Calcular probabilidades y probabilidades acumuladas bajo la fórmula de distribución de Poisson.
Realizar distribuciones de probabilidad conforme a la distribución de probabilidad de Poisson a partir devalores iniciales dado en cada ejercicio.
Se generan las tablas de probabilidad conforme a distribución Poisson, se identifican los valores de probabilidad cuando la variable discreta xx tenga algún exactamente algún valor, ≤≤ a algún valor o >> o ≥≥, entre otros.
Se utilizan las funciones dpois() para la función de probabilidad o densidad y ppois() para la probabilidad acumulada.
También se utiliza la función f.prob.poisson() que ha sido programada con anticipación y calcula la probabilidad de un valor de variable aleatoria discreta. Esta función se encuentra en el enlace: https://github.com/rpizarrog/probabilidad-y-estadistica/blob/master/funciones/funciones.distribuciones.r
Pendiente.
El desarrollo de los ejercicios comienza con la carga de librerías luego una serie de ejercicios relacionados con la distribución de Poisson, de cada uno de ellos se muestra la tabla de probabilidad se calculan algunas de sus probabilidades y se determina la esperanza, la varianza y las desviaciones. Al final se busca la interpretación de cada ejercicio.
Para nuevas librerías se requiere instalar con anticipación, ejemplo, install.packages(“cowplot”).
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.5
library(mosaic) # Gráficos de distribuciones
## Warning: package 'mosaic' was built under R version 4.0.5
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
library(cowplot) #Imágenes en el mismo renglón
## Warning: package 'cowplot' was built under R version 4.0.5
##
## Attaching package: 'cowplot'
## The following object is masked from 'package:mosaic':
##
## theme_map
options(scipen=999) # Notación normal
# options(scipen=1) # Notación científica
#source("../funciones/funciones.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")
##
## Attaching package: 'gtools'
## The following object is masked from 'package:mosaic':
##
## logit
Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.(anderson_estadistica_2008?)
Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.
Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10;
Aquí la variable aleatoria es xx número de automóviles que llegan en un lapso de 15 minutos.
Valores iniciales
x <- 0:30 # Valores de variables aleatorias
media <- 10 # Llegada de automóviles
Se construye la tabla con la función cargada del enlace: https://github.com/rpizarrog/probabilidad-y-estad-stica/blob/master/funciones/funciones.distribuciones.r
tabla1 <- data.frame(x=x, f.prob.x = f.prob.poisson(media, x))
tabla1 <- cbind(tabla1, f.acum.x = cumsum(tabla1$f.prob.x))
tabla1
## x f.prob.x f.acum.x
## 1 0 0.0000453999298 0.00004539993
## 2 1 0.0004539992976 0.00049939923
## 3 2 0.0022699964881 0.00276939572
## 4 3 0.0075666549604 0.01033605068
## 5 4 0.0189166374010 0.02925268808
## 6 5 0.0378332748021 0.06708596288
## 7 6 0.0630554580035 0.13014142088
## 8 7 0.0900792257192 0.22022064660
## 9 8 0.1125990321490 0.33281967875
## 10 9 0.1251100357211 0.45792971447
## 11 10 0.1251100357211 0.58303975019
## 12 11 0.1137363961101 0.69677614630
## 13 12 0.0947803300918 0.79155647639
## 14 13 0.0729079462244 0.86446442262
## 15 14 0.0520771044460 0.91654152707
## 16 15 0.0347180696307 0.95125959670
## 17 16 0.0216987935192 0.97295839022
## 18 17 0.0127639961878 0.98572238640
## 19 18 0.0070911089932 0.99281349540
## 20 19 0.0037321626280 0.99654565802
## 21 20 0.0018660813140 0.99841173934
## 22 21 0.0008886101495 0.99930034949
## 23 22 0.0004039137043 0.99970426319
## 24 23 0.0001756146541 0.99987987785
## 25 24 0.0000731727725 0.99995305062
## 26 25 0.0000292691090 0.99998231973
## 27 26 0.0000112573496 0.99999357708
## 28 27 0.0000041693887 0.99999774647
## 29 28 0.0000014890674 0.99999923553
## 30 29 0.0000005134715 0.99999974900
## 31 30 0.0000001711572 0.99999992016
Se construye la tabla2 con las funciones dpois() y ppois() , los valores deben ser los mismos que la tabla1.
tabla2 <- data.frame(x=x, f.prob.x = dpois(x = x, lambda = media))
tabla2 <- cbind(tabla2, f.acum.x = ppois(q = x, lambda = media))
tabla2
## x f.prob.x f.acum.x
## 1 0 0.0000453999298 0.00004539993
## 2 1 0.0004539992976 0.00049939923
## 3 2 0.0022699964881 0.00276939572
## 4 3 0.0075666549604 0.01033605068
## 5 4 0.0189166374010 0.02925268808
## 6 5 0.0378332748021 0.06708596288
## 7 6 0.0630554580035 0.13014142088
## 8 7 0.0900792257192 0.22022064660
## 9 8 0.1125990321490 0.33281967875
## 10 9 0.1251100357211 0.45792971447
## 11 10 0.1251100357211 0.58303975019
## 12 11 0.1137363961101 0.69677614630
## 13 12 0.0947803300918 0.79155647639
## 14 13 0.0729079462244 0.86446442262
## 15 14 0.0520771044460 0.91654152707
## 16 15 0.0347180696307 0.95125959670
## 17 16 0.0216987935192 0.97295839022
## 18 17 0.0127639961878 0.98572238640
## 19 18 0.0070911089932 0.99281349540
## 20 19 0.0037321626280 0.99654565802
## 21 20 0.0018660813140 0.99841173934
## 22 21 0.0008886101495 0.99930034949
## 23 22 0.0004039137043 0.99970426319
## 24 23 0.0001756146541 0.99987987785
## 25 24 0.0000731727725 0.99995305062
## 26 25 0.0000292691090 0.99998231973
## 27 26 0.0000112573496 0.99999357708
## 28 27 0.0000041693887 0.99999774647
## 29 28 0.0000014890674 0.99999923553
## 30 29 0.0000005134715 0.99999974900
## 31 30 0.0000001711572 0.99999992016
Con la función ggplot() se hace la curva de la distribución, en rojo los puntos y en azul la curva o linea con cualquiera de las dos tablas, tabla1 o tabla2.
En g1 se construye la gráfica de densidad P(x)P(x) y en g2 se construye la gráfica de a probabilidad acumulada F(x)F(x). Las dos gráficas se construyen.
g1 <- ggplot(data = tabla2, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función de densidad P(x)")
#g1
g2 <- ggplot(data = tabla2, aes(x,f.acum.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función acumulada F(x)")
#g2
plot_grid(g1, g2)
Si la administración desea saber la probabilidad de que lleguen exactamente \(55\) automóviles en 15 minutos, \(P(x=5)\)
Utlizando la función f.prob.poisson() creada que se encuentra en el enlace https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r y calcula la función de probabilidad conforme a la fórmula.
x <- 5
prob <- round(f.prob.poisson(media, x),8)
paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de : 0.03783327"
prob2 <- round(dpois(x = x, lambda = media),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de : 0.0378"
\(P(x≤10)=P(x=0)+P(x=1)+P(x=2)+P(x=3)+...+P(x=10)\) o la probabilidad acumulada hasta \(10 F(x=10)\)
tabla1$f.acum[10+1]
## [1] 0.5830398
paste("La probabilidad de que el valor de x sea menor o igual a 10 es: ", tabla1$f.acum[10+1], " o ", round(tabla1$f.acum[10+1] * 100,4), "%" )
## [1] "La probabilidad de que el valor de x sea menor o igual a 10 es: 0.583039750192986 o 58.304 %"
Con ppois() que determina el valor acumulado
ppois(q = 10, lambda = media)
## [1] 0.5830398
con la función sum() y dpois()
sum(dpois(x = 0:10, lambda = media))
## [1] 0.5830398
En el ejemplo anterior se usó un lapso de 15 minutos, pero también se usan otros lapsos. Suponga que desea calcular la probabilidad de una llegada en un lapso de 3 minutos.
Regla de tres:
\[10=15\]
\[?=3\]
media <- (3 * 10) / 15
media
## [1] 2
Entonces, la probabilidad de x llegadas en un lapso de 3 minutos tiene una media \(μ=2\) está dada por la siguiente nueva función de probabilidad de Poisson.
\[f(x) = \frac{{e^{ - 2} 2^x }}{{x!}}\]
Entonces nueva probabilidad para cuando \(x=5\)
prob <- round(dpois(x = 5, lambda = 2),4)
paste("La probabilidad cuando x = 5 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 5 y media igual a 2 es del: 3.61 %"
La esperanza o valor esperado es igual a: \(10\) dado los valores iniciales del ejercicio
La varianza es 10 y la desviación estándard es: 3.1623
Como bien se explica en el fundamento teórico, la variable de Poisson no es una variable estatica, como la que vimos en el anterior caso, solo que aquí depende de ciertos aspectos de tiempo o espacio para determinar su valor. En este caso de los automoviles se maneja no solo una variable de cuanta es la probabilidad de que llegue x número de automoviles en un lapso de 15 minutos, el problema nos planteaba 5 automoviles, menos de 10, sino que también, para cumplir con la distribución de Poisson se cambió a una regla de 3, para que así se pudiera determinar el mismo número de automoviles, pero en 3 minutos
En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es \(0.005\) y los accidentes son independientes entre sí (walpole_probabilidad_2012?).
La variable media es el números de accidentes promedio por dia. \(x\) será los valores de la variable aleatoria.
Valores iniciales
n <- 365 # Dias del año
prob <- 0.005
media <- n * prob # media al año
media <- round(media, 0)
media
## [1] 2
x <- 0:10
La media es 2
La variable aleatoria son los dias desde \(x=1…hasta x=n\)
La tabla de distribución de probablidad de Poisson con media igual a 2 usando dpois() y cumsum()
tabla <- data.frame(x=x, f.prob.x = round(dpois(x = x, lambda = media),4))
tabla <- cbind(tabla, f.acum.x = cumsum(tabla$f.prob.x))
tabla
## x f.prob.x f.acum.x
## 1 0 0.1353 0.1353
## 2 1 0.2707 0.4060
## 3 2 0.2707 0.6767
## 4 3 0.1804 0.8571
## 5 4 0.0902 0.9473
## 6 5 0.0361 0.9834
## 7 6 0.0120 0.9954
## 8 7 0.0034 0.9988
## 9 8 0.0009 0.9997
## 10 9 0.0002 0.9999
## 11 10 0.0000 0.9999
g1 <- ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función de densidad P(x)")
#g1
g2 <- ggplot(data = tabla, aes(x,f.acum.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función acumulada F(x)")
#g2
plot_grid(g1, g2)
¿Cuál es la probabilidad de que en cualquier periodo dado habrá un accidente en un día?
\(P(x=1)\)
Recorddar que el índice de la tabla empieza en el valor cero de tal forma que se necesita el siguiente valor x+1 en la tabla:
x <- 1
prob <- tabla$f.prob.x[x+1]
paste("La probabiidad del valor de x=1 es: ", prob)
## [1] "La probabiidad del valor de x=1 es: 0.2707"
o mediante la función dpois() y
dpois(x = 1, lambda = media)
## [1] 0.2706706
¿Cuál es la probabilidad de que haya a lo más tres días con un accidente?
x <- 3
prob <- tabla$f.acum.x[x+1]
paste("La probabiidad del valor de x<=3 es: ", prob)
## [1] "La probabiidad del valor de x<=3 es: 0.8571"
Función acumulada \(F(x=3)\) o lo que es lo mismo \(P(x=0)+P(x=1)+P(x=2)+P(x=3)\)
ppois(q = 3, lambda = media)
## [1] 0.8571235
Ahora bien, en este problema se nos plantea que en una industría ocurre accidentes al día con una probabilidad de 0.005 y son independientes entre si, pues mira, la variable x es el promedio de accidentes al día y la media el promedio de accidentes al año, el cual es 2. Entonces toca determinar la probabilidad de que ocurran cierto número de accidentes en un periodo al año, independientemente de cual es, si hay más trabajo, si es temporada vacacional o acueto, entre ellos están, los accidentes de 1 día o accidentes en el transcurso de 3 días o menos. Pienso que es un planteamiento que podría, o es muy utilizado en las industrias, pues el tener un mayor registro y probabilidad ayuda a evitar en su mayor parte los accidentes laborales.
Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con λ=5λ=5 (walpole_probabilidad_2012?).
Se construye la tabla de distribución de veinte valores en variable aleatoria y media igual a cinco.
x <- 0:20
media <- 5
tabla <- data.frame(x=x, f.prob.x = round(dpois(x = x, lambda = media),8), f.acum.x = round(ppois(q = x, lambda = media), 8))
tabla
## x f.prob.x f.acum.x
## 1 0 0.00673795 0.00673795
## 2 1 0.03368973 0.04042768
## 3 2 0.08422434 0.12465202
## 4 3 0.14037390 0.26502592
## 5 4 0.17546737 0.44049329
## 6 5 0.17546737 0.61596065
## 7 6 0.14622281 0.76218346
## 8 7 0.10444486 0.86662833
## 9 8 0.06527804 0.93190637
## 10 9 0.03626558 0.96817194
## 11 10 0.01813279 0.98630473
## 12 11 0.00824218 0.99454691
## 13 12 0.00343424 0.99798115
## 14 13 0.00132086 0.99930201
## 15 14 0.00047174 0.99977375
## 16 15 0.00015725 0.99993099
## 17 16 0.00004914 0.99998013
## 18 17 0.00001445 0.99999458
## 19 18 0.00000401 0.99999860
## 20 19 0.00000106 0.99999965
## 21 20 0.00000026 0.99999992
Se visualiza la tabla de probabilidades
g1 <- ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función de densidad P(x)")
#g1
g2 <- ggplot(data = tabla, aes(x,f.acum.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función acumulada F(x)")
#g2
plot_grid(g1, g2)
¿Cuál es la probabilidad de que, a lo más, 3 automóviles por año sufran una catástrofe?
\[P(X≤3)\]
\[P(X=0)+P(X=1)+P(X=2)+P(X=3)\]
x <- 3
prob <- tabla$f.acum.x[x+1]
paste("La probabiidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabiidad del valor de x<=3 es: 26.5026 %"
o por medio de la función ppois()
ppois(q = 3, lambda = media)
## [1] 0.2650259
¿Cuál es la probabilidad de que más de 1 automóvil por año experimente una catástrofe?\[1−F(X≤1)\]
\[1−(P(X=0)+P(x=1))\]
x <- 1
prob <- 1 - tabla$f.acum.x[x+1]
paste("La probabiidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabiidad del valor de x>1 es: 95.9572 %"
o bie con la función ppois() y la opción lower.tail = FALSE
ppois(q = x, lambda = media, lower.tail = FALSE)
## [1] 0.9595723
Vamos a lo mismos de que muchas industrias usan la estadistica para prevenirse ante posibles catastrofes o accidentes, que en muchos casos puede derivar en problemas o demandas para la empresa, pues es mejor prevenir que lamentar, y para eso sirve la estadística y probabilidad. En este caso, se quiere determinar la probabilidad de que en el lapso de un año cierto número de automoviles de un modelo especifico falle en el sistema de frenado y sufra una catastrofe, se los plantean 3 automoviles y más de 1, que el último ha salido un número muy alto, más de 90, lo cual de por si ya es preocupante, a lo mejor 3 no suena tanto, pero suponiendo que el problema dice que son más de 3, ya se están arriesgando en comerciar ese modelo de automovil sin realizar todos los chequeos necesarios.
Supóngase que se está investigando la seguridad de un crucero muy peligroso. Los archivos de la policía indican una media de cinco \(λ=5\) accidentes por mes en el crucero.
El número de accidentes está distribuido conforme a la distribución de Poisson, y la división de seguridad en carreteras quiere calcular la probabilidad de exactamente \(0,1,2,3 y 4\) accidentes en un mes determinado (gestiopolis, n.d.).
Valores iniciales
x <- 0:10
media <- 5
Construyendo los valores de la tabla de distribución \(P(x=0,1,2…10).\) Para responder a la pregunta del ejercicio, solo interesan solo los valores \(P(0), P(1), P(2), P(3), P(4)\)
tabla <- data.frame(x = x, f.prob.x = dpois(x = x, lambda = media), f.acum.x = ppois(q = x, lambda = media))
tabla
## x f.prob.x f.acum.x
## 1 0 0.006737947 0.006737947
## 2 1 0.033689735 0.040427682
## 3 2 0.084224337 0.124652019
## 4 3 0.140373896 0.265025915
## 5 4 0.175467370 0.440493285
## 6 5 0.175467370 0.615960655
## 7 6 0.146222808 0.762183463
## 8 7 0.104444863 0.866628326
## 9 8 0.065278039 0.931906365
## 10 9 0.036265577 0.968171943
## 11 10 0.018132789 0.986304731
Se construyen las gráficas de densidad o valores de probabilidad de cada variable aleatoria discreta y la función de la probabilidad acumulada respectivamente.
g1 <- ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función de densidad P(x)")
#g1
g2 <- ggplot(data = tabla, aes(x,f.acum.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función acumulada F(x)")
#g2
plot_grid(g1, g2)
Al igual que en el ejemplo anterior, el hecho de que se tenga una media de 5 accidentes al mes en un crucero es algo preocupante, es más de 1 accidente a la semana prácticamente, aquí no hay cierto tipo de accidentes al mes, pero si tenemos una tabla que contabiliza si ocurren 0, 1, 2, 3 o 4 accidentes en ese mes, lo apreciado en la tabla es que si es preocupante, pues se ve que en cuanto más va transcurriendo el mes los accidentes van aumentando hasta llegar al 4. Aquí va donde se aplica lo planteado en los casos anteriores, esta información puede servir ya registrada, con antecedentes, estadicticas y probabilidades, para que así la policía pueda determinar las causas de estos percances y evitarlos con mayor facilidad.
Supóngase que en un hotel donde descansan sufridos cazadores de elefantes ocurren de manera aleatoria e independiente dos accidentes de caídas con rompimiento de cadera por semana. Determinar la probabilidad de que ocurra un accidente en una semana (Quintela 2019b).\(λ=2\) se necesita calcular \(P(x=1)\)
x <- 0:7
media <-
tabla <- data.frame(x=x, f.prob.x = round(dpois(x = x, lambda = media),8), f.acum.x = round(ppois(q = x, lambda = media), 8))
tabla
## x f.prob.x f.acum.x
## 1 0 0.00673795 0.00673795
## 2 1 0.03368973 0.04042768
## 3 2 0.08422434 0.12465202
## 4 3 0.14037390 0.26502592
## 5 4 0.17546737 0.44049329
## 6 5 0.17546737 0.61596065
## 7 6 0.14622281 0.76218346
## 8 7 0.10444486 0.86662833
Volvemos a lo mismo, prevenir antes que lamentar, si se ha determinado que la media a la semana de que ocurra un accidente que ocasiona una lesión en la cadera es de 2, y la probabilidad de más del 20%, a lo mejor el hotel tiene que ponerse a analizar y corregir las razones por las cuales ese tipo de acontecimientos apasan en su negocio, tal vez una tabla más colocada, algo tienen las camas, las escaleras lo producen.
Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia Brasil Corea España Estados Unidos Japón México Reino Unido Singapur: Cengage Learning,.
gestiopolis. n.d. “¿Qué Es La Distribución de Poisson?” https://www.gestiopolis.com/que-es-la-distribucion-de-poisson/.
Mendenhall, William, Robert J. Beaver, and Barbara M. Beaver. 2010. Introducción a La Probabilidad y Estadística. 13th ed. Cengage Learning Editores, S.A. de C.V.,.
Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.