\[ Ho:\mu=3.2\] \[ Ha:\mu\ne3.2 \]
knitr::opts_chunk$set(echo = TRUE)
data <- c(3.14, 3.22, 3.30, 3.52, 3.05, 3.10, 3.54, 3.39, 3.19, 2.87, 3.23, 2.87, 2.91, 3.07, 3.29)
summary(data)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.870 3.060 3.190 3.179 3.295 3.540
sd(data)
## [1] 0.2107967
Effect <- 0.1 / 0.21
library(pwr)
pwr.t.test(d=Effect, power= 0.9, sig.level=0.05, type= "one.sample", alternative= "two.sided")
##
## One-sample t test power calculation
##
## n = 48.2995
## d = 0.4761905
## sig.level = 0.05
## power = 0.9
## alternative = two.sided
p.t.two <- pwr.t.test(d=Effect, power=0.9, type="one.sample", alternative = "two.sided")
plot(p.t.two)
knitr::opts_chunk$set(echo = TRUE)
data1<-c(3.28, 3.24, 3.43, 3.15, 3.19, 3.21, 3.12, 3.10, 3.17, 3.01, 3.27, 3.07, 3.13, 3.12, 3.20, 3.37, 3.33, 3.12, 3.30, 3.31, 2.98, 3.21,
3.20, 3.39, 3.17, 3.20, 3.21, 3.29, 3.08, 3.11, 3.08, 3.18, 3.10, 3.16, 3.24, 3.44, 3.29, 3.18, 3.11, 3.29, 3.19, 3.21, 3.24, 3.14,
3.24, 3.22, 3.16, 3.19, 3.09)
t.test(data1, mu=3.2, alternative = "two.sided" )
##
## One Sample t-test
##
## data: data1
## t = -0.12967, df = 48, p-value = 0.8974
## alternative hypothesis: true mean is not equal to 3.2
## 95 percent confidence interval:
## 3.169682 3.226644
## sample estimates:
## mean of x
## 3.198163
\[ p_{-value}=0,8974, t=-0.12967, mean=3.198163\]
We recommend keeping the supplier because the mean of the samples was 3.198 ohms which are very close to the optimum value defined as 3.2. The data reported above include a 90% of significance.
#Sample size and power
data <- c(3.14, 3.22, 3.30, 3.52, 3.05, 3.10, 3.54, 3.39, 3.19, 2.87, 3.23, 2.87, 2.91, 3.07, 3.29)
summary(data)
sd(data) #probability to chose poorly
Effect <- 0.1 / 0.21
library(pwr)
pwr.t.test(d=Effect, power= 0.9, sig.level=0.05, type= "one.sample", alternative= "two.sided")
p.t.two <- pwr.t.test(d=Effect, power=0.9, type="one.sample", alternative = "two.sided")
plot(p.t.two)
#Hypothesis test
data1<-c(3.28, 3.24, 3.43, 3.15, 3.19, 3.21, 3.12, 3.10, 3.17, 3.01, 3.27, 3.07, 3.13, 3.12, 3.20, 3.37, 3.33, 3.12, 3.30, 3.31, 2.98, 3.21,
3.20, 3.39, 3.17, 3.20, 3.21, 3.29, 3.08, 3.11, 3.08, 3.18, 3.10, 3.16, 3.24, 3.44, 3.29, 3.18, 3.11, 3.29, 3.19, 3.21, 3.24, 3.14,
3.24, 3.22, 3.16, 3.19, 3.09)
t.test(data1, mu=3.2, alternative = "two.sided" )