Results

Scatterplot

Descriptives, of basic variables.

Descriptives
 Choice
N3900
Missing0
Mean 
Median 
Standard deviation 
Minimum 
Maximum 

 

Frequencies

Frequencies of Choice
LevelsCounts% of TotalCumulative %
non-purchase329684.5 %84.5 %
purchase60415.5 %100.0 %

 

Binomial Logistic Regression

Model Fit Measures
ModelDevianceAICBICMcF
13048306231060.0934

 

Model Coefficients - Choice
95% Confidence Interval
PredictorEstimateSEZpOdds ratioLowerUpper
Intercept-2.360.114-20.7664< .0010.09450.07570.118
Amount_Purchased4.25e-44.96e-40.85750.3911.00040.99951.001
P_Art:       
1 – 01.210.10311.7795< .0013.36532.75004.118
2 – 02.020.16312.3499< .0017.52045.459910.359
3 – 02.620.2968.8535< .00113.71897.683224.496
4 – 02.940.7114.1289< .00118.86154.678176.048
5 – 014.86324.7440.04580.9642.83e+61.07e-2707.49e+282
Note. Estimates represent the log odds of "Choice = purchase" vs. "Choice = non-purchase"

 

Prediction

Classification Table – Choice
Predicted
Observednon-purchasepurchase% Correct
non-purchase32722499.3
purchase566386.29
Note. The cut-off value is set to 0.5

 

Predictive Measures
SpecificitySensitivityAUC
0.9930.06290.696
Note. The cut-off value is set to 0.5

 

ROC Curve
[3]

Contingency Tables

The table below indicates that purchase percentage tends to increase as P_Art increases. This is statistically significant.

mean(Amount_Purchased)
Contingency Tables
P_Art
Choice 012345Total
non-purchase% within column90.7 %74.1 %55.7 %40.4 %33.3 %0.0 %84.5 %
purchase% within column9.3 %25.9 %44.3 %59.6 %66.7 %100.0 %15.5 %
Total% within column100.0 %100.0 %100.0 %100.0 %100.0 %100.0 %100.0 %

 

χ² Tests
 Valuedfp
χ²3775< .001
N3900  

 

Plots

Independent Samples T-Test

Independent Samples T-Test
  Statisticdfp Effect Size
Amount_PurchasedStudent's t-5.713898< .001Cohen's d-0.253
 Welch's t-5.62828< .001Cohen's d-0.251

 

Assumptions

Normality Test (Shapiro-Wilk)
 Wp
Amount_Purchased0.985< .001
Note. A low p-value suggests a violation of the assumption of normality

 

Homogeneity of Variances Test (Levene's)
 Fdfdf2p
Amount_Purchased0.0245138980.876
Note. A low p-value suggests a violation of the assumption of equal variances
[4]

 

Group Descriptives
 GroupNMeanMedianSDSE
Amount_Purchasednon-purchase329619419595.01.66
 purchase60421822897.33.96

 

Plots

Amount_Purchased

Correlation

	Pearson's product-moment correlation

data:  x and y
t = 19, df = 3898, p-value <2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.2639 0.3213
sample estimates:
   cor 
0.2929 

R

[1] NA

Box & Violin Plots

Plots

Amount_Purchased

Robust Independent Samples T-Test

Robust Independent Samples T-Test
  tdfpMean diff
Amount_PurchasedYuen's test5.69521< .001-28.2
 Yuen's bootstrapped-5.68 < .001 

 

Generalized Linear Models

Model Info
InfoValueComment
Model TypeLogisticModel for binary y
CallglmChoice ~ 1 + Gender
Link functionLogitLog of the odd of y=1 over y=0
DirectionP(y=1)/P(y=0)P( Choice = purchase ) / P( Choice = non-purchase )
DistributionBinomialDichotomous event distribution of y
R-squared0.0178Proportion of reduction of error
AIC3306.4010Less is better
BIC3318.9390Less is better
Deviance3302.4014Less is better
Residual DF3898 
Chi-squared/DF1.0005Overdispersion indicator
ConvergedyesWhether the estimation found a solution
[5]

 

Model Results

Loglikelihood ratio tests
 dfp
Gender59.91< .001

 

Parameter Estimates
95% Exp(B) Confidence Interval
NamesEffectEstimateSEexp(B)LowerUpperzp
(Intercept)(Intercept)-1.6120.04500.2000.1830.218-35.81< .001
Gender1Male - Female-0.7040.09000.4950.4150.590-7.82< .001

 

Post Hoc Tests

Post Hoc Comparisons - Gender
Comparison
Gender Genderexp(B)SEzpbonferroni
Female-Male2.020.1827.82< .001

 

Plots

References

[1] The jamovi project (2021). jamovi. (Version 1.8) [Computer Software]. Retrieved from https://www.jamovi.org.

[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.0) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2021-04-01).

[3] Sing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2015). ROCR: Visualizing the Performance of Scoring Classifiers. [R package]. Retrieved from https://cran.r-project.org/package=ROCR.

[4] Fox, J., & Weisberg, S. (2020). car: Companion to Applied Regression. [R package]. Retrieved from https://cran.r-project.org/package=car.

[5] Gallucci, M. (2019). GAMLj: General analyses for linear models. [jamovi module]. Retrieved from https://gamlj.github.io/.