My models:
summary(m1)
## 
## Call:
## lm(formula = len ~ dose, data = ToothGrowth)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.4496 -2.7406 -0.7452  2.8344 10.1139 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   7.4225     1.2601    5.89 2.06e-07 ***
## dose          9.7636     0.9525   10.25 1.23e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.601 on 58 degrees of freedom
## Multiple R-squared:  0.6443, Adjusted R-squared:  0.6382 
## F-statistic: 105.1 on 1 and 58 DF,  p-value: 1.233e-14
summary(m2)
## 
## Call:
## lm(formula = len ~ supp + dose, data = ToothGrowth)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.600 -3.700  0.373  2.116  8.800 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   9.2725     1.2824   7.231 1.31e-09 ***
## suppVC       -3.7000     1.0936  -3.383   0.0013 ** 
## dose          9.7636     0.8768  11.135 6.31e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.236 on 57 degrees of freedom
## Multiple R-squared:  0.7038, Adjusted R-squared:  0.6934 
## F-statistic: 67.72 on 2 and 57 DF,  p-value: 8.716e-16
Explanation
library(stargazer)
stargazer(m1, m2, type = "html")
| Dependent variable: | ||
| len | ||
| (1) | (2) | |
| suppVC | -3.700*** | |
| (1.094) | ||
| dose | 9.764*** | 9.764*** | 
| (0.953) | (0.877) | |
| Constant | 7.423*** | 9.272*** | 
| (1.260) | (1.282) | |
| Observations | 60 | 60 | 
| R2 | 0.644 | 0.704 | 
| Adjusted R2 | 0.638 | 0.693 | 
| Residual Std. Error | 4.601 (df = 58) | 4.236 (df = 57) | 
| F Statistic | 105.065*** (df = 1; 58) | 67.718*** (df = 2; 57) | 
| Note: | p<0.1; p<0.05; p<0.01 | |