## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
### primer modelo:
#data como subset
vars1=base[,c("ppk_condSI","P35B","P35C","P35D","P35F","P35G")]

#regresion
rlog1=glm(ppk_condSI~., data=vars1,family = binomial)

#resultado clásico:
summary(rlog1)
## 
## Call:
## glm(formula = ppk_condSI ~ ., family = binomial, data = vars1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.3445  -0.7438  -0.6569  -0.5040   2.1232  
## 
## Coefficients:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        -1.71900    0.18427  -9.329  < 2e-16 ***
## P35BAlgo de acuerdo                 0.34581    0.17482   1.978  0.04792 *  
## P35BNi de acuerdo ni en desacuerdo  0.55515    0.25598   2.169  0.03010 *  
## P35BAlgo de desacuerdo              0.38819    0.26232   1.480  0.13891    
## P35BMuy en desacuerdo              -0.16592    0.62665  -0.265  0.79118    
## P35CAlgo de acuerdo                -0.18695    0.17128  -1.091  0.27506    
## P35CNi de acuerdo ni en desacuerdo  0.04147    0.26459   0.157  0.87546    
## P35CAlgo de desacuerdo             -0.58366    0.42967  -1.358  0.17434    
## P35CMuy en desacuerdo               0.58473    0.67958   0.860  0.38955    
## P35DAlgo de acuerdo                 0.25516    0.19178   1.330  0.18337    
## P35DNi de acuerdo ni en desacuerdo  0.67810    0.25226   2.688  0.00719 ** 
## P35DAlgo de desacuerdo              0.67488    0.26424   2.554  0.01065 *  
## P35DMuy en desacuerdo               0.77793    0.45429   1.712  0.08682 .  
## P35FAlgo de acuerdo                -0.23714    0.18074  -1.312  0.18952    
## P35FNi de acuerdo ni en desacuerdo  0.04815    0.25646   0.188  0.85107    
## P35FAlgo de desacuerdo              0.08446    0.34298   0.246  0.80549    
## P35FMuy en desacuerdo              -0.29661    0.76815  -0.386  0.69939    
## P35GAlgo de acuerdo                 0.12812    0.19708   0.650  0.51563    
## P35GNi de acuerdo ni en desacuerdo  0.31389    0.24912   1.260  0.20767    
## P35GAlgo de desacuerdo              0.42288    0.23638   1.789  0.07362 .  
## P35GMuy en desacuerdo               0.21760    0.44980   0.484  0.62855    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1326.1  on 1223  degrees of freedom
## Residual deviance: 1283.4  on 1203  degrees of freedom
##   (114 observations deleted due to missingness)
## AIC: 1325.4
## 
## Number of Fisher Scoring iterations: 4
### primer modelo:
#data como subset
vars1=base[,c("ppk_condNO","P35A","P35B","P35C","P35D","P35G","P35H")]

#regresion
rlog1=glm(ppk_condNO~., data=vars1,family = binomial)

#resultado clásico:
summary(rlog1)
## 
## Call:
## glm(formula = ppk_condNO ~ ., family = binomial, data = vars1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0878  -0.6430  -0.5644  -0.4862   2.5797  
## 
## Coefficients:
##                                     Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                         -1.32190    0.17785  -7.433 1.06e-13 ***
## P35AAlgo de acuerdo                  0.10249    0.19477   0.526   0.5987    
## P35ANi de acuerdo ni en desacuerdo   0.13776    0.35460   0.389   0.6976    
## P35AAlgo de desacuerdo               0.13846    0.39632   0.349   0.7268    
## P35AMuy en desacuerdo                0.35182    0.86162   0.408   0.6830    
## P35BAlgo de acuerdo                 -0.35270    0.19274  -1.830   0.0673 .  
## P35BNi de acuerdo ni en desacuerdo  -0.16314    0.29592  -0.551   0.5814    
## P35BAlgo de desacuerdo              -0.54235    0.32381  -1.675   0.0940 .  
## P35BMuy en desacuerdo               -1.80931    1.06914  -1.692   0.0906 .  
## P35CAlgo de acuerdo                 -0.07911    0.19599  -0.404   0.6865    
## P35CNi de acuerdo ni en desacuerdo   0.23773    0.31013   0.767   0.4434    
## P35CAlgo de desacuerdo               0.83367    0.44305   1.882   0.0599 .  
## P35CMuy en desacuerdo                0.73705    0.91638   0.804   0.4212    
## P35DAlgo de acuerdo                 -0.23739    0.20331  -1.168   0.2430    
## P35DNi de acuerdo ni en desacuerdo   0.14962    0.28425   0.526   0.5986    
## P35DAlgo de desacuerdo              -0.43683    0.32555  -1.342   0.1796    
## P35DMuy en desacuerdo                0.39165    0.52062   0.752   0.4519    
## P35GAlgo de acuerdo                  0.01059    0.20883   0.051   0.9596    
## P35GNi de acuerdo ni en desacuerdo   0.16721    0.27876   0.600   0.5486    
## P35GAlgo de desacuerdo               0.26297    0.26552   0.990   0.3220    
## P35GMuy en desacuerdo               -0.21482    0.60226  -0.357   0.7213    
## P35HAlgo de acuerdo                 -0.03487    0.18925  -0.184   0.8538    
## P35HNi de acuerdo ni en desacuerdo  -0.39752    0.35864  -1.108   0.2677    
## P35HAlgo de desacuerdo              -0.62049    0.45847  -1.353   0.1759    
## P35HMuy en desacuerdo              -14.46553  421.74832  -0.034   0.9726    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1100.8  on 1217  degrees of freedom
## Residual deviance: 1074.2  on 1193  degrees of freedom
##   (120 observations deleted due to missingness)
## AIC: 1124.2
## 
## Number of Fisher Scoring iterations: 14
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   30.00   32.00   31.75   36.00   40.00
### primer modelo:
#data como subset
vars1=base[,c("ppk_condSI","SUMp35")]

#regresion
rlog1=glm(ppk_condSI~., data=vars1,family = binomial)

#resultado clásico:
summary(rlog1)
## 
## Call:
## glm(formula = ppk_condSI ~ ., family = binomial, data = vars1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0198  -0.7169  -0.6914  -0.6426   1.8326  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -0.38274    0.34803  -1.100   0.2714  
## SUMp35      -0.02725    0.01092  -2.496   0.0125 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1396  on 1311  degrees of freedom
## Residual deviance: 1390  on 1310  degrees of freedom
##   (26 observations deleted due to missingness)
## AIC: 1394
## 
## Number of Fisher Scoring iterations: 4
### primer modelo:
#data como subset
vars1=base[,c("ppk_condNO","SUMp35")]

#regresion
rlog1=glm(ppk_condNO ~., data=vars1,family = binomial)

#resultado clásico:
summary(rlog1)
## 
## Call:
## glm(formula = ppk_condNO ~ ., family = binomial, data = vars1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6569  -0.6245  -0.6058  -0.5638   2.0739  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -2.31700    0.45120  -5.135 2.82e-07 ***
## SUMp35       0.02233    0.01380   1.618    0.106    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1186.6  on 1311  degrees of freedom
## Residual deviance: 1183.8  on 1310  degrees of freedom
##   (26 observations deleted due to missingness)
## AIC: 1187.8
## 
## Number of Fisher Scoring iterations: 4
### primer modelo:
#data como subset
vars1=base[,c("ppk_condSI","P36D","P36E","P36F","P36G","P36H")]

#regresion
rlog1=glm(ppk_condSI~., data=vars1,family = binomial)

#resultado clásico:
summary(rlog1)
## 
## Call:
## glm(formula = ppk_condSI ~ ., family = binomial, data = vars1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2318  -0.7496  -0.6345  -0.4812   2.1526  
## 
## Coefficients:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        -1.67097    0.33335  -5.013 5.37e-07 ***
## P36DAlgo de acuerdo                 0.22091    0.24018   0.920  0.35769    
## P36DNi de acuerdo ni en desacuerdo  0.46666    0.29113   1.603  0.10895    
## P36DAlgo de desacuerdo              0.13642    0.25596   0.533  0.59406    
## P36DMuy en desacuerdo              -0.16806    0.37858  -0.444  0.65710    
## P36EAlgo de acuerdo                -0.08554    0.29793  -0.287  0.77402    
## P36ENi de acuerdo ni en desacuerdo -0.04100    0.33258  -0.123  0.90189    
## P36EAlgo de desacuerdo              0.38840    0.29346   1.324  0.18566    
## P36EMuy en desacuerdo               0.30143    0.38250   0.788  0.43066    
## P36FAlgo de acuerdo                -0.43895    0.24602  -1.784  0.07440 .  
## P36FNi de acuerdo ni en desacuerdo -0.03590    0.28879  -0.124  0.90107    
## P36FAlgo de desacuerdo             -0.44743    0.27314  -1.638  0.10139    
## P36FMuy en desacuerdo              -0.86237    0.44508  -1.938  0.05267 .  
## P36GAlgo de acuerdo                 0.17895    0.31576   0.567  0.57089    
## P36GNi de acuerdo ni en desacuerdo  0.50266    0.34428   1.460  0.14429    
## P36GAlgo de desacuerdo              0.19541    0.31500   0.620  0.53502    
## P36GMuy en desacuerdo               0.23751    0.35587   0.667  0.50451    
## P36HAlgo de acuerdo                -0.01759    0.25194  -0.070  0.94435    
## P36HNi de acuerdo ni en desacuerdo  0.47622    0.27995   1.701  0.08893 .  
## P36HAlgo de desacuerdo              0.22261    0.25581   0.870  0.38419    
## P36HMuy en desacuerdo               0.89865    0.30310   2.965  0.00303 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1316.3  on 1218  degrees of freedom
## Residual deviance: 1273.0  on 1198  degrees of freedom
##   (119 observations deleted due to missingness)
## AIC: 1315
## 
## Number of Fisher Scoring iterations: 4
### primer modelo:
#data como subset
vars1=base[,c("ppk_condNO","P36A","P36B","P36D","P36E","P36F","P36G","P36H")]

#regresion
rlog1=glm(ppk_condNO~., data=vars1,family = binomial)

#resultado clásico:
summary(rlog1)
## 
## Call:
## glm(formula = ppk_condNO ~ ., family = binomial, data = vars1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2908  -0.6460  -0.5353  -0.4168   2.3887  
## 
## Coefficients:
##                                    Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                        -2.06363    0.39565  -5.216 1.83e-07 ***
## P36AAlgo de acuerdo                -0.32058    0.30215  -1.061   0.2887    
## P36ANi de acuerdo ni en desacuerdo  0.60893    0.35589   1.711   0.0871 .  
## P36AAlgo de desacuerdo              0.30363    0.31222   0.972   0.3308    
## P36AMuy en desacuerdo               0.30692    0.40381   0.760   0.4472    
## P36BAlgo de acuerdo                -0.55678    0.28955  -1.923   0.0545 .  
## P36BNi de acuerdo ni en desacuerdo -0.15009    0.36205  -0.415   0.6785    
## P36BAlgo de desacuerdo             -0.48242    0.32769  -1.472   0.1410    
## P36BMuy en desacuerdo              -0.28904    0.41954  -0.689   0.4909    
## P36DAlgo de acuerdo                 0.41376    0.28613   1.446   0.1482    
## P36DNi de acuerdo ni en desacuerdo  0.15993    0.36512   0.438   0.6614    
## P36DAlgo de desacuerdo              0.37766    0.31306   1.206   0.2277    
## P36DMuy en desacuerdo              -0.20340    0.44659  -0.455   0.6488    
## P36EAlgo de acuerdo                 0.12577    0.33520   0.375   0.7075    
## P36ENi de acuerdo ni en desacuerdo  0.21517    0.37277   0.577   0.5638    
## P36EAlgo de desacuerdo             -0.21835    0.34105  -0.640   0.5220    
## P36EMuy en desacuerdo               0.36182    0.42427   0.853   0.3938    
## P36FAlgo de acuerdo                 0.26623    0.29746   0.895   0.3708    
## P36FNi de acuerdo ni en desacuerdo -0.19279    0.37281  -0.517   0.6051    
## P36FAlgo de desacuerdo              0.22227    0.32908   0.675   0.4994    
## P36FMuy en desacuerdo               1.00842    0.45151   2.233   0.0255 *  
## P36GAlgo de acuerdo                 0.16584    0.34467   0.481   0.6304    
## P36GNi de acuerdo ni en desacuerdo -0.07042    0.40016  -0.176   0.8603    
## P36GAlgo de desacuerdo              0.19557    0.34412   0.568   0.5698    
## P36GMuy en desacuerdo               0.46601    0.38921   1.197   0.2312    
## P36HAlgo de acuerdo                 0.21423    0.27614   0.776   0.4379    
## P36HNi de acuerdo ni en desacuerdo -0.48753    0.35479  -1.374   0.1694    
## P36HAlgo de desacuerdo              0.20363    0.28271   0.720   0.4713    
## P36HMuy en desacuerdo              -0.13705    0.35170  -0.390   0.6968    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1106.4  on 1215  degrees of freedom
## Residual deviance: 1058.9  on 1187  degrees of freedom
##   (122 observations deleted due to missingness)
## AIC: 1116.9
## 
## Number of Fisher Scoring iterations: 4
### primer modelo:
#data como subset
vars1=base[,c("ppk_condSI","SUMp36")]

#regresion
rlog1=glm(ppk_condSI~., data=vars1,family = binomial)

#resultado clásico:
summary(rlog1)
## 
## Call:
## glm(formula = ppk_condSI ~ ., family = binomial, data = vars1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8526  -0.7251  -0.6929  -0.6517   1.8491  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -0.824839   0.244802  -3.369 0.000753 ***
## SUMp36      -0.017127   0.009761  -1.755 0.079316 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1396  on 1311  degrees of freedom
## Residual deviance: 1393  on 1310  degrees of freedom
##   (26 observations deleted due to missingness)
## AIC: 1397
## 
## Number of Fisher Scoring iterations: 4
### primer modelo:
#data como subset
vars1=base[,c("ppk_condNO","SUMp36")]

#regresion
rlog1=glm(ppk_condNO ~., data=vars1,family = binomial)

#resultado clásico:
summary(rlog1)
## 
## Call:
## glm(formula = ppk_condNO ~ ., family = binomial, data = vars1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7869  -0.6278  -0.5873  -0.5429   2.0253  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.01362    0.26963  -3.759  0.00017 ***
## SUMp36      -0.02432    0.01088  -2.235  0.02539 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1186.6  on 1311  degrees of freedom
## Residual deviance: 1181.6  on 1310  degrees of freedom
##   (26 observations deleted due to missingness)
## AIC: 1185.6
## 
## Number of Fisher Scoring iterations: 4
## 
##  Sin respuesta        Ninguno              1              2              3 
##              0            119            125            132            183 
##              4              5              6 Todos los días        No sabe 
##            117             85             46            526              4 
##    No contesta 
##              1
### primer modelo:
#data como subset
vars1=base[,c("ppk_condSI","P39A","P39B","P39C","P39D")]

#regresion
rlog1=glm(ppk_condSI~., data=vars1,family = binomial)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#resultado clásico:
summary(rlog1)
## 
## Call:
## glm(formula = ppk_condSI ~ ., family = binomial, data = vars1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2150  -0.7354  -0.6278  -0.4486   2.5352  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          -1.28985    0.24394  -5.288 1.24e-07 ***
## P39A1                -0.27264    0.34048  -0.801  0.42327    
## P39A2                -0.05615    0.32482  -0.173  0.86277    
## P39A3                 0.05105    0.30579   0.167  0.86740    
## P39A4                -0.03012    0.34382  -0.088  0.93020    
## P39A5                 0.42107    0.35805   1.176  0.23958    
## P39A6                -0.11214    0.45053  -0.249  0.80344    
## P39ATodos los días   -0.02292    0.27440  -0.084  0.93343    
## P39ANo sabe           2.16503    1.61551   1.340  0.18020    
## P39ANo contesta      27.91613 3080.19433   0.009  0.99277    
## P39B1                -0.21077    0.25527  -0.826  0.40900    
## P39B2                 0.40351    0.22762   1.773  0.07628 .  
## P39B3                 0.12294    0.24716   0.497  0.61891    
## P39B4                 0.13616    0.29107   0.468  0.63994    
## P39B5                 0.17180    0.34449   0.499  0.61798    
## P39B6                 0.72510    0.49860   1.454  0.14587    
## P39BTodos los días    0.23718    0.23658   1.003  0.31609    
## P39BNo sabe         -12.25610 1131.61397  -0.011  0.99136    
## P39BNo contesta     -14.21772 1385.27760  -0.010  0.99181    
## P39C1                 0.02195    0.25228   0.087  0.93068    
## P39C2                -0.02294    0.22150  -0.104  0.91751    
## P39C3                -0.29540    0.24522  -1.205  0.22835    
## P39C4                -0.58374    0.31352  -1.862  0.06261 .  
## P39C5                -0.39750    0.36945  -1.076  0.28196    
## P39C6                -0.31004    0.44628  -0.695  0.48723    
## P39CTodos los días   -0.68333    0.21706  -3.148  0.00164 ** 
## P39CNo sabe         -15.11389  886.37975  -0.017  0.98640    
## P39CNo contesta     -14.83093  952.72501  -0.016  0.98758    
## P39D1                 0.65555    0.26029   2.519  0.01178 *  
## P39D2                 0.01235    0.29874   0.041  0.96703    
## P39D3                 0.62918    0.27312   2.304  0.02124 *  
## P39D4                -0.34023    0.40402  -0.842  0.39973    
## P39D5                 0.44798    0.46839   0.956  0.33886    
## P39D6                 0.43884    0.61293   0.716  0.47401    
## P39DTodos los días    0.74651    0.24462   3.052  0.00227 ** 
## P39DNo sabe          -1.26616    1.19011  -1.064  0.28737    
## P39DNo contesta     -14.14370  950.31794  -0.015  0.98813    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1396.0  on 1311  degrees of freedom
## Residual deviance: 1339.9  on 1275  degrees of freedom
##   (26 observations deleted due to missingness)
## AIC: 1413.9
## 
## Number of Fisher Scoring iterations: 15
### primer modelo:
#data como subset
vars1=base[,c("ppk_condNO","P39A","P39B","P39C","P39D")]

#regresion
rlog1=glm(ppk_condNO~., data=vars1,family = binomial)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
#resultado clásico:
summary(rlog1)
## 
## Call:
## glm(formula = ppk_condNO ~ ., family = binomial, data = vars1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.1885  -0.6311  -0.5419  -0.4497   2.1772  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        -1.860e+00  2.742e-01  -6.785 1.16e-11 ***
## P39A1              -8.464e-02  3.660e-01  -0.231  0.81708    
## P39A2               2.852e-01  3.407e-01   0.837  0.40256    
## P39A3              -1.962e-01  3.417e-01  -0.574  0.56589    
## P39A4              -5.226e-02  3.710e-01  -0.141  0.88799    
## P39A5              -2.888e-01  4.136e-01  -0.698  0.48500    
## P39A6              -1.214e-01  4.762e-01  -0.255  0.79886    
## P39ATodos los días -4.062e-01  3.045e-01  -1.334  0.18225    
## P39ANo sabe        -1.378e+01  1.019e+03  -0.014  0.98922    
## P39ANo contesta    -2.149e+00  2.547e+03  -0.001  0.99933    
## P39B1              -5.545e-03  2.760e-01  -0.020  0.98397    
## P39B2              -4.932e-03  2.693e-01  -0.018  0.98539    
## P39B3               2.809e-01  2.664e-01   1.055  0.29155    
## P39B4              -3.899e-03  3.220e-01  -0.012  0.99034    
## P39B5               4.756e-01  3.586e-01   1.326  0.18475    
## P39B6               1.297e-02  5.745e-01   0.023  0.98199    
## P39BTodos los días  7.835e-02  2.674e-01   0.293  0.76950    
## P39BNo sabe        -1.282e+01  1.103e+03  -0.012  0.99073    
## P39BNo contesta     1.566e+01  8.549e+02   0.018  0.98538    
## P39C1              -4.314e-02  3.168e-01  -0.136  0.89168    
## P39C2               3.766e-01  2.553e-01   1.475  0.14023    
## P39C3               3.476e-01  2.708e-01   1.284  0.19923    
## P39C4               3.438e-01  3.313e-01   1.038  0.29937    
## P39C5               5.764e-01  3.718e-01   1.551  0.12101    
## P39C6               4.176e-01  4.715e-01   0.886  0.37585    
## P39CTodos los días  5.839e-01  2.232e-01   2.616  0.00889 ** 
## P39CNo sabe        -1.403e+01  8.837e+02  -0.016  0.98733    
## P39CNo contesta     1.418e+00  1.246e+00   1.138  0.25502    
## P39D1               1.607e-02  3.109e-01   0.052  0.95878    
## P39D2               6.972e-02  3.394e-01   0.205  0.83726    
## P39D3               3.876e-01  3.126e-01   1.240  0.21493    
## P39D4               4.169e-01  3.657e-01   1.140  0.25435    
## P39D5              -6.360e-01  7.532e-01  -0.844  0.39850    
## P39D6               1.454e+00  5.672e-01   2.563  0.01037 *  
## P39DTodos los días  5.211e-01  2.773e-01   1.879  0.06027 .  
## P39DNo sabe        -2.051e-01  8.078e-01  -0.254  0.79961    
## P39DNo contesta    -2.964e+01  1.209e+03  -0.025  0.98044    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1186.6  on 1311  degrees of freedom
## Residual deviance: 1144.7  on 1275  degrees of freedom
##   (26 observations deleted due to missingness)
## AIC: 1218.7
## 
## Number of Fisher Scoring iterations: 15
## 
##  Sin respuesta        Ninguno              1              2              3 
##              0            119            125            132            183 
##              4              5              6 Todos los días        No sabe 
##            117             85             46            526              4 
##    No contesta 
##              1
### primer modelo:
#data como subset
vars1=base[,c("ppk_condSI","SUMp39")]

#regresion
rlog1=glm(ppk_condSI ~., data=vars1,family = binomial)

#resultado clásico:
summary(rlog1)
## 
## Call:
## glm(formula = ppk_condSI ~ ., family = binomial, data = vars1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7681  -0.7223  -0.7002  -0.6786   1.7785  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.35122    0.13069 -10.339   <2e-16 ***
## SUMp39       0.01006    0.01027   0.979    0.327    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1396.0  on 1311  degrees of freedom
## Residual deviance: 1395.1  on 1310  degrees of freedom
##   (26 observations deleted due to missingness)
## AIC: 1399.1
## 
## Number of Fisher Scoring iterations: 4
### primer modelo:
#data como subset
vars1=base[,c("ppk_condNO","SUMp39")]

#regresion
rlog1=glm(ppk_condNO ~., data=vars1,family = binomial)

#resultado clásico:
summary(rlog1)
## 
## Call:
## glm(formula = ppk_condNO ~ ., family = binomial, data = vars1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7489  -0.6286  -0.5819  -0.5383   2.0260  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.91490    0.15062 -12.713   <2e-16 ***
## SUMp39       0.02811    0.01139   2.467   0.0136 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1186.6  on 1311  degrees of freedom
## Residual deviance: 1180.5  on 1310  degrees of freedom
##   (26 observations deleted due to missingness)
## AIC: 1184.5
## 
## Number of Fisher Scoring iterations: 4
### primer modelo:
#data como subset
vars1=base[,c("ppk_condSI","SUMp35","SUMp36","SUMp39")]

#regresion
rlog1=glm(ppk_condSI ~., data=vars1,family = binomial)

#resultado clásico:
summary(rlog1)
## 
## Call:
## glm(formula = ppk_condSI ~ ., family = binomial, data = vars1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0988  -0.7252  -0.6823  -0.6271   1.9006  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -0.36330    0.37750  -0.962   0.3358  
## SUMp35      -0.02348    0.01170  -2.007   0.0448 *
## SUMp36      -0.01126    0.01052  -1.071   0.2844  
## SUMp39       0.01254    0.01032   1.215   0.2244  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1396.0  on 1311  degrees of freedom
## Residual deviance: 1387.6  on 1308  degrees of freedom
##   (26 observations deleted due to missingness)
## AIC: 1395.6
## 
## Number of Fisher Scoring iterations: 4
### primer modelo:
#data como subset
vars1=base[,c("ppk_condNO","SUMp35","SUMp36","SUMp39")]

#regresion
rlog1=glm(ppk_condNO ~., data=vars1,family = binomial)

#resultado clásico:
summary(rlog1)
## 
## Call:
## glm(formula = ppk_condNO ~ ., family = binomial, data = vars1)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9644  -0.6353  -0.5659  -0.4982   2.1541  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -2.17448    0.48243  -4.507 6.56e-06 ***
## SUMp35       0.03512    0.01442   2.436  0.01486 *  
## SUMp36      -0.03710    0.01164  -3.188  0.00143 ** 
## SUMp39       0.03113    0.01145   2.718  0.00657 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1186.6  on 1311  degrees of freedom
## Residual deviance: 1167.9  on 1308  degrees of freedom
##   (26 observations deleted due to missingness)
## AIC: 1175.9
## 
## Number of Fisher Scoring iterations: 4