análisis
El link del video se presenta a continuación…Proceso de Elicitación Experto 1
Las plantillas de elicitación realizadas por este experto se presentan a continuación:
Elicitación 1
Resumen de la elicitación
A la hora del experto estar realizando esta elicitación, comenzó a pensar muy concentradamente en esta pregunta, incluso la plantea a otros de sus compañeros de trabajo, él consideraba que el número de especialistas en cabello masculino realmente era grande, y en especial ya que en el sector que se encuentra laborando se rodea de muchos locales que cumplen esta condición, porque el afirmaba que en su propio barrio había una cantidad muy grande, entonces era impresionante todo lo que podía haber en Medellín, además que él ha tenido la oportunidad de conocer mucho a Medellín en anteriores trabajos y dice que en la mayoría de calles de Medellín hay locales de estos, por lo tanto él dice que realmente la cantidad peluqueros es mucho y que adicionalmente el considera que la mayoría de locales no están registrados por el DANE por lo que considera que pueden ser muchos más de lo que la información presente en internet brinda.
Elicitación 2
Resumen de la elicitación
Para responder esta pregunta el experto entro a analizar cuantos cliente atendía en semana, considerando que los días de lunes a miércoles de por si atiende un número menor de clientes que los que atiende jueves, viernes y en especial el fin de semana que es mucho mayor, más o menos analizo cómo se comporta una semana en promedio y trato de llevar este comportamiento a nivel de un mes y dar una estimación de lo que él considera, además de intentar pensar en otros barberos que ha tenido la oportunidad de conocer y sus flujos de clientes.
Elicitación 3
Resumen de la elicitación
Para esta pregunta el experto consideraba que la mayoría de especialistas en cabello masculino cobrarían precios alrededor de lo que él cobra, es decir más o menos entre 7500 y 12500 y a medida que se alejaba de estos precios colocaba un tamaño de muestra menor, pero en precios de 25000 y 32500 coloco una proporción menor que en los precios de 32500 a 42500 dado que consideraba que los únicos que podían cobrar estos precios tan altos eran especialistas de centros comerciales o de zonas de estratos más altos y que estos tendrían a cobrar valores muy altos y no intermedios o bajos y este experto considera que encontrar a alguien que cobre menos de 2500 es una muestra de mil es casi imposible al igual que alguien que cobre más de 42500 pesos colombianos.
Experto 2
Este fue elicitado por:
Facilitador 1: Jennifer Salazar Galvis
A este experto el facilitador previamente tenía conocimiento sobre él y sobre la expeticie que tiene en el tema ya que conoce que lleva más de 7 años en el campo, por lo tanto, el facilitador lo contacto por redes sociales y le pidió amablemente la colaboración en el proceso de elicitación al cual el experto accedió sin problema alguno.
El proceso de elicitación se le realizo a este experto vía meet el cual previamente se le explico al experto todas las pautas que debía tener en cuenta a la hora de realizar cada una de las elicitaciones, se le dio información que lo ayudara a guiarse más en su proceso de estimación y se entablo en aproximadamente una hora una conversación que le permitió al experto realizar estimaciones a las tres preguntas planteadas de acuerdo a sus pensamientos y conocimientos del tema, cuando este ya se sentía preparado, se procedió a empezar los procesos de elicitaciones los cuales fueron grabados y pueden ser visualizados a continuación:
El link para visualizar el video lo pueden encontrar aquí… Proceso de Elicitación Experto 2
Las plantillas de elicitación realizadas por este experto se presentan a continuación:
Elicitación 1
Resumen de la elicitación
A la hora de hacerle esta pregunta del número de peluqueros en la ciudad de Medellín este experto se encontraba muy pensativo dado que nunca había pensado en esto y consideraba que la cantidad era tan grande que no se lo alcanza a imaginar, empezó a establecer cifras demasiado grandes que parecen un poco exageradas, a medida que continuaba pensando las acomoda un poco mejor las cifras considerando valores muy grandes pero no exagerados, él se sentía muy seguro de lo que decía y no estaba de acuerdo con bajar su estimación y en varios ocasiones afirmo que el gremio de barberos, peluqueros y estilistas había crecido demasiado en los últimos años, hasta considerar que parecía una moda, dado que cuando empezó en este sector decía que no era tan común ver muchas personas que lo ejercieran pero que al pasar de los años tuvo la oportunidad de ver como muchas personas empezaban a emplearse en este sector y además la cantidad de locales que en los últimos años se montaron, cuestión que lo impresionaba y lo llevaba a pensar en lo popular que se volvió el oficio y que a la vez lo motivo a seguir en el sector.
Elicitación 2
Resumen de la elicitación
Para esta pregunta el experto pensó en el número de clientes que atendía en cada uno de los locales en los cual trabajo como barbero y en cuantos clientes atiende ahora que trabaja de manera independiente, además de pensar en aquellos negocios que suelen tener muchos clientes y en los que suelen haber pocos, de tal manera que pudiera dar una buena estimación del promedio de clientes en un mes, además de esto pensó en cuanto seria lo mínimo que atiende cuando le va muy mal y cuanto es lo máximo que atiende cuando le va muy bien, de tal manera que pueda reducir más el rango de donde estaría el promedio de clientes en un mes a su consideración, también se sentía muy seguro de sus estimaciones ya que lleva muchos años de experiencia en cómo se comporta este sector.
Elicitación 3
Resumen de la elicitación
Este experto consideraba que lo más tradicional en la ciudad de Medellín es cobrar entre un poco menos de 5000 y 15000, porque en su perspectiva cobrar más de esto no es adecuado a menos que este en una zona de un estrato muy alto, o en lugares más prestigiosos como centros comerciales y que además ofrezcan servicios adicionales que los barberos de barrios de por si no ofrecen, de tal manera que valga la pena cobrar más de 15 mil, por otro lado el considera que en una muestra de 1000 es muy difícil encontrar a alguien que cobre entre 15000 y 25000 y que por otro lado entre 25000 y 30000 deberían estar aquellos que cumplen las condiciones antes descritas, siendo un caso mucho más particular y costoso los que cobran entre 45000 y 47500.
Experto 3
Facilitador 2: Juan Esteban Sánchez Pulgarín
Dado que el facilitador actualmente se encuentra viviendo en Amaga el cual no pertenece a la ciudad de Medellín y los expertos deben ser de Medellín este facilitador procede a buscar vía internet expertos en el área de tal manera que logra tener el teléfono de varios y pedir a cada uno de ellos colaboración en el proceso de elicitación hasta que uno de ellos quiera hacerlo, el facilitador logra entablar una conversación con un experto que es barbero/peluquero del barrio 12 de octubre el cual accede a dar su colaboración a cambio del pago de 15.000 pesos colombianos y el facilitador accede y plantean un día y hora puntual para hacer el proceso de elicitación.
El proceso de elicitación se le realizo a este experto vía meet el cual previamente se le explico al experto todas las pautas que debía tener en cuenta a la hora de realizar cada una de las elicitaciones, se le dio información que lo ayudara a guiarse más en su proceso de estimación y se entablo en aproximadamente una hora una conversación que le permitió al experto realizar estimaciones a las tres preguntas planteadas de acuerdo a sus pensamientos y conocimientos del tema, cuando este ya se sentía preparado, se procedió a empezar los procesos de elicitaciones los cuales fueron grabados y pueden ser visualizados a continuación:
El link para visualizar el video lo pueden encontrar aquí…Proceso de Elicitación Experto 3
Las plantillas de elicitación realizadas por este experto se presentan a continuación:
Elicitación 1
Resumen de la elicitación
Cuando se realizó la elicitación del número de barberos, el experto consideraba que había una buena cantidad de barberos, ya que el gremio ha crecido mucho, y hay gran variedad de cursos y escuelas que enseñan de manera fácil esta profesión; él menciona que anteriormente era común ver solo peluquerías, hoy en día se puede encontrar una gran cantidad de locales de barbería y otros que prestan sus servicios a domicilió; inicialmente su máximo valor fue de diez mil barberos/peluqueros/estilistas en Medellín y considera que eso es suficiente para satisfacer la demanda y está abierto a que seguirá creciendo el número de barberos o que incluso hay más barberos.
Elicitación 2
Resumen de la elicitación
Para elicitar el número de servicios el experto consideraba que era imposible que un barbero prestara tan pocos servicios, poco para él eran menos de 100 servicios al mes, ya que el arte de la barbería demanda mucha gente, pero también consideraba que era muy difícil que un barbero realizara más de 600 servicios en un mes, por el desgaste que implicaría para la persona, por lo que teniendo en cuenta cuantos servicios realiza él al mes y sus compañeros, llego a que lo más probable es que un barbero realice al mes entre 425 y 500 servicios mensualmente.
Elicitación 3
Resumen de la elicitación
Cuando se le preguntó al experto 3 por el ingreso promedio por servicio, se le pidió que imaginara una muestra de 1000 barberos que incluían a todo tipo de barberos/peluqueros/estilistas; él mencionó conocer algunos que trabajan en centros comerciales y otros que trabajan en barrios más populares, pero que generalmente hay un precio base para los servicios prestados, sin embargo, es consciente de que hay algunos que cobran bastante más costosos, aunque, no son mayoría y corresponden a barberos que trabajan en zonas más exclusivas de ciudad; por lo que pensando en la mayoría, asigna 300 barberos que cobrarían entre 12501 y 15000, por lo que en un servicio generalmente se realizan varias cosas, además de un corte.
Conclusión:
Los tres expertos se sentían muy motivados por lo que ejercen, es algo que de verdad quieren seguir haciendo y los tres lo describen como un arte, del cual aprenden cada día cosas nuevas y además a su consideración es algo que nunca va a decaer, ya que a los hombres siempre les va a seguir creciendo el cabello y ahí van a estar ellos siempre para ayudar, por lo tanto, es un sector que va a seguir teniendo gran influencia y va a aportar a la economía.
Cambios de opinión
Al cabo de unos días se le hablo a cada uno de los expertos y se les pregunto si habían cambiado de opinión respecto a las estimaciones que hicieron en cada una de las elicitaciones:
Experto 1.
Como se puede ver en la conversación que se entablo con el Experto 1 este sigue firme con sus opiniones sobre cada una de las estimaciones que realizo sobre las tres variables estudiadas, por lo tanto, las elicitaciones son las mismas descritas previamente.
Experto 2.
Como se puede ver en la conversación que se entablo con el Experto 2 este sigue firme con sus opiniones sobre cada una de las estimaciones que realizo sobre las tres variables estudiadas, por lo tanto, las elicitaciones son las mismas descritas previamente.
Experto 3.
Como se puede ver en la conversación que se entablo con el Experto 3 este sigue firme con sus opiniones sobre el número promedio de servicios y el costo promedio por servicio, pero cambia un poco de opinión sobre el número de barberos que hay en la ciudad de Medellín, con lo cual se le volvió a realizar el proceso de elicitación para esta y se muestra a continuación la nueva plantilla:
Resumen de la elicitación
Cuando se realizó la elicitación del número de barberos, el experto consideraba que había una buena cantidad de barberos, ya que el gremio ha crecido mucho, y hay gran variedad de cursos y escuelas que enseñan de manera fácil esta profesión, sin embargo, inicialmente su máximo valor fue de diez mil, esto fue cambiando, debido a que él comenzó a pensar en que debían ser más, llegando como se observa a valores entre treinta mil y cuarenta mil barberos/peluqueros/estilistas en Medellín.
Análisis de las distribuciones
- Nota: Durante todo el análisis se hará mención de la palabra barberos haciendo referencia a todo el conjunto de expertos en el cabello masculino es decir haciendo referencia a barberos, peluqueros, estilistas a la vez, se utiliza para reducir notación.
Análisis del número de barberos/peluqueros/estilistas en la ciudad de Medellín
Una aproximación de las distribuciones establecidas por cada uno de los expertos sobre el número de barberos/peluqueros/estilistas en la ciudad de Medellín se visualiza a continuación:
- Las cuales traducidas a datos se presentan en la siguiente data frame:
Datos gráfico a mano alzada sobre el número de barberos/peluqueros/estilistas de la ciudad de Medellín
| Num_barberos | Experto1 | Experto2 | Experto3 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 2500 | 5 | 5 | 5 |
| 5000 | 15 | 5 | 15 |
| 7500 | 35 | 5 | 20 |
| 10000 | 50 | 15 | 50 |
| 12500 | 50 | 15 | 60 |
| 15000 | 50 | 15 | 60 |
| 17500 | 60 | 15 | 60 |
| 20000 | 60 | 35 | 60 |
| 22500 | 60 | 35 | 75 |
| 25000 | 75 | 35 | 75 |
| 27500 | 75 | 35 | 90 |
| 30000 | 75 | 50 | 95 |
| 32500 | 75 | 50 | 95 |
| 35000 | 75 | 60 | 100 |
| 37500 | 90 | 60 | 95 |
| 40000 | 90 | 75 | 95 |
| 42500 | 90 | 75 | 90 |
| 45000 | 95 | 90 | 90 |
| 47500 | 95 | 95 | 75 |
| 50000 | 100 | 100 | 75 |
| 52500 | 75 | 90 | 60 |
| 55000 | 75 | 90 | 60 |
| 57500 | 50 | 75 | 60 |
| 60000 | 50 | 60 | 50 |
| 62500 | 35 | 60 | 35 |
| 65000 | 35 | 60 | 35 |
| 67500 | 20 | 50 | 20 |
| 70000 | 20 | 35 | 15 |
| 72500 | 15 | 35 | 15 |
| 75000 | 15 | 35 | 5 |
| 77500 | 5 | 20 | 5 |
| 80000 | 5 | 15 | 0 |
| 82500 | 0 | 15 | 0 |
| 85000 | 0 | 15 | 0 |
| 87500 | 0 | 15 | 0 |
| 90000 | 0 | 5 | 0 |
| 92500 | 0 | 5 | 0 |
| 95000 | 0 | 0 | 0 |
| 97500 | 0 | 0 | 0 |
| 100000 | 0 | 0 | 0 |
Gráfico de las distribuciones aprioris en cada uno de los expertos y su promedio
distribución del número de barberos dada por el Experto 1
distribución del número de barberos dada por el Experto 2
distribución del número de barberos dada por el Experto 3
Distribución del número de barberos para los tres expertos y su promedio
- La distribución promedio que se presenta en esta gráfica es dándole el mismo peso a los tres expertos, pero esto no es adecuado ya que ellos no tienen el mismo nivel de experiencia o experticie en el tema, por tanto, mediante simulación se pretende sacar muestras con un tamaño de muestra equivalente al nivel de experticie de cada uno.
Para todas las simulaciones que se van a realizar previamente se va a utilizar un argumento que es el número de muestras equivalentes, que es extraído mediante la siguiente tabla
Para cada uno de los expertos se asignan cada una de las siguientes muestras equivalente:
- Experto 1: 7
- Experto 2: 14
- Experto 3: 9
Simulación del número de barberos
Se realizan simulaciones del número de barberos para cada uno de los expertos, en donde se toma una muestra de tamaño \(1000*n~seguridad\) donde \(n~seguridad\) es el tamaño muestral equivalente a los años de experiencia que tiene en el campo cada uno de los expertos, de tal manera que se le da mayor peso al que más años de experiencia lleva en el campo, porque se espera que entre más años lleve tiene un conocimiento más acertado.
Experto 1
A este experto se le brinda un \(n\) equivalente de \(7\) dado que tiene algo de conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 7000 con reemplazo de la información suministrada por el experto 1 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
| Minimo | Primer_Cuartil | Mediana | Media | Tercer_Cuartil | Maximo | Tamaño_muestra |
|---|---|---|---|---|---|---|
| 2500 | 25000 | 40000 | 38151.43 | 50000 | 80000 | 7000 |
Experto 2
A este experto se le brinda un \(n\) equivalente de \(14\) dado que tiene buen conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 14000 con reemplazo de la información suministrada por el experto 2 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
| Minimo | Primer_Cuartil | Mediana | Media | Tercer_Cuartil | Maximo | Tamaño_muestra |
|---|---|---|---|---|---|---|
| 2500 | 37500 | 50000 | 48587.5 | 60000 | 92500 | 14000 |
Experto 3
A este experto se le brinda un \(n\) equivalente de \(9\) dado que tiene algo de conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 9000 con reemplazo de la información suministrada por el experto 3 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
| Minimo | Primer_Cuartil | Mediana | Media | Tercer_Cuartil | Maximo | Tamaño_muestra |
|---|---|---|---|---|---|---|
| 2500 | 25000 | 37500 | 36887.22 | 50000 | 77500 | 9000 |
Distribución del número de barberos para los tres expertos mediante simulación y su promedio
- De la distribución roja que es la promedio se van a sacar 1000 muestras de tamaño \(n\) equivalente que va a ser un tamaño de muestra promedio de los tamaños de muestra equivalentes que le corresponden a cada experto, es decir:
Los \(n\) equivalentes de cada experto son:
- Experto 1: \(7\)
- Experto 2: \(14\)
- Experto 3: \(9\)
\[n=\frac{7+14+9}{3}=\frac{30}{3}=10\]
Por lo tanto, se van a tomar 1000 muestras de tamaño 10 de la distribución promedio del número de barberos en la ciudad de Medellín de tal manera que en cada una de las 1000 muestras de tamaño 10 se va a sacar el promedio que va a ayudar a obtener una nueva distribución más precisa del número real de barberos en la ciudad de Medellín el cual es presentada como una distribución de densidad, que es la distribución apriori del número de barberos de la ciudad de Medellin que es presentada a continuación:
Gráfica de la distribución apriori del número de barberos que hay en la ciudad de Medellín
| Minimo | Primer_Cuartil | Mediana | Media | Tercer_Cuartil | Maximo | Desviacion | Tamaño_muestra |
|---|---|---|---|---|---|---|---|
| 24750 | 38500 | 42250 | 42430.25 | 46250 | 60250 | 5785.287 | 1000 |
Se puede notar que se empezó el análisis del número de peluqueros con un rango de 0 a 100 mil, pero mediante esta distribución promedio ya se tiene un rango más cerrado que va de 24750 y 60250 que es el rango en donde se espera que este el número real de peluqueros de la ciudad de Medellín.
La estimación promedio del número de barberos/peluqueros/estilistas que hay en la ciudad de Medellín es de 42430. (Esta sería la estimación puntual)
Hay una dispersión de 5785.287 unidades en las estimaciones del número de barberos/peluqueros/estilistas de la ciudad de Medellín.
| Limite inferior 2.5% | Limite superior 97.5% |
|---|---|
| 31250 | 53750 |
- Con una probabilidad del 95% el número real de barberos/peluqueros/estilistas que hay en la ciudad de Medellín esta entre 31250 y 53750 personas.
Análisis del número de servicios en un mes que ofrecen los barberos/peluqueros/estilistas en la ciudad de Medellín
Una aproximación de las distribuciones establecidas por cada uno de los expertos sobre el número de servicios en un mes se visualiza a continuación:
- Las cuales traducidas a datos se presentan en la siguiente data frame:
| Num_clientes | Experto1 | Experto2 | Experto3 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 25 | 0 | 0 | 0 |
| 50 | 0 | 0 | 15 |
| 75 | 0 | 5 | 15 |
| 100 | 0 | 5 | 20 |
| 125 | 5 | 5 | 35 |
| 150 | 5 | 5 | 35 |
| 175 | 5 | 5 | 50 |
| 200 | 15 | 15 | 60 |
| 225 | 15 | 15 | 75 |
| 250 | 20 | 20 | 75 |
| 275 | 20 | 20 | 90 |
| 300 | 20 | 35 | 90 |
| 325 | 35 | 60 | 90 |
| 350 | 50 | 60 | 95 |
| 375 | 50 | 75 | 95 |
| 400 | 60 | 90 | 95 |
| 425 | 75 | 95 | 100 |
| 450 | 90 | 95 | 100 |
| 475 | 95 | 100 | 100 |
| 500 | 100 | 100 | 100 |
| 525 | 95 | 95 | 60 |
| 550 | 90 | 90 | 50 |
| 575 | 75 | 90 | 35 |
| 600 | 60 | 75 | 15 |
| 625 | 60 | 75 | 15 |
| 650 | 20 | 60 | 0 |
| 675 | 15 | 60 | 0 |
| 700 | 5 | 35 | 0 |
| 725 | 5 | 35 | 0 |
| 750 | 5 | 20 | 0 |
| 775 | 5 | 20 | 0 |
| 800 | 0 | 15 | 0 |
| 825 | 0 | 15 | 0 |
| 850 | 0 | 15 | 0 |
| 875 | 0 | 5 | 0 |
| 900 | 0 | 0 | 0 |
| 925 | 0 | 0 | 0 |
| 950 | 0 | 0 | 0 |
| 975 | 0 | 0 | 0 |
| 1000 | 0 | 0 | 0 |
Gráfico de las distribuciones aprioris en cada uno de los expertos y su promedio
distribución del número de servicios promedio en un mes para el Experto 1
distribución del número de servicios promedio en un mes para el Experto 2
distribución del número de servicios promedio en un mes para el Experto 3
Distribución del número de servicios promedio por mes dado por cada experto mediante simulación y su promedio
- La distribución promedio que se presenta en esta gráfica es dándole el mismo peso a los tres expertos, pero esto no es adecuado ya que ellos no tienen el mismo nivel de experiencia o experticie en el tema, por tanto, mediante simulación se pretende sacar muestras con un tamaño de muestra equivalente al nivel de experticie de cada uno.
Simulación del número de servicios promedio al mes
Se realizan simulaciones del número de servicios promedio en un mes para cada uno de los expertos, en donde se toma una muestra mediante simulación de tamaño \(1000*n~seguridad\) donde \(n~seguridad\) es el tamaño muestral equivalente a los años de experiencia que tiene en el campo cada uno de los expertos, de tal manera que se le da mayor peso al que más años de experiencia lleva en el campo, porque se espera que entre más años lleve tiene un conocimiento más acertado.
Experto 1
A este experto se le brinda un \(n\) equivalente de \(7\) dado que tiene algo de conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 7000 con reemplazo de la información suministrada por el experto 1 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
| Minimo | Primer_Cuartil | Mediana | Media | Tercer_Cuartil | Maximo | Tamaño_muestra |
|---|---|---|---|---|---|---|
| 125 | 400 | 475 | 471.9821 | 550 | 775 | 7000 |
Experto 2
Se saca una muestra mediante simulación de tamaño 14000 con reemplazo de la información suministrada por el experto 2 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
| Minimo | Primer_Cuartil | Mediana | Media | Tercer_Cuartil | Maximo | Tamaño_muestra |
|---|---|---|---|---|---|---|
| 75 | 400 | 500 | 499.0875 | 600 | 875 | 14000 |
Experto 3
Se saca una muestra mediante simulación de tamaño 9000 con reemplazo de la información suministrada por el experto 3 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
| Minimo | Primer_Cuartil | Mediana | Media | Tercer_Cuartil | Maximo | Tamaño_muestra |
|---|---|---|---|---|---|---|
| 50 | 250 | 350 | 354.8056 | 450 | 625 | 9000 |
Distribución del número de servicios en un mes para los tres expertos y su promedio
- De la distribución roja que es la promedio se van a sacar 1000 muestras de tamaño \(n\) equivalente que va a ser un tamaño de muestra promedio de los tamaños de muestra equivalentes que le corresponden a cada experto, es decir:
Los \(n\) equivalentes de cada experto son:
- Experto 1: \(7\)
- Experto 2: \(14\)
- Experto 3: \(9\)
\[n=\frac{7+14+9}{3}=\frac{30}{3}=10\]
Por lo tanto, se van a tomar 1000 muestras de tamaño 10 de la distribución promedio del número de servicios en un mes de tal manera que en cada una de las 1000 muestras de tamaño 10 se va a sacar un promedio que va a ayudar a obtener una nueva distribución más precisa del número real de servicios en el mes de los peluqueros en la ciudad de Medellín el cual es presentada como una distribución de densidad, que es la distribución apriori del número promedio de servicios en un mes de barberos de la ciudad de Medellin que es presentada a continuación:
Gráfica de la distribución apriori del número de servicios promedio en un mes de barberos en la ciudad de Medellín
| Minimo | Primer_Cuartil | Mediana | Media | Tercer_Cuartil | Maximo | Desviacion | Tamaño_muestra |
|---|---|---|---|---|---|---|---|
| 312.5 | 419.375 | 447.5 | 449.45 | 480.625 | 590 | 46.54462 | 1000 |
Se puede notar que se empezó el análisis del número de servicios en un mes con un rango de 0 a 1000, pero mediante esta distribución promedio ya se tiene un rango más cerrado que va de aproximadamente de 312 a 590 servicios que es el rango en donde se espera que este el número real de servicios en un mes de peluqueros de la ciudad de Medellín.
La estimación promedio del número de servicios que ofrecen al mes los barberos/peluqueros/estilistas en la ciudad de Medellín es de aproximadamente 449 servicios.
Hay una dispersión de 46.54462 unidades en las estimaciones del número de servicios en un mes de barberos/peluqueros/estilistas de la ciudad de Medellín.
| Limite inferior 2.5% | Limite superior 97.5% |
|---|---|
| 358 | 540 |
- Con una probabilidad del 95%, el número de servicios promedio en un mes real que ofrecen los barberos/peluqueros/estilistas de la ciudad de Medellín esta entre 358 y 540 servicios.
Análisis del costo promedio por servicio que ofrecen los barberos/peluqueros/estilistas en la ciudad de Medellín
Las plantillas de elicitación establecidas por cada uno de los expertos sobre el costo promedio por servicio se visualiza a continuación:
Experto 1
Experto 2
Experto 3
- Las cuales traducidas a datos se presentan en la siguiente data frame:
Datos gráfico elicitación vía muestras hipotéticas del costo por servicio
| Costo | Experto1 | Experto2 | Experto3 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 500 | 0 | 0 | 0 |
| 1000 | 0 | 0 | 0 |
| 1500 | 0 | 0 | 0 |
| 2000 | 0 | 0 | 0 |
| 2500 | 0 | 0 | 0 |
| 3000 | 10 | 100 | 0 |
| 3500 | 10 | 100 | 0 |
| 4000 | 10 | 100 | 0 |
| 4500 | 10 | 100 | 0 |
| 5000 | 10 | 100 | 0 |
| 5500 | 150 | 200 | 0 |
| 6000 | 150 | 200 | 0 |
| 6500 | 150 | 200 | 0 |
| 7000 | 150 | 200 | 0 |
| 7500 | 150 | 200 | 0 |
| 8000 | 200 | 450 | 150 |
| 8500 | 200 | 450 | 150 |
| 9000 | 200 | 450 | 150 |
| 9500 | 200 | 450 | 150 |
| 10000 | 200 | 450 | 150 |
| 10500 | 200 | 100 | 200 |
| 11000 | 200 | 100 | 200 |
| 11500 | 200 | 100 | 200 |
| 12000 | 200 | 100 | 200 |
| 12500 | 200 | 100 | 200 |
| 13000 | 100 | 100 | 300 |
| 13500 | 100 | 100 | 300 |
| 14000 | 100 | 100 | 300 |
| 14500 | 100 | 100 | 300 |
| 15000 | 100 | 100 | 300 |
| 15500 | 100 | 0 | 200 |
| 16000 | 100 | 0 | 200 |
| 16500 | 100 | 0 | 200 |
| 17000 | 100 | 0 | 200 |
| 17500 | 100 | 0 | 200 |
| 18000 | 80 | 0 | 50 |
| 18500 | 80 | 0 | 50 |
| 19000 | 80 | 0 | 50 |
| 19500 | 80 | 0 | 50 |
| 20000 | 80 | 0 | 50 |
| 20500 | 70 | 0 | 25 |
| 21000 | 70 | 0 | 25 |
| 21500 | 70 | 0 | 25 |
| 22000 | 70 | 0 | 25 |
| 22500 | 70 | 0 | 25 |
| 23000 | 30 | 0 | 25 |
| 23500 | 30 | 0 | 25 |
| 24000 | 30 | 0 | 25 |
| 24500 | 30 | 0 | 25 |
| 25000 | 30 | 0 | 25 |
| 25500 | 5 | 20 | 25 |
| 26000 | 5 | 20 | 25 |
| 26500 | 5 | 20 | 25 |
| 27000 | 5 | 20 | 25 |
| 27500 | 5 | 20 | 25 |
| 28000 | 5 | 20 | 15 |
| 28500 | 5 | 20 | 15 |
| 29000 | 5 | 20 | 15 |
| 29500 | 5 | 20 | 15 |
| 30000 | 5 | 20 | 15 |
| 30500 | 5 | 0 | 5 |
| 31000 | 5 | 0 | 5 |
| 31500 | 5 | 0 | 5 |
| 32000 | 5 | 0 | 5 |
| 32500 | 5 | 0 | 5 |
| 33000 | 10 | 0 | 5 |
| 33500 | 10 | 0 | 5 |
| 34000 | 10 | 0 | 5 |
| 34500 | 10 | 0 | 5 |
| 35000 | 10 | 0 | 5 |
| 35500 | 10 | 0 | 0 |
| 36000 | 10 | 0 | 0 |
| 36500 | 10 | 0 | 0 |
| 37000 | 10 | 0 | 0 |
| 37500 | 10 | 0 | 0 |
| 38000 | 10 | 0 | 0 |
| 38500 | 10 | 0 | 0 |
| 39000 | 10 | 0 | 0 |
| 39500 | 10 | 0 | 0 |
| 40000 | 10 | 0 | 0 |
| 40500 | 15 | 0 | 0 |
| 41000 | 15 | 0 | 0 |
| 41500 | 15 | 0 | 0 |
| 42000 | 15 | 0 | 0 |
| 42500 | 15 | 0 | 0 |
| 43000 | 0 | 0 | 0 |
| 43500 | 0 | 0 | 0 |
| 44000 | 0 | 0 | 0 |
| 44500 | 0 | 0 | 0 |
| 45000 | 0 | 0 | 0 |
| 45500 | 0 | 10 | 0 |
| 46000 | 0 | 10 | 0 |
| 46500 | 0 | 10 | 0 |
| 47000 | 0 | 10 | 0 |
| 47500 | 0 | 10 | 0 |
| 48000 | 0 | 0 | 0 |
| 48500 | 0 | 0 | 0 |
| 49000 | 0 | 0 | 0 |
| 49500 | 0 | 0 | 0 |
| 50000 | 0 | 0 | 0 |
- Nota: Dado que en el proceso de elicitación se le presentaban intervalos a los expertos en el que en cada uno acomodo frecuencias de barberos, para hacer el análisis del costo promedio por servicio se van a tener en cuenta los valores dentro del intervalo de 500 en 500 y a cada uno se le va a asignar la frecuencia respectiva del intervalo al cual pertenece, por ejemplo si el intervalo de 2501 a 5000 tenía una frecuencia de 10, a los costos de 3000, 3500, 4000, 4500 y 5000 se les da el valor de 10, esto con el fin de dar oportunidad de que en las simulaciones y demás análisis tenga en cuenta los valores dentro de cada intervalo y sea razonables con los pesos colombianos que se pueden manejar.
Gráfico de las distribuciones aprioris en cada uno de los expertos y su promedio
Distribución del costo promedio por servicio para el Experto 1
Distribución del costo promedio por servicio para el Experto 2
Distribución del costo por servicio para el Experto 3
Distribución del costo promedio por servicio para cada experto y el promedio entre los expertos
- La distribución promedio que se presenta en esta gráfica es dándole el mismo peso a los tres expertos, pero esto no es adecuado ya que ellos no tienen el mismo nivel de experiencia o experticie en el tema, por tanto mediante simulación se pretende sacar muestras con un tamaño de muestra equivalente al nivel de experticie de cada uno.
Simulación del costo por servicio promedio
Se realizan simulaciones del costo por servicio promedio en un mes para cada uno de los expertos, en donde se toma una muestra mediante simulación de tamaño \(1000*n~seguridad\) donde \(n~seguridad\) es el tamaño muestral equivalente a los años de experiencia que tiene en el campo cada uno de los expertos, de tal manera que se le da mayor peso al que más años de experiencia lleva en el campo, porque se espera que entre más años lleve tiene un conocimiento más acertado.
Experto 1
A este experto se le brinda un \(n\) equivalente de \(7\) dado que tiene algo de conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 7000 con reemplazo de la información suministrada por el experto 1 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
| Minimo | Primer_Cuartil | Mediana | Media | Tercer_Cuartil | Maximo | Tamaño_muestra |
|---|---|---|---|---|---|---|
| 3000 | 9000 | 12000 | 14132 | 17500 | 42500 | 7000 |
Experto 2
A este experto se le brinda un \(n\) equivalente de \(14\) dado que tiene buen conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 14000 con reemplazo de la información suministrada por el experto 2 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
| Minimo | Primer_Cuartil | Mediana | Media | Tercer_Cuartil | Maximo | Tamaño_muestra |
|---|---|---|---|---|---|---|
| 3000 | 7000 | 9000 | 9808.821 | 10500 | 47500 | 14000 |
Experto 3
A este experto se le brinda un \(n\) equivalente de \(9\) dado que tiene algo de conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 9000 con reemplazo de la información suministrada por el experto 3 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
| Minimo | Primer_Cuartil | Mediana | Media | Tercer_Cuartil | Maximo | Tamaño_muestra |
|---|---|---|---|---|---|---|
| 8000 | 11500 | 14000 | 14688.44 | 16500 | 35000 | 9000 |
Distribución del costo promedio por servicio para los tres expertos mediante simulación y su promedio
- De la distribución roja que es la promedio se van a sacar 1000 muestras de tamaño \(n\) equivalente que va a ser un tamaño de muestra promedio de los tamaños de muestra equivalentes que le corresponden a cada experto, es decir:
Los \(n\) equivalentes de cada experto son:
Experto 1: \(7\) Experto 2: \(14\) Experto 3: \(9\)
\[n=\frac{7+14+9}{3}=\frac{30}{3}=10\]
Por lo tanto, se van a tomar 1000 muestras de tamaño 10 de la distribución promedio del costo por servicio de tal manera que en cada una de las 1000 muestras de tamaño 10 se va a sacar un promedio que va a ayudar a obtener una nueva distribución más precisa del número real del costo del servicio de los barberos en la ciudad de Medellín el cual es presentada como una distribución de densidad, que es la distribución apriori del costo promedio por servicio de barberos en la ciudad de Medellín que es presentada a continuación:
Gráfica de la distribución apriori del costo promedio por servicio promedio de barberos en la ciudad de Medellín
| Minimo | Primer_Cuartil | Mediana | Media | Tercer_Cuartil | Maximo | Desviacion | Tamaño_muestra |
|---|---|---|---|---|---|---|---|
| 6550 | 10700 | 12000 | 12189.4 | 13400 | 20700 | 2052.128 | 1000 |
Se puede notar que se empezó el análisis del costo por servicio con un rango de 0 a 50 mil, pero mediante esta distribución promedio ya se tiene un rango más cerrado que va de aproximadamente de 6550 a 20700 (costo por servicio) que es el rango en donde se espera que este el número real del costo por servicio de peluqueros de la ciudad de Medellín.
El costo promedio por servicio de los barberos/peluqueros/estilistas de la ciudad de Medellín es de 12189 que aproximadamente 12’200 pesos colombianos.
Hay una dispersión de 2052.128 unidades en las estimaciones del costo promedio por servicio de barberos/peluqueros/estilistas de la ciudad de Medellín.
| Limite inferior 2.5% | Limite superior 97.5% |
|---|---|
| 8800 | 16751 |
- Con una probabilidad del 95% el costo promedio por servicio real de barberos/peluqueros/estilistas de la ciudad de Medellín esta entre 8800 y 16750 pesos colombianos.
Estimación de la variable de interés
Ahora se va a realizar la estimación de la variable que era el verdadero interés de este estudio
“Ingreso total del sector al mes”
El Ingreso total generado por el sector es una variable aleatoria con una distribución que sale a partir de las otras variables estudiadas, que es el número de barberos/peluqueros/estilistas en la ciudad de Medellín, el número promedio de servicios que ellos ofrecen en un mes y el costo por servicio, es decir el Ingreso total del sector sale como un producto de las anteriores tres variables mencionadas:
\[Ingreso~Total=Nro. Peluqueros \times Nro. Servicios \times Precio~Promedio~por~Servicio\]
Por lo tanto, para el cálculo de la distribución del ingreso total se aplicará la siguiente estrategia:
- Se extrae de manera aleatoria un valor de la distribución del Número de barberos
- Se extrae de manera aleatoria un valor de la distribución del Número promedio de servicios en un mes.
- Se extrae de manera aleatoria un valor de la distribución del Costo promedio por servicio
- Se realiza el producto de las muestras sacadas en los tres pasos anteriores que será un valor muestral para el ingreso total.
- Se repiten los pasos anteriores muchas veces de tal manera que se obtiene una muestra mediante simulación grande para el ingreso total del sector y mediante esta poder elaborar la distribución (Histograma) y realizar inferencias sobre esta variable.
(la muestra para cada uno se extrae de la distribución promedio creada finalmente mediante simulación, de tal manera que esta tiene un tamaño de muestra equivalente para cada experto).
Calculando la distribución del ingreso total en un mes del sector
Se toma una muestra mediante simulación de tamaño 1000 para el ingreso total por sector, que es calculado como el producto de las tres muestras extraídas para cada una de las otras variable (Número peluqueros, Número de servicios, Costo por servicio)
Distribución apriori del ingreso total por mes del sector de barberos de la ciudad de Medellín
| Minimo | Primer_Cuartil | Mediana | Media | Tercer_Cuartil | Maximo | Desviacion | Tamaño_muestra |
|---|---|---|---|---|---|---|---|
| 103398750000 | 197752500000 | 229561406250 | 236334648031 | 268359375000 | 4.6494e+11 | 54970974545 | 1000 |
- En promedio el ingreso del sector de barberos/peluqueros/estilistas/ en un mes es de 236.334.648.031 pesos colombianos.
Intervalo de probabilidad
| Límite inferior 2.5% | Límite superior 97.5% |
|---|---|
| 146242753125 | 3.59115e+11 |
- Con una probabilidad del 95% el valor del ingreso del sector de barberos/peluqueros/estilistas/ en un mes esta entre 146.242.753.125 y 359.115.000.000 pesos colombianos.
Conclusiones y Recomendaciones
Sobre el sector
El sector de barberos, peluqueros y estilistas en Medellín tienen un gran impacto en la economía de Medellín, pero es más grande el impacto social que este crea.
El impacto social del sector de barberos, peluqueros y estilistas en Medellín puede deberse al bienestar psicológico que crea en sus clientes a la hora de prestarle sus servicios, pero este bienestar no es cuantificable por lo tanto se recurre a medidas cuantificables como lo es el impacto económico.
De manera indirecta los ingresos del sector económico de la barbería contribuyen a otros sectores de la economía en Medellín, es decir, los sectores completos generan dinámicas en el resto de la economía, como por ejemplo de los ingresos que genera un barbero dedica una parte a la adquisición de insumos, pago de servicios, manutención, etc. que benefician a otros sectores y con ello a la economía general de la ciudad de Medellín.
Organizaciones gubernamentales le pueden interesar bastante el impacto de este sector económico, ya que es un sector más bien informal y así aplicarlo para efectos más prácticos, como en el tema de la salubridad, saber si hay transmisión de enfermedades y si las barberías necesitan capacitaciones en el tema; conocer en qué puntos de la ciudad se concentran los barberos y que necesidades como escuelas, talleres, manejo económico pueden necesitar; generar censos de esta población para conocer mejor sus necesidades y beneficios que generan.
Sobre el proceso de elicitación
Algo muy positivo a resaltar de este estudio es que los tres expertos generaron una gran seguridad en sus estimaciones, tuvieron unas perspectivas muy similares a pesar de que estos no se conocían, no han interactuado, fueron elaboradas en momentos distintos y además los facilitadores intentaron tener mucho control para no generar sesgos en los pensamientos que tenían los expertos, de tal manera que esta similaridad en las estimaciones no dan la idea de que pueden ser muy próximas al comportamiento real del sector.
El proceso de elicitación es una tarea la cual requiere una buena comunicación con los expertos, ya que estos se deben sentir cómodos con lo que se les está preguntando, deben comprender lo importante que son para la investigación y que de verdad expresen su conocimiento o perspectiva que tiene frente a lo que se está estudiando.
Es recomendable tener mucha paciencia en el proceso, ya que es un proceso difícil de cuantificar el tiempo que toma y además es importante repetirle a experto las ideas hasta que estas sean claras para él, es muy necesaria que el experto entienda en su totalidad todo lo que se está haciendo en el proceso de elicitación y cuál es el problema de estudio central que se está trabajando.
Es de suma importancia después de un tiempo prudente preguntarle al experto si sigue teniendo la misma perspectiva o la ha cambiado y hacer un registro de ello, de tal manera que las estimaciones de verdad reflejen el pensamiento y conocimiento de cada experto.
Es muy recomendable realizar el proceso de elicitación ficticia ya que este permite tener una preparación de cuál es la comunicación más acertada que se debe tener con el experto.
Una de las dificultades que se tuvo en el proceso fue la búsqueda de los expertos, que debido a la situación actual (Pandemia) en los tiempos que se emprendió esta actividad había restricciones en la movilidad en la ciudad de Medellín, lo cual no permitía que los facilitadores realizaran una búsqueda cómoda de los expertos, además que entablar una conversación con una persona desconocida para pedirle colaboración para realizar el proceso de elicitación no es una tarea fácil y requiere hacerlo mediante una comunicación asertiva.
El proceso de elicitación es una muy buena herramienta para sacar estimaciones de problemas de estudio que mediante otras técnicas generan gran dificultad y además de ello son costosos, porque el proceso de elicitación no requiere muchos datos y además valora a expertos en el tema, lo cual debería ser más acertado.
Una técnica utilizada en este estudio y que es de suma utilidad son las simulaciones ya que estos nos permitieron obtener unas buenas distribuciones dando peso respecto a la experiencia o conocimiento que cada experto tenia frente al tema.
Referencias
C. (2020, 10 julio). ¿Cuánto ganan los propietarios de la barbería mensualmente / anualmente? ExoNegocios. https://exonegocios.com/cuanto-ganan-los-propietarios-de-la-barberia-mensualmente-anualmente/
Flórez Rivera, A. (2014). ELICITACIÓN DE UNA DISTRIBUCIÓN SUBJETIVA DEL VECTOR DE PARÁMETROS PI DE LA DISTRIBUCIÓN MULTINOMIAL (Magister en Estadística). Universidad Nacional de Colombia.
Garthwaite P., Kadene J. y O’Hagan A., 2005, Statistical Methods for Eliciting Probability Distribu-tions,Journal of the American Statistical Association,Vol. 100, 680-700, No.470.
Kadane J., Wolfson L., 1998, Experiencies in Elicitation,The Statistician,Vol. 47, 3-19, No. 1.
Lora, D. (2020, 20 agosto). ESTILISTA, BARBERO O PELUQUERO, ¿CUÁL ES LA DIFERENCIA? SoyMacho.com. https://www.soymacho.com/blogs/blog/diferencia-estilista-barbero-peluquero#:%7E:text=Persona%20que%20tiene%20por%20oficio,tan%20fino%20como%20los%20estilistas
Medellín Barrios y Comunas. (s. f.). [Ilustracion]. Wikimedia. https://upload.wikimedia.org/wikipedia/commons/6/6a/Mapa_medellin_barrios_comunas_zonas_%28completo%29.svg
O’Hagan A., 2005, Research in Elicitation,University of Sheffield, UK
Van Lenthe J., 1993, A blueprint of ELI: A new method for eliciting subjective probability distributions,Behavior Research Methods, Instruments, & Computers,Vol 25, 425-433, No. 4.
Zambrano Benavides, D. (2020, 22 marzo). ¿Y qué fue de los barberos de Medellín en medio de la cuarentena? El Colombiano. https://www.elcolombiano.com/antioquia/barberos-de-medellin-le-hacen-el-corte-a-la-crisis-BO12856447
Códigos de R utilizados
Códigos para hacer las plantillas de elicitación:
- Plantilla 1
library(ggplot2)
x <- seq(0, 100000, by=1000)
y <- seq(0, 100, by=1)
datos <- data.frame(x,y)
par(pty="s")
ggplot(datos, aes(x,y))+
scale_y_continuous(breaks=c(0,5,15,20,35,50,60,75,90,95,100), labels = c("Totalmente imposible", "Me parece muy improbable", "Me parece un poco improbable", "No me genera seguridad", "Es más bien algo incierto", "Ni acuerdo ni en contra(50-50)", "Pudiera ser, pero...", "Me parece algo posible", "Me parece demasiado viable", "Estoy casi seguro", "Absolutamente seguro"), name=" ") +
scale_x_continuous(breaks=seq(0, 100000, 2500), name=" ")+
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))+
geom_vline(xintercept=seq(0, 100000, 2500), color="gray")+
geom_hline(yintercept=c(0,5,15,20,35,50,60,75,90,95,100), color="gray")+
ggtitle ("Número de barberos/peluqueros/estilistas que hay en la ciudad de Medellín")+
theme(plot.title = element_text(hjust = 0.5))- Plantilla 2
library(ggplot2)
x <- seq(0, 1000, by=10)
y <- seq(0, 100, by=1)
datos <- data.frame(x,y)
par(pty="s")
ggplot(datos, aes(x,y))+
scale_y_continuous(breaks=c(0,5,15,20,35,50,60,75,90,95,100), labels = c("Totalmente imposible", "Me parece muy improbable", "Me parece un poco improbable", "No me genera seguridad", "Es más bien algo incierto", "Ni acuerdo ni en contra(50-50)", "Pudiera ser, pero...", "Me parece algo posible", "Me parece demasiado viable", "Estoy casi seguro", "Absolutamente seguro"), name=" ") +
scale_x_continuous(breaks=seq(0, 1000, 25), name=" ")+
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))+
geom_vline(xintercept=seq(0, 1000, 25), color="gray")+
geom_hline(yintercept=c(0,5,15,20,35,50,60,75,90,95,100), color="gray")+
ggtitle ("Número promedio de servicios a clientes que atiende cada barbero/peluquero/estilistas en un mes")+
theme(plot.title = element_text(hjust = 0.5))- Plantilla 3.
Esta fue realizada mediante excel
- Lectura del conjunto de datos para la elicitación del número de peluqueros
library(readxl)
Num_barberos <- read_excel("Num_barberos.xlsx")
Num_barberos <- data.frame(Num_barberos)
library(kableExtra)
kable(Num_barberos, caption = "Datos de las elicitaciones sobre el número de peluqueros/barberos/estilistas en Medellín") %>%
kable_paper() %>%
scroll_box(width = "100%", height = "200px")| Num_barberos | Experto1 | Experto2 | Experto3 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 2500 | 5 | 5 | 5 |
| 5000 | 15 | 5 | 15 |
| 7500 | 35 | 5 | 20 |
| 10000 | 50 | 15 | 50 |
| 12500 | 50 | 15 | 60 |
| 15000 | 50 | 15 | 60 |
| 17500 | 60 | 15 | 60 |
| 20000 | 60 | 35 | 60 |
| 22500 | 60 | 35 | 75 |
| 25000 | 75 | 35 | 75 |
| 27500 | 75 | 35 | 90 |
| 30000 | 75 | 50 | 95 |
| 32500 | 75 | 50 | 95 |
| 35000 | 75 | 60 | 100 |
| 37500 | 90 | 60 | 95 |
| 40000 | 90 | 75 | 95 |
| 42500 | 90 | 75 | 90 |
| 45000 | 95 | 90 | 90 |
| 47500 | 95 | 95 | 75 |
| 50000 | 100 | 100 | 75 |
| 52500 | 75 | 90 | 60 |
| 55000 | 75 | 90 | 60 |
| 57500 | 50 | 75 | 60 |
| 60000 | 50 | 60 | 50 |
| 62500 | 35 | 60 | 35 |
| 65000 | 35 | 60 | 35 |
| 67500 | 20 | 50 | 20 |
| 70000 | 20 | 35 | 15 |
| 72500 | 15 | 35 | 15 |
| 75000 | 15 | 35 | 5 |
| 77500 | 5 | 20 | 5 |
| 80000 | 5 | 15 | 0 |
| 82500 | 0 | 15 | 0 |
| 85000 | 0 | 15 | 0 |
| 87500 | 0 | 15 | 0 |
| 90000 | 0 | 5 | 0 |
| 92500 | 0 | 5 | 0 |
| 95000 | 0 | 0 | 0 |
| 97500 | 0 | 0 | 0 |
| 100000 | 0 | 0 | 0 |
- Gráficas de las distribuciones del número de peluqueros realizada por cada experto
distribución del número de barberos dada por el Experto 1
plot(Num_barberos$Num_barberos, Num_barberos$Experto1, type='l',sub='Número de Barberos/peluqeros/estilistas', pch=19, col="orange", main="Distribución del número de barberos para el Experto 1",lwd=2, xlab="", ylab="Nivel de seguridad", xaxt ="n")
axis(1, at=seq(0,100000, by=2500), las=2)
grid()distribución del número de barberos dada por el Experto 2
plot(Num_barberos$Num_barberos, Num_barberos$Experto2, type='l',ylab='Nivel de seguridad',xlab="", sub='Número de Barberos/peluqeros/estilistas', pch=19, col="green", main="Distribución del número de barberos para el Experto 2", lwd=2, xaxt ="n")
axis(1, at=seq(0,100000, by=2500), las=2)
grid()distribución del número de barberos dada por el Experto 3
plot(Num_barberos$Num_barberos, Num_barberos$Experto3, type='l',ylab='Nivel de seguridas',xlab='', sub='Cantidad de Barberos/peluqeros/estilistas', pch=19, col="cyan4", main="distribución del número de barberos para el Experto 3", lwd=2, xaxt ="n")
axis(1, at=seq(0,100000, by=2500), las=2)
grid()Calculando la distribución promedio
promedio_barberos <- rowMeans(data.frame(Num_barberos$Experto1, Num_barberos$Experto2, Num_barberos$Experto3))Distribución del número de barberos para los tres expertos y su promedio
# Proporciones en cada una de las muestras
res1<-prop.table(Num_barberos$Experto1)
res2<-prop.table(Num_barberos$Experto2)
res3<-prop.table(Num_barberos$Experto3)
# Mezclando muestras de los expertos
res4<-prop.table(promedio_barberos)plot(Num_barberos$Num_barberos, res1, type='l',ylab='Densidad',xlab="",sub='Número de Barberos/peluqeros/estilistas', ylim = c(0, 0.07), pch=19, col="orange", xaxt="n")
axis(1, at=seq(0,100000, by=2500), las=2)
title(main='Número de expertos en cabellos masculinos en la ciudad de Medellín')
points(Num_barberos$Num_barberos,res2,type='l',col='green', pch=19)
points(Num_barberos$Num_barberos,res3,type='l',col='cyan4', pch=19)
points(Num_barberos$Num_barberos,res4,type='l',col='red', pch=19, lwd=2)
grid()
legend("topright",c('Experto 1','Experto 2','Experto3','Promedio'),lty=c(1,1,1,1),
col=c('orange','green','cyan4','red'))- Simulaciones del número de peluqueros
Experto 1
A este experto se le brinda un \(n\) equivalente de \(7\) dado que tiene algo de conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 7000 con reemplazo de la información suministrada por el experto 1 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
#Muestra experto 1
set.seed(23)
Nsim <-1000
n.seguridad1 <- 7
muestra1<-sample(Num_barberos[,1],Nsim*n.seguridad1,replace=T,prob=Num_barberos$Experto1)Experto 2
A este experto se le brinda un \(n\) equivalente de \(14\) dado que tiene buen conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 14000 con reemplazo de la información suministrada por el experto 2 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
#Muestra experto 2
set.seed(23)
Nsim <-1000
n.seguridad2 <- 14
muestra2<-sample(Num_barberos[,1],Nsim*n.seguridad2,replace=T,prob=Num_barberos$Experto2)Experto 3
A este experto se le brinda un \(n\) equivalente de \(9\) dado que tiene algo de conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 9000 con reemplazo de la información suministrada por el experto 3 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
#Muestra experto 3
set.seed(23)
Nsim <-1000
n.seguridad3 <- 9
muestra3<-sample(Num_barberos[,1],Nsim*n.seguridad3,replace=T,prob=Num_barberos$Experto3)Distribución del número de barberos para los tres expertos y su promedio mediante simulación
plot(prop.table(table(muestra1)), type='l',ylab='Densidad',xlab="",sub='Número de Barberos/peluqeros/estilistas', pch=19, col="orange", ylim = c(0, 0.07), lwd = 1, las=2)
title(main='Número de expertos en cabellos masculinos en la ciudad de Medellín')
points(prop.table(table(muestra2)),type='l',col='green', pch=19, lwd = 1)
points(prop.table(table(muestra3)),type='l',col='cyan4', pch=19,lwd = 1)
points(sort(unique(c(muestra1,muestra2, muestra3))),res4,type='l',col='red', pch=19, lwd = 2)
grid()
legend("topright",c('Experto 1','Experto 2','Experto3','Promedio'),lty=c(1,1,1,1),
col=c('orange','green','cyan4','red'))Simulación de las 1000 muestras de tamaño 10 extraída de la distribución promedio del número de peluqueros
set.seed(23)
promedio <- sort(unique(c(muestra1,muestra2, muestra3)))
probabilidades <- prop.table(table(c(muestra1,muestra2, muestra3)))
N.sim <- 1000
n.seguridad <- 10
medias_barberos<-apply(matrix(
sample(promedio,Nsim*n.seguridad,replace=T,prob=probabilidades),
ncol=n.seguridad),1,mean)Gráfica de la distribución promedio del número de peluqueros que hay en la ciudad de Medellín
hist(medias_barberos,xlab='', sub="Número de peluqueros", ylab='Densidad', main='Distribución promedio del número de peluqueros en Medellín', col="cyan3", freq = FALSE, xaxt="n")
axis(1, at=seq(min(medias_barberos), max(medias_barberos), by=2500), las=2)
lines(density(medias_barberos, from=0), lwd=1.5)
grid()Medidas de resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 24750 38500 42250 42430 46250 60250
## [1] 5785.287
Calculo del intervalo del 95% de probabilidad para el número de peluqueros
## 2.5% 97.5%
## 31250 53750
- Lectura del conjunto de datos para la elicitación del número de servicios en un mes
library(readxl)
Num_clientes <- read_excel("Num_clientes.xlsx")
Num_clientes <- data.frame(Num_clientes)
kable(Num_clientes, caption = "Datos de las elicitaciones sobre el número de peluqueros/barberos/estilistas en Medellín") %>%
kable_paper() %>%
scroll_box(width = "100%", height = "200px")| Num_clientes | Experto1 | Experto2 | Experto3 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 25 | 0 | 0 | 0 |
| 50 | 0 | 0 | 15 |
| 75 | 0 | 5 | 15 |
| 100 | 0 | 5 | 20 |
| 125 | 5 | 5 | 35 |
| 150 | 5 | 5 | 35 |
| 175 | 5 | 5 | 50 |
| 200 | 15 | 15 | 60 |
| 225 | 15 | 15 | 75 |
| 250 | 20 | 20 | 75 |
| 275 | 20 | 20 | 90 |
| 300 | 20 | 35 | 90 |
| 325 | 35 | 60 | 90 |
| 350 | 50 | 60 | 95 |
| 375 | 50 | 75 | 95 |
| 400 | 60 | 90 | 95 |
| 425 | 75 | 95 | 100 |
| 450 | 90 | 95 | 100 |
| 475 | 95 | 100 | 100 |
| 500 | 100 | 100 | 100 |
| 525 | 95 | 95 | 60 |
| 550 | 90 | 90 | 50 |
| 575 | 75 | 90 | 35 |
| 600 | 60 | 75 | 15 |
| 625 | 60 | 75 | 15 |
| 650 | 20 | 60 | 0 |
| 675 | 15 | 60 | 0 |
| 700 | 5 | 35 | 0 |
| 725 | 5 | 35 | 0 |
| 750 | 5 | 20 | 0 |
| 775 | 5 | 20 | 0 |
| 800 | 0 | 15 | 0 |
| 825 | 0 | 15 | 0 |
| 850 | 0 | 15 | 0 |
| 875 | 0 | 5 | 0 |
| 900 | 0 | 0 | 0 |
| 925 | 0 | 0 | 0 |
| 950 | 0 | 0 | 0 |
| 975 | 0 | 0 | 0 |
| 1000 | 0 | 0 | 0 |
- Gráfico de las distribuciones aprioris en cada uno de los expertos y su promedio
distribución del número de servicios en un mes para el Experto 1
plot(Num_clientes$Num_clientes, Num_clientes$Experto1, type='l',ylab='Nivel de seguridad',xlab='Cantidad de servicios en un mes', pch=19, col="orange", main="Distribución del número de servicios en un mes por el Experto 1", xaxt="n", lwd=2)
axis(1, at=seq(0, 1000, 25), las=2)
grid()distribución del número de servicios en un mes para el Experto 2
plot(Num_clientes$Num_clientes, Num_clientes$Experto2, type='l',ylab='Nivel de seguridad',xlab='Cantidad de servicios en un mes', pch=19, col="green", main="Distribución del número de servicios en un mes por el Experto 2", lwd=2, xaxt="n")
axis(1, at=seq(0, 1000, 25), las=2)
grid()distribución del número de servicios en un mes para el Experto 3
plot(Num_clientes$Num_clientes, Num_clientes$Experto3, type='l',ylab='Nivel de seguridad',xlab='Cantidad de servicios en un mes', pch=19, col="purple", main="Distribución del número de servicios en un mes por el Experto 3", xaxt="n", lwd=2)
axis(1, at=seq(0, 1000, 25), las=2)
grid()Calculando la distribución promedio
promedio_clientes <- rowMeans(data.frame(Num_clientes$Experto1, Num_clientes$Experto2, Num_clientes$Experto3))Distribución del número de servicios por mes en la ciudad de Medellín y su promedio
# Proporciones en cada una de las muestras
res1<-prop.table(Num_clientes$Experto1)
res2<-prop.table(Num_clientes$Experto2)
res3<-prop.table(Num_clientes$Experto3)
# Mezclando muestras de los expertos
res4<-prop.table(promedio_clientes)plot(Num_clientes$Num_clientes, res1, type='l',ylab='Densidad',xlab='Número de servicios en un mes', ylim=c(0,0.1), pch=19, col="orange", xaxt="n")
axis(1, at=seq(0, 1000, 25), las=2)
title(main='Número de servicios en un mes de especialistas en cabello masculino')
points(Num_clientes$Num_clientes,res2,type='l',col='green', pch=19)
points(Num_clientes$Num_clientes,res3,type='l',col='cyan4', pch=19)
points(Num_clientes$Num_clientes,res4,type='l',col='red', pch=19, lwd=2)
grid()
legend("topright",c('Experto 1','Experto 2','Experto3','Promedio'),lty=c(1,1,1,1),
col=c('orange','green','cyan4','red'))- Simulaciones del número de servicios en un mes
Experto 1
A este experto se le brinda un \(n\) equivalente de \(7\) dado que tiene algo de conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 7000 con reemplazo de la información suministrada por el experto 1 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
#Muestra experto 1
set.seed(23)
Nsim <-1000
n.seguridad1 <- 7
muestra1<-sample(Num_clientes[,1],Nsim*n.seguridad1,replace=T,prob=Num_clientes$Experto1)Experto 2
A este experto se le brinda un \(n\) equivalente de \(14\) dado que tiene buen conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 14000 con reemplazo de la información suministrada por el experto 2 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
#Muestra experto 2
set.seed(23)
Nsim <-1000
n.seguridad2 <- 14
muestra2<-sample(Num_clientes[,1],Nsim*n.seguridad2,replace=T,prob=Num_clientes$Experto2)Experto 3
A este experto se le brinda un \(n\) equivalente de \(9\) dado que tiene algo de conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 9000 con reemplazo de la información suministrada por el experto 3 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
#Muestra experto 1
set.seed(23)
Nsim <-1000
n.seguridad3 <- 9
muestra3<-sample(Num_clientes[,1],Nsim*n.seguridad3,replace=T,prob=Num_clientes$Experto3)Distribución del número de servicios en un mes para los tres expertos y su promedio
plot(prop.table(table(muestra1)), type='l',ylab='Densidad',xlab='Número de servicios en un mes', pch=19, col="orange", lwd = 1, xaxt="n")
axis(1, at=seq(0, 1000, 25), las=2)
title(main='Número de servicios en un mes de especialistas en cabello masculino')
points(prop.table(table(muestra2)),type='l',col='green', pch=19, lwd = 1)
points(prop.table(table(muestra3)),type='l',col='cyan4', pch=19,lwd = 1)
points(sort(unique(c(muestra1,muestra2, muestra3))),res4,type='l',col='red', pch=19, lwd = 2)
grid()
legend("topright",c('Experto 1','Experto 2','Experto3','Promedio'),lty=c(1,1,1,1),
col=c('orange','green','cyan4','red'))Simulación de las 1000 muestras de tamaño 10 extraída de la distribución promedio del número de servicios en un mes
set.seed(23)
promedio <- sort(unique(c(muestra1,muestra2, muestra3)))
probabilidades <- prop.table(table(c(muestra1,muestra2, muestra3)))
N.sim <- 1000
n.seguridad <- 10
medias_clientes<-apply(matrix(
sample(promedio,Nsim*n.seguridad,replace=T,prob=probabilidades),
ncol=n.seguridad),1,mean)Gráfica de la distribución del número de servicios promedio en un mes de peluqueros en la ciudad de Medellín
hist(medias_clientes,xlab='', sub="Número de servicios en un mes", ylab='Densidad', main='Distribución promedio del número de servicios en un mes', col="cyan3", freq = FALSE, xaxt="n")
axis(1, at=seq(300, 600, by=25), las=2)
lines(density(medias_clientes, from=0), lwd=1.5)
grid()Medidas de resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 312.5 419.4 447.5 449.4 480.6 590.0
## [1] 46.54462
Intervalo del 95% de probabilidad para el número de servicios en un mes
## 2.5% 97.5%
## 357.5 540.0
- Lectura del conjunto de datos para la elicitación del costo por servicio de peluqueros
library(readxl)
Precios <- read_excel("Precio.xlsx")
Precios <- data.frame(Precios)
kable(Precios, caption = "Datos de las elicitaciones sobre el costo por servicio de peluqueros/barberos/estilistas en Medellín") %>%
kable_paper() %>%
scroll_box(width = "100%", height = "200px")| Costo | Experto1 | Experto2 | Experto3 |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 500 | 0 | 0 | 0 |
| 1000 | 0 | 0 | 0 |
| 1500 | 0 | 0 | 0 |
| 2000 | 0 | 0 | 0 |
| 2500 | 0 | 0 | 0 |
| 3000 | 10 | 100 | 0 |
| 3500 | 10 | 100 | 0 |
| 4000 | 10 | 100 | 0 |
| 4500 | 10 | 100 | 0 |
| 5000 | 10 | 100 | 0 |
| 5500 | 150 | 200 | 0 |
| 6000 | 150 | 200 | 0 |
| 6500 | 150 | 200 | 0 |
| 7000 | 150 | 200 | 0 |
| 7500 | 150 | 200 | 0 |
| 8000 | 200 | 450 | 150 |
| 8500 | 200 | 450 | 150 |
| 9000 | 200 | 450 | 150 |
| 9500 | 200 | 450 | 150 |
| 10000 | 200 | 450 | 150 |
| 10500 | 200 | 100 | 200 |
| 11000 | 200 | 100 | 200 |
| 11500 | 200 | 100 | 200 |
| 12000 | 200 | 100 | 200 |
| 12500 | 200 | 100 | 200 |
| 13000 | 100 | 100 | 300 |
| 13500 | 100 | 100 | 300 |
| 14000 | 100 | 100 | 300 |
| 14500 | 100 | 100 | 300 |
| 15000 | 100 | 100 | 300 |
| 15500 | 100 | 0 | 200 |
| 16000 | 100 | 0 | 200 |
| 16500 | 100 | 0 | 200 |
| 17000 | 100 | 0 | 200 |
| 17500 | 100 | 0 | 200 |
| 18000 | 80 | 0 | 50 |
| 18500 | 80 | 0 | 50 |
| 19000 | 80 | 0 | 50 |
| 19500 | 80 | 0 | 50 |
| 20000 | 80 | 0 | 50 |
| 20500 | 70 | 0 | 25 |
| 21000 | 70 | 0 | 25 |
| 21500 | 70 | 0 | 25 |
| 22000 | 70 | 0 | 25 |
| 22500 | 70 | 0 | 25 |
| 23000 | 30 | 0 | 25 |
| 23500 | 30 | 0 | 25 |
| 24000 | 30 | 0 | 25 |
| 24500 | 30 | 0 | 25 |
| 25000 | 30 | 0 | 25 |
| 25500 | 5 | 20 | 25 |
| 26000 | 5 | 20 | 25 |
| 26500 | 5 | 20 | 25 |
| 27000 | 5 | 20 | 25 |
| 27500 | 5 | 20 | 25 |
| 28000 | 5 | 20 | 15 |
| 28500 | 5 | 20 | 15 |
| 29000 | 5 | 20 | 15 |
| 29500 | 5 | 20 | 15 |
| 30000 | 5 | 20 | 15 |
| 30500 | 5 | 0 | 5 |
| 31000 | 5 | 0 | 5 |
| 31500 | 5 | 0 | 5 |
| 32000 | 5 | 0 | 5 |
| 32500 | 5 | 0 | 5 |
| 33000 | 10 | 0 | 5 |
| 33500 | 10 | 0 | 5 |
| 34000 | 10 | 0 | 5 |
| 34500 | 10 | 0 | 5 |
| 35000 | 10 | 0 | 5 |
| 35500 | 10 | 0 | 0 |
| 36000 | 10 | 0 | 0 |
| 36500 | 10 | 0 | 0 |
| 37000 | 10 | 0 | 0 |
| 37500 | 10 | 0 | 0 |
| 38000 | 10 | 0 | 0 |
| 38500 | 10 | 0 | 0 |
| 39000 | 10 | 0 | 0 |
| 39500 | 10 | 0 | 0 |
| 40000 | 10 | 0 | 0 |
| 40500 | 15 | 0 | 0 |
| 41000 | 15 | 0 | 0 |
| 41500 | 15 | 0 | 0 |
| 42000 | 15 | 0 | 0 |
| 42500 | 15 | 0 | 0 |
| 43000 | 0 | 0 | 0 |
| 43500 | 0 | 0 | 0 |
| 44000 | 0 | 0 | 0 |
| 44500 | 0 | 0 | 0 |
| 45000 | 0 | 0 | 0 |
| 45500 | 0 | 10 | 0 |
| 46000 | 0 | 10 | 0 |
| 46500 | 0 | 10 | 0 |
| 47000 | 0 | 10 | 0 |
| 47500 | 0 | 10 | 0 |
| 48000 | 0 | 0 | 0 |
| 48500 | 0 | 0 | 0 |
| 49000 | 0 | 0 | 0 |
| 49500 | 0 | 0 | 0 |
| 50000 | 0 | 0 | 0 |
- Gráfico de las distribuciones aprioris en cada uno de los expertos y su promedio
Distribución del costo por servicio para el Experto 1
plot(Precios$Costo, Precios$Experto1, type = "l", col="orange", main="Distribución del costo por servicio Experto 1", ylab="Nivel de seguridad", xlab="", sub="Costos", xaxt="n", lwd=2)
axis(1, at=seq(0, 50000, 500), las=2)
grid()Distribución del costo por servicio para el Experto 2
plot(Precios$Costo, Precios$Experto2, type = "l", col="green", main="Distribución del costo por servicio Experto 2", ylab="Nivel de seguridad", xlab="", sub="Costos", xaxt="n", lwd=2)
axis(1, at=seq(0, 50000, 500), las=2)
grid()Distribución del costo por servicio para el Experto 3
plot(Precios$Costo, Precios$Experto3, type = "l", col="cyan4", main="Distribución del costo por servicio Experto 3", ylab="Nivel de seguridad", xlab="", sub="Costos", xaxt="n", lwd=2)
axis(1, at=seq(0, 50000, 500), las=2)
grid()Calculando la distribución promedio
res <- data.frame(Precios$Experto1, Precios$Experto2, Precios$Experto3)
promedio_Precios <- rowMeans(res)Distribución del costo por servicio para los tres expertos y su promedio
plot(Precios$Costo, Precios$Experto1, type='l',ylab='Densidad',xlab="",sub='Costos', pch=19, col="orange", ylim = c(0, 450), xaxt="n")
axis(1, at=seq(0, 50000, 500), las=2)
title(main='Distribución del costo por servicio para los tres expertos y su promedio')
points(Precios$Costo,Precios$Experto2,type='l',col='green', pch=19)
points(Precios$Costo,Precios$Experto3,type='l',col='cyan4', pch=19)
points(Precios$Costo, promedio_Precios, col="red", pch=19, type = "l", lwd=2)
grid()
legend("topright",c('Experto 1','Experto 2','Experto3','Promedio'),lty=c(1,1,1,1),
col=c('orange','green','cyan4','red'))- Simulación del costo por servicio
Experto 1
A este experto se le brinda un \(n\) equivalente de \(7\) dado que tiene algo de conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 7000 con reemplazo de la información suministrada por el experto 1 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
# Muestra experto 1
set.seed(23)
Nsim<-1000
n.seguridad1 <- 7
muestra1<-sample(Precios$Costo,Nsim*n.seguridad1,replace=T,prob=Precios$Experto1)Experto 2
A este experto se le brinda un \(n\) equivalente de \(14\) dado que tiene buen conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 14000 con reemplazo de la información suministrada por el experto 2 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
# Muestra experto 2
set.seed(23)
Nsim<-1000
n.seguridad2 <- 14
muestra2<-sample(Precios$Costo,Nsim*n.seguridad2,replace=T,prob=Precios$Experto2)Experto 3
A este experto se le brinda un \(n\) equivalente de \(9\) dado que tiene algo de conocimiento en el tema
Se saca una muestra mediante simulación de tamaño 9000 con reemplazo de la información suministrada por el experto 3 considerando las probabilidades de cada valor de acuerdo con la altura presente en la elicitación.
# Muestra experto 3
set.seed(23)
Nsim<-1000
n.seguridad3 <- 9
muestra3<-sample(Precios$Costo,Nsim*n.seguridad3,replace=T,prob=Precios$Experto3)Distribución del costo por servicio para los tres expertos y su promedio
plot(prop.table(table(muestra1)), type='l',ylab='Densidad', xlab="",sub='Costo por servicio', pch=19, col="orange", ylim = c(0, 0.1), lwd = 1, xaxt="n")
axis(1, at=seq(0, 50000, 500), las=2)
title(main='Costo por servicio de barberos/peluqueros/estilistas de Medellín')
points(prop.table(table(muestra2)),type='l',col='green', pch=19, lwd = 1)
points(prop.table(table(muestra3)),type='l',col='cyan4', pch=19,lwd = 1)
points(sort(unique(c(muestra1,muestra2, muestra3))),res4,type='l',col='red', pch=19, lwd = 2)
grid()
legend("topright",c('Experto 1','Experto 2','Experto3','Promedio'),lty=c(1,1,1,1),
col=c('orange','green','cyan4','red'))Simulación de las 1000 muestras de tamaño 10 extraída de la distribución promedio del costo por servicio
set.seed(23)
promedio <- sort(unique(c(muestra1,muestra2, muestra3)))
probabilidades <- prop.table(table(c(muestra1,muestra2, muestra3)))
N.sim <- 1000
n.seguridad <- 10
medias_costos<-apply(matrix(
sample(promedio,Nsim*n.seguridad,replace=T,prob=probabilidades),
ncol=n.seguridad),1,mean)Gráfica de la distribución del costo por servicio promedio de peluqueros en la ciudad de Medellín
hist(medias_costos,xlab='', sub="Costo", ylab='Densidad', main='Distribución promedio del costo por servicio de peluqueros', col="cyan3", freq = FALSE, xaxt="n")
axis(1, at=seq(6000, 19000, by=500), las=2)
lines(density(medias_costos, from=0), lwd=1.5)
grid()Medidas de resumen
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6550 10700 12000 12189 13400 20700
## [1] 2052.128
Intervalo del 95% de probabilidad para el costo por servicio
## 2.5% 97.5%
## 8800.00 16751.25
Extracción de la muestra del ingreso total
set.seed(23)
Tam_muestra <- 1000
Numero_barberos <- sample(medias_barberos, Tam_muestra, replace = T)
Numero_clientes <- sample(medias_clientes, Tam_muestra, replace = T)
Precio_servicio <- sample(medias_costos, Tam_muestra, replace = T)
Ingresos_sector <- Numero_barberos*Numero_clientes*Precio_servicioDistribución del ingreso total por mes del sector de peluqueros de la ciudad de Medellín
hist(Ingresos_sector,xlab='Ingresos', ylab='Densidad', main='Histograma del Ingreso total del sector de peluqueros', col="cyan3", freq = FALSE)
#axis(1, at=seq(min(Ingresos_sector), max(Ingresos_sector), by=82170312500), las=2)
lines(density(Ingresos_sector, from=0), lwd=1.5)Medidas de resumen para el ingreso total
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.034e+11 1.978e+11 2.296e+11 2.363e+11 2.684e+11 4.649e+11
Intervalo de probabilidad del 95%
## 2.5% 97.5%
## 146242753125 359115000000