Creando el ambiente

Cargando los datos

yazmin <- 
  read_csv("data/yazmin.csv")

── Column specification ─────────────────────────────────────────────────────────────────────────────────────────
cols(
  .default = col_double(),
  genero = col_character()
)
ℹ Use `spec()` for the full column specifications.

mirar el modelo

YazminModel <- 
  "c0 =~ i1 + i2 +i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11
   c1 =~ i12 + i13 +i14 + i15 + i16 + i17 + i18 + i19 + i20 + i21 + i22
   c2 =~ i23 + i24 + i25 + i26 + i27 + i28 + i29 + i30 + i31 + i32 + i33
   c3 =~ i34 + i35 +i36 + i37 + i38 + i39 + i40 + i41 + i42 + i43 + i44
   rend_ac =~ i45 + i46 + i47 + i48
   rend_ac =~ c0 + c1 + c2 + c3
   "

Análisis descriptivo

Necesitamos confirmar si las variables manifiestas construyen las variables latentes.

Consisteancia 1

Por medio del Cronbach Alpha.

RcmdrMisc::reliability(cov(elvia %>% 
                             select(i1, i2, i3,  i4,  i5,  i6,  i7,  i8 , i9,  i10,  i11), 
                           use ="complete.obs"))
Alpha reliability =  0.8555 
Standardized alpha =  0.856 

Reliability deleting each item in turn:
     Alpha Std.Alpha r(item, total)
i1  0.8402    0.8413         0.5848
i2  0.8419    0.8429         0.5626
i3  0.8401    0.8411         0.5845
i4  0.8422    0.8430         0.5601
i5  0.8427    0.8428         0.5550
i6  0.8422    0.8423         0.5584
i7  0.8433    0.8434         0.5452
i8  0.8420    0.8421         0.5606
i9  0.8465    0.8471         0.5005
i10 0.8451    0.8455         0.5194
i11 0.8503    0.8503         0.4548

Mayor a 0.7 las variables manfiestas para acomodador son confiables.

Consistencia 2

RcmdrMisc::reliability(cov(yazmin %>% 
                             select(i12 , i13 ,i14 , i15 , i16 , i17 , i18 , i19 , i20 , i21 , i22), 
                           use ="complete.obs"))
Alpha reliability =  0.9393 
Standardized alpha =  0.9398 

Reliability deleting each item in turn:
     Alpha Std.Alpha r(item, total)
i12 0.9335    0.9340         0.7434
i13 0.9327    0.9332         0.7643
i14 0.9338    0.9342         0.7370
i15 0.9337    0.9341         0.7398
i16 0.9338    0.9344         0.7347
i17 0.9342    0.9347         0.7250
i18 0.9334    0.9340         0.7431
i19 0.9330    0.9335         0.7551
i20 0.9332    0.9338         0.7493
i21 0.9345    0.9351         0.7174
i22 0.9339    0.9344         0.7329

Consistencia 3

RcmdrMisc::reliability(cov(yazmin %>% 
                             select(i23 , i24 , i25 , i26 , i27 , i28 , i29 , i30 , i31 , i32 , i33), 
                           use ="complete.obs"))
Alpha reliability =  0.9355 
Standardized alpha =  0.9361 

Reliability deleting each item in turn:
     Alpha Std.Alpha r(item, total)
i23 0.9303    0.9309         0.7084
i24 0.9307    0.9313         0.6999
i25 0.9291    0.9297         0.7393
i26 0.9296    0.9303         0.7250
i27 0.9284    0.9291         0.7523
i28 0.9295    0.9296         0.7399
i29 0.9306    0.9313         0.7002
i30 0.9288    0.9295         0.7445
i31 0.9290    0.9296         0.7425
i32 0.9284    0.9290         0.7542
i33 0.9302    0.9309         0.7104

Consistencia 4

RcmdrMisc::reliability(cov(yazmin %>% 
                             select(i34 , i35 ,i36 , i37 , i38 , i39 , i40 , i41 , i42 , i43 , i44), 
                           use ="complete.obs"))
Alpha reliability =  0.9396 
Standardized alpha =  0.9399 

Reliability deleting each item in turn:
     Alpha Std.Alpha r(item, total)
i34 0.9347    0.9350         0.7233
i35 0.9338    0.9339         0.7486
i36 0.9334    0.9337         0.7549
i37 0.9339    0.9342         0.7430
i38 0.9328    0.9332         0.7677
i39 0.9345    0.9347         0.7310
i40 0.9338    0.9341         0.7450
i41 0.9353    0.9356         0.7080
i42 0.9337    0.9340         0.7477
i43 0.9338    0.9341         0.7441
i44 0.9343    0.9346         0.7333

Rendimiento Académico

RcmdrMisc::reliability(cov(yazmin %>% 
                             select(i45 , i46 , i47 , i48), 
                           use ="complete.obs"))
Alpha reliability =  0.7266 
Standardized alpha =  0.7282 

Reliability deleting each item in turn:
     Alpha Std.Alpha r(item, total)
i45 0.6715    0.6744         0.5059
i46 0.6463    0.6499         0.5479
i47 0.6693    0.6705         0.5134
i48 0.6748    0.6757         0.5040

Tranformamos las variables

yazmin_tidyed <- 
  yazmin %>% 
  rowwise() %>% 
  mutate(consistencia_1 = mean(c(i1, i2, i3,  i4,  i5,  i6,  i7,  i8 , i9,  i10,  i11)),
         consistencia_2 = mean(c(i12 , i13 ,i14 , i15 , i16 , i17 , i18 , i19 , i20 , i21 , i22)),
         consistencia_3 = mean(c(i23 , i24 , i25 , i26 , i27 , i28 , i29 , i30 , i31 , i32 , i33)),
         consistencia_4 = mean(c(i34 , i35 ,i36 , i37 , i38 , i39 , i40 , i41 , i42 , i43 , i44)),
         desemp_acade = mean(c(i45 , i46 , i47 , i48))) %>% 
  select(desemp_acade, consistencia_1, consistencia_2, consistencia_3, consistencia_4) %>% 
  mutate(consistencia_1 = round(consistencia_1, 2),
         consistencia_2 = round(consistencia_2, 2),
         consistencia_3 = round(consistencia_3, 2),
         consistencia_4 = round(consistencia_4, 2),
         desemp_acade = round(desemp_acade, 2)) %>% 
  mutate(desemp_acade = ifelse(yazmin_tidyed >= 3, 1, 2))
Error: Problem with `mutate()` input `desemp_acade`.
x Input `desemp_acade` can't be recycled to size 1.
ℹ Input `desemp_acade` is `ifelse(yazmin_tidyed >= 3, 1, 2)`.
ℹ Input `desemp_acade` must be size 1, not 600.
ℹ Did you mean: `desemp_acade = list(ifelse(yazmin_tidyed >= 3, 1, 2))` ?
ℹ The error occurred in row 1.
Run `rlang::last_error()` to see where the error occurred.

Estadística inferencial

summary(yazmin_GLM)

Call:
glm(formula = desemp_acade ~ consistencia_1 + consistencia_2 + 
    consistencia_3 + consistencia_4, family = "binomial", data = yazmin_tidyed)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.5147  -0.5931   0.2523   0.6820   2.1164  

Coefficients:
               Estimate Std. Error z value Pr(>|z|)    
(Intercept)    -11.7987     1.0142 -11.633  < 2e-16 ***
consistencia_1   1.0729     0.2126   5.047 4.48e-07 ***
consistencia_2   1.1639     0.2180   5.338 9.40e-08 ***
consistencia_3   1.0335     0.2222   4.652 3.29e-06 ***
consistencia_4   0.9973     0.2226   4.480 7.46e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 801.60  on 599  degrees of freedom
Residual deviance: 508.15  on 595  degrees of freedom
AIC: 518.15

Number of Fisher Scoring iterations: 5

Evaluacíon del modelo

anova(yazmin_GLM, test = "Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: desemp_acade

Terms added sequentially (first to last)

               Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
NULL                             599     801.60              
consistencia_1  1  161.756       598     639.84 < 2.2e-16 ***
consistencia_2  1   76.460       597     563.38 < 2.2e-16 ***
consistencia_3  1   33.309       596     530.07 7.862e-09 ***
consistencia_4  1   21.921       595     508.15 2.841e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCiMgQ3JlYW5kbyBlbCBhbWJpZW50ZQoKYGBge3J9CgpgYGAKCiMgQ2FyZ2FuZG8gbG9zIGRhdG9zCgpgYGB7cn0KeWF6bWluIDwtIAogIHJlYWRfY3N2KCJkYXRhL3lhem1pbi5jc3YiKQpgYGAKCm1pcmFyIGVsIG1vZGVsbwoKYGBge3J9Cllhem1pbk1vZGVsIDwtIAogICJjMCA9fiBpMSArIGkyICtpMyArIGk0ICsgaTUgKyBpNiArIGk3ICsgaTggKyBpOSArIGkxMCArIGkxMQogICBjMSA9fiBpMTIgKyBpMTMgK2kxNCArIGkxNSArIGkxNiArIGkxNyArIGkxOCArIGkxOSArIGkyMCArIGkyMSArIGkyMgogICBjMiA9fiBpMjMgKyBpMjQgKyBpMjUgKyBpMjYgKyBpMjcgKyBpMjggKyBpMjkgKyBpMzAgKyBpMzEgKyBpMzIgKyBpMzMKICAgYzMgPX4gaTM0ICsgaTM1ICtpMzYgKyBpMzcgKyBpMzggKyBpMzkgKyBpNDAgKyBpNDEgKyBpNDIgKyBpNDMgKyBpNDQKICAgcmVuZF9hYyA9fiBpNDUgKyBpNDYgKyBpNDcgKyBpNDgKICAgcmVuZF9hYyA9fiBjMCArIGMxICsgYzIgKyBjMwogICAiCmBgYAoKIyBBbsOhbGlzaXMgZGVzY3JpcHRpdm8KCk5lY2VzaXRhbW9zIGNvbmZpcm1hciBzaSBsYXMgdmFyaWFibGVzIG1hbmlmaWVzdGFzIGNvbnN0cnV5ZW4gbGFzIHZhcmlhYmxlcyBsYXRlbnRlcy4KCiMjIENvbnNpc3RlYW5jaWEgMQoKUG9yIG1lZGlvIGRlbCBDcm9uYmFjaCBBbHBoYS4KCmBgYHtyfQpSY21kck1pc2M6OnJlbGlhYmlsaXR5KGNvdihlbHZpYSAlPiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2VsZWN0KGkxLCBpMiwgaTMsICBpNCwgIGk1LCAgaTYsICBpNywgIGk4ICwgaTksICBpMTAsICBpMTEpLCAKICAgICAgICAgICAgICAgICAgICAgICAgICAgdXNlID0iY29tcGxldGUub2JzIikpCgpgYGAKCk1heW9yIGEgMC43IGxhcyB2YXJpYWJsZXMgbWFuZmllc3RhcyBwYXJhIGFjb21vZGFkb3Igc29uIGNvbmZpYWJsZXMuCgojIyBDb25zaXN0ZW5jaWEgMgoKYGBge3J9ClJjbWRyTWlzYzo6cmVsaWFiaWxpdHkoY292KHlhem1pbiAlPiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2VsZWN0KGkxMiAsIGkxMyAsaTE0ICwgaTE1ICwgaTE2ICwgaTE3ICwgaTE4ICwgaTE5ICwgaTIwICwgaTIxICwgaTIyKSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHVzZSA9ImNvbXBsZXRlLm9icyIpKQoKYGBgCgojIyBDb25zaXN0ZW5jaWEgMwoKYGBge3J9ClJjbWRyTWlzYzo6cmVsaWFiaWxpdHkoY292KHlhem1pbiAlPiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2VsZWN0KGkyMyAsIGkyNCAsIGkyNSAsIGkyNiAsIGkyNyAsIGkyOCAsIGkyOSAsIGkzMCAsIGkzMSAsIGkzMiAsIGkzMyksIAogICAgICAgICAgICAgICAgICAgICAgICAgICB1c2UgPSJjb21wbGV0ZS5vYnMiKSkKYGBgCgojIyBDb25zaXN0ZW5jaWEgNAoKYGBge3J9ClJjbWRyTWlzYzo6cmVsaWFiaWxpdHkoY292KHlhem1pbiAlPiUgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2VsZWN0KGkzNCAsIGkzNSAsaTM2ICwgaTM3ICwgaTM4ICwgaTM5ICwgaTQwICwgaTQxICwgaTQyICwgaTQzICwgaTQ0KSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHVzZSA9ImNvbXBsZXRlLm9icyIpKQoKYGBgCiMjIFJlbmRpbWllbnRvIEFjYWTDqW1pY28KCmBgYHtyfQoKUmNtZHJNaXNjOjpyZWxpYWJpbGl0eShjb3YoeWF6bWluICU+JSAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZWxlY3QoaTQ1ICwgaTQ2ICwgaTQ3ICwgaTQ4KSwgCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHVzZSA9ImNvbXBsZXRlLm9icyIpKQpgYGAKCiMgVHJhbmZvcm1hbW9zIGxhcyB2YXJpYWJsZXMKCmBgYHtyfQp5YXptaW5fdGlkeWVkIDwtIAogIHlhem1pbiAlPiUgCiAgcm93d2lzZSgpICU+JSAKICBtdXRhdGUoY29uc2lzdGVuY2lhXzEgPSBtZWFuKGMoaTEsIGkyLCBpMywgIGk0LCAgaTUsICBpNiwgIGk3LCAgaTggLCBpOSwgIGkxMCwgIGkxMSkpLAogICAgICAgICBjb25zaXN0ZW5jaWFfMiA9IG1lYW4oYyhpMTIgLCBpMTMgLGkxNCAsIGkxNSAsIGkxNiAsIGkxNyAsIGkxOCAsIGkxOSAsIGkyMCAsIGkyMSAsIGkyMikpLAogICAgICAgICBjb25zaXN0ZW5jaWFfMyA9IG1lYW4oYyhpMjMgLCBpMjQgLCBpMjUgLCBpMjYgLCBpMjcgLCBpMjggLCBpMjkgLCBpMzAgLCBpMzEgLCBpMzIgLCBpMzMpKSwKICAgICAgICAgY29uc2lzdGVuY2lhXzQgPSBtZWFuKGMoaTM0ICwgaTM1ICxpMzYgLCBpMzcgLCBpMzggLCBpMzkgLCBpNDAgLCBpNDEgLCBpNDIgLCBpNDMgLCBpNDQpKSwKICAgICAgICAgZGVzZW1wX2FjYWRlID0gbWVhbihjKGk0NSAsIGk0NiAsIGk0NyAsIGk0OCkpKSAlPiUgCiAgc2VsZWN0KGRlc2VtcF9hY2FkZSwgY29uc2lzdGVuY2lhXzEsIGNvbnNpc3RlbmNpYV8yLCBjb25zaXN0ZW5jaWFfMywgY29uc2lzdGVuY2lhXzQpICU+JSAKICBtdXRhdGUoY29uc2lzdGVuY2lhXzEgPSByb3VuZChjb25zaXN0ZW5jaWFfMSwgMiksCiAgICAgICAgIGNvbnNpc3RlbmNpYV8yID0gcm91bmQoY29uc2lzdGVuY2lhXzIsIDIpLAogICAgICAgICBjb25zaXN0ZW5jaWFfMyA9IHJvdW5kKGNvbnNpc3RlbmNpYV8zLCAyKSwKICAgICAgICAgY29uc2lzdGVuY2lhXzQgPSByb3VuZChjb25zaXN0ZW5jaWFfNCwgMiksCiAgICAgICAgIGRlc2VtcF9hY2FkZSA9IHJvdW5kKGRlc2VtcF9hY2FkZSwgMikpICU+JSAKICBtdXRhdGUoZGVzZW1wX2FjYWRlID0gaWZlbHNlKGRlc2VtcF9hY2FkZSA8IDMsIDAsIDEpKQpgYGAKCiMgRXN0YWTDrXN0aWNhIGluZmVyZW5jaWFsCgpgYGB7cn0KeWF6bWluX0dMTSA8LSAKICBnbG0oZGVzZW1wX2FjYWRlIH4gY29uc2lzdGVuY2lhXzEgKyBjb25zaXN0ZW5jaWFfMiArIGNvbnNpc3RlbmNpYV8zICsgY29uc2lzdGVuY2lhXzQsIAogICAgICBkYXRhID0geWF6bWluX3RpZHllZCwgCiAgICAgIGZhbWlseSA9ICJiaW5vbWlhbCIpCnN1bW1hcnkoeWF6bWluX0dMTSkKYGBgCgojIEV2YWx1YWPDrW9uIGRlbCBtb2RlbG8gCgpgYGB7cn0KYW5vdmEoeWF6bWluX0dMTSwgdGVzdCA9ICJDaGlzcSIpCmBgYAoK