| Descriptives | |||
|---|---|---|---|
| Choice | |||
| N | 3900 | ||
| Missing | 0 | ||
| Mean | |||
| Median | |||
| Standard deviation | |||
| Minimum | |||
| Maximum | |||
| Frequencies of Choice | |||||||
|---|---|---|---|---|---|---|---|
| Levels | Counts | % of Total | Cumulative % | ||||
| non-purchase | 3296 | 84.5 % | 84.5 % | ||||
| purchase | 604 | 15.5 % | 100.0 % | ||||
| Model Fit Measures | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Model | Deviance | AIC | BIC | R²McF | |||||
| 1 | 3048 | 3062 | 3106 | 0.0934 | |||||
| Model Coefficients - Choice | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 95% Confidence Interval | |||||||||||||||
| Predictor | Estimate | SE | Z | p | Odds ratio | Lower | Upper | ||||||||
| Intercept | -2.36 | 0.114 | -20.7664 | < .001 | 0.0945 | 0.0757 | 0.118 | ||||||||
| Amount_Purchased | 4.25e-4 | 4.96e-4 | 0.8575 | 0.391 | 1.0004 | 0.9995 | 1.001 | ||||||||
| P_Art: | |||||||||||||||
| 1 – 0 | 1.21 | 0.103 | 11.7795 | < .001 | 3.3653 | 2.7500 | 4.118 | ||||||||
| 2 – 0 | 2.02 | 0.163 | 12.3499 | < .001 | 7.5204 | 5.4599 | 10.359 | ||||||||
| 3 – 0 | 2.62 | 0.296 | 8.8535 | < .001 | 13.7189 | 7.6832 | 24.496 | ||||||||
| 4 – 0 | 2.94 | 0.711 | 4.1289 | < .001 | 18.8615 | 4.6781 | 76.048 | ||||||||
| 5 – 0 | 14.86 | 324.744 | 0.0458 | 0.964 | 2.83e+6 | 1.07e-270 | 7.49e+282 | ||||||||
| Note. Estimates represent the log odds of "Choice = purchase" vs. "Choice = non-purchase" | |||||||||||||||
| Classification Table – Choice | |||||||
|---|---|---|---|---|---|---|---|
| Predicted | |||||||
| Observed | non-purchase | purchase | % Correct | ||||
| non-purchase | 3272 | 24 | 99.3 | ||||
| purchase | 566 | 38 | 6.29 | ||||
| Note. The cut-off value is set to 0.5 | |||||||
| Predictive Measures | |||||
|---|---|---|---|---|---|
| Specificity | Sensitivity | AUC | |||
| 0.993 | 0.0629 | 0.696 | |||
| Note. The cut-off value is set to 0.5 | |||||
The table below indicates that purchase percentage tends to increase as P_Art increases. This is statistically significant.
mean(Amount_Purchased)
| Contingency Tables | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| P_Art | |||||||||||||||||
| Choice | 0 | 1 | 2 | 3 | 4 | 5 | Total | ||||||||||
| non-purchase | % within column | 90.7 % | 74.1 % | 55.7 % | 40.4 % | 33.3 % | 0.0 % | 84.5 % | |||||||||
| purchase | % within column | 9.3 % | 25.9 % | 44.3 % | 59.6 % | 66.7 % | 100.0 % | 15.5 % | |||||||||
| Total | % within column | 100.0 % | 100.0 % | 100.0 % | 100.0 % | 100.0 % | 100.0 % | 100.0 % | |||||||||
| χ² Tests | |||||||
|---|---|---|---|---|---|---|---|
| Value | df | p | |||||
| χ² | 377 | 5 | < .001 | ||||
| N | 3900 | ||||||
| Independent Samples T-Test | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statistic | df | p | Effect Size | ||||||||||
| Amount_Purchased | Student's t | -5.71 | 3898 | < .001 | Cohen's d | -0.253 | |||||||
| Welch's t | -5.62 | 828 | < .001 | Cohen's d | -0.251 | ||||||||
| Normality Test (Shapiro-Wilk) | |||||
|---|---|---|---|---|---|
| W | p | ||||
| Amount_Purchased | 0.985 | < .001 | |||
| Note. A low p-value suggests a violation of the assumption of normality | |||||
| Homogeneity of Variances Test (Levene's) | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| F | df | df2 | p | ||||||
| Amount_Purchased | 0.0245 | 1 | 3898 | 0.876 | |||||
| Note. A low p-value suggests a violation of the assumption of equal variances | |||||||||
| [4] | |||||||||
| Group Descriptives | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | N | Mean | Median | SD | SE | ||||||||
| Amount_Purchased | non-purchase | 3296 | 194 | 195 | 95.0 | 1.66 | |||||||
| purchase | 604 | 218 | 228 | 97.3 | 3.96 | ||||||||
Pearson's product-moment correlation data: x and y t = 19, df = 3898, p-value <2e-16 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.2639 0.3213 sample estimates: cor 0.2929
[1] NA
| Robust Independent Samples T-Test | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| t | df | p | Mean diff | ||||||||
| Amount_Purchased | Yuen's test | 5.69 | 521 | < .001 | -28.2 | ||||||
| Yuen's bootstrapped | -5.68 | < .001 | |||||||||
| Model Info | |||||
|---|---|---|---|---|---|
| Info | Value | Comment | |||
| Model Type | Logistic | Model for binary y | |||
| Call | glm | Choice ~ 1 + Gender | |||
| Link function | Logit | Log of the odd of y=1 over y=0 | |||
| Direction | P(y=1)/P(y=0) | P( Choice = purchase ) / P( Choice = non-purchase ) | |||
| Distribution | Binomial | Dichotomous event distribution of y | |||
| R-squared | 0.0178 | Proportion of reduction of error | |||
| AIC | 3306.4010 | Less is better | |||
| BIC | 3318.9390 | Less is better | |||
| Deviance | 3302.4014 | Less is better | |||
| Residual DF | 3898 | ||||
| Chi-squared/DF | 1.0005 | Overdispersion indicator | |||
| Converged | yes | Whether the estimation found a solution | |||
| [5] | |||||
| Loglikelihood ratio tests | |||||||
|---|---|---|---|---|---|---|---|
| X² | df | p | |||||
| Gender | 59.9 | 1 | < .001 | ||||
| Parameter Estimates | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 95% Exp(B) Confidence Interval | |||||||||||||||||
| Names | Effect | Estimate | SE | exp(B) | Lower | Upper | z | p | |||||||||
| (Intercept) | (Intercept) | -1.612 | 0.0450 | 0.200 | 0.183 | 0.218 | -35.81 | < .001 | |||||||||
| Gender1 | Male - Female | -0.704 | 0.0900 | 0.495 | 0.415 | 0.590 | -7.82 | < .001 | |||||||||
| Post Hoc Comparisons - Gender | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Comparison | |||||||||||||
| Gender | Gender | exp(B) | SE | z | pbonferroni | ||||||||
| Female | - | Male | 2.02 | 0.182 | 7.82 | < .001 | |||||||
[1] The jamovi project (2021). jamovi. (Version 1.8) [Computer Software]. Retrieved from https://www.jamovi.org.
[2] R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.0) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2021-04-01).
[3] Sing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2015). ROCR: Visualizing the Performance of Scoring Classifiers. [R package]. Retrieved from https://cran.r-project.org/package=ROCR.
[4] Fox, J., & Weisberg, S. (2020). car: Companion to Applied Regression. [R package]. Retrieved from https://cran.r-project.org/package=car.
[5] Gallucci, M. (2019). GAMLj: General analyses for linear models. [jamovi module]. Retrieved from https://gamlj.github.io/.