library(tidyverse)
library(here)
library(performance)
library(lme4)
library(glmmTMB)
library(see)
library(ggrepel)
library(qqplotr)
Construimos el modelo
Revisamos el modelo
summary(yazmin_LM)
Call:
lm(formula = desemp_acade ~ consistencia_1 + consistencia_2 +
consistencia_3 + consistencia_4, data = yazmin_tidyed)
Residuals:
Min 1Q Median 3Q Max
-0.93007 -0.30254 0.05054 0.31384 0.79195
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.10388 0.09154 -12.059 < 2e-16 ***
consistencia_1 0.15322 0.02934 5.222 2.45e-07 ***
consistencia_2 0.15822 0.02845 5.561 4.05e-08 ***
consistencia_3 0.13891 0.02996 4.637 4.36e-06 ***
consistencia_4 0.13116 0.02922 4.488 8.62e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3856 on 595 degrees of freedom
Multiple R-squared: 0.3791, Adjusted R-squared: 0.375
F-statistic: 90.83 on 4 and 595 DF, p-value: < 2.2e-16
Que por cada unidad incrementada en asimilador el desempeño aumentará en un XX unidades.