Calcular probabilidades y probabilidades acumuladas bajo la fórmula de distribución de Poisson.
Realizar distribuciones de probabilidad conforme a la distribución de probabilidad de Poisson a partir devalores iniciales dado en cada ejercicio.
Se generan las tablas de probabilidad conforme a distribución Poisson, se identifican los valores de probabilidad cuando la variable discreta \(x\) tenga algún exactamente algún valor, ≤ a algún valor o > o ≥, entre otros.
Se utilizan las funciones dpois() para la función de probabilidad o densidad y ppois() para la probabilidad acumulada.
También se utiliza la función f.prob.poisson() que ha sido programada con anticipación y calcula la probabilidad de un valor de variable aleatoria discreta. Esta función se encuentra en el enlace: https://github.com/rpizarrog/probabilidad-y-estad-stica/blob/master/funciones/funciones.distribuciones.r
Pendiente
El desarrollo de los ejercicios comienza con la carga de librerías luego una serie de ejercicios relacionados con la distribución de Poisson, de cada uno de ellos se muestra la tabla de probabilidad se calculan algunas de sus probabilidades y se determina la esperanza, la varianza y las desviaciones. Al final se busca la interpretación de cada ejercicio.
Para nuevas librerías se requiere instalar con anticipación, ejemplo, install.packages(“cowplot”).
library(dplyr)
library(ggplot2)
library(mosaic) # Gráficos de distribuciones
library(cowplot) #Imágenes en el mismo renglón
options(scipen=999) # Notación normal
# options(scipen=1) # Notación científica
#source("../funciones/funciones.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")
Se describen ejercicios en donde se encuentra la función de distribución
Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.(anderson_estadistica_2008?)
Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.
Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10;
Aquí la variable aleatoria es \(x\) número de automóviles que llegan en un lapso de 15 minutos.
Valores iniciales
x <- 0:30 # Valores de variables aleatorias
media <- 10 # Llegada de automóviles
Se construye la tabla con la función cargada del enlace: https://github.com/rpizarrog/probabilidad-y-estad-stica/blob/master/funciones/funciones.distribuciones.r
tabla1 <- data.frame(x=x, f.prob.x = f.prob.poisson(media, x))
tabla1 <- cbind(tabla1, f.acum.x = cumsum(tabla1$f.prob.x))
tabla1
## x f.prob.x f.acum.x
## 1 0 0.0000453999298 0.00004539993
## 2 1 0.0004539992976 0.00049939923
## 3 2 0.0022699964881 0.00276939572
## 4 3 0.0075666549604 0.01033605068
## 5 4 0.0189166374010 0.02925268808
## 6 5 0.0378332748021 0.06708596288
## 7 6 0.0630554580035 0.13014142088
## 8 7 0.0900792257192 0.22022064660
## 9 8 0.1125990321490 0.33281967875
## 10 9 0.1251100357211 0.45792971447
## 11 10 0.1251100357211 0.58303975019
## 12 11 0.1137363961101 0.69677614630
## 13 12 0.0947803300918 0.79155647639
## 14 13 0.0729079462244 0.86446442262
## 15 14 0.0520771044460 0.91654152707
## 16 15 0.0347180696307 0.95125959670
## 17 16 0.0216987935192 0.97295839022
## 18 17 0.0127639961878 0.98572238640
## 19 18 0.0070911089932 0.99281349540
## 20 19 0.0037321626280 0.99654565802
## 21 20 0.0018660813140 0.99841173934
## 22 21 0.0008886101495 0.99930034949
## 23 22 0.0004039137043 0.99970426319
## 24 23 0.0001756146541 0.99987987785
## 25 24 0.0000731727725 0.99995305062
## 26 25 0.0000292691090 0.99998231973
## 27 26 0.0000112573496 0.99999357708
## 28 27 0.0000041693887 0.99999774647
## 29 28 0.0000014890674 0.99999923553
## 30 29 0.0000005134715 0.99999974900
## 31 30 0.0000001711572 0.99999992016
Se construye la tabla2 con las funciones dpois() y ppois() , los valores deben ser los mismos que la tabla1.
tabla2 <- data.frame(x=x, f.prob.x = dpois(x = x, lambda = media))
tabla2 <- cbind(tabla2, f.acum.x = ppois(q = x, lambda = media))
tabla2
## x f.prob.x f.acum.x
## 1 0 0.0000453999298 0.00004539993
## 2 1 0.0004539992976 0.00049939923
## 3 2 0.0022699964881 0.00276939572
## 4 3 0.0075666549604 0.01033605068
## 5 4 0.0189166374010 0.02925268808
## 6 5 0.0378332748021 0.06708596288
## 7 6 0.0630554580035 0.13014142088
## 8 7 0.0900792257192 0.22022064660
## 9 8 0.1125990321490 0.33281967875
## 10 9 0.1251100357211 0.45792971447
## 11 10 0.1251100357211 0.58303975019
## 12 11 0.1137363961101 0.69677614630
## 13 12 0.0947803300918 0.79155647639
## 14 13 0.0729079462244 0.86446442262
## 15 14 0.0520771044460 0.91654152707
## 16 15 0.0347180696307 0.95125959670
## 17 16 0.0216987935192 0.97295839022
## 18 17 0.0127639961878 0.98572238640
## 19 18 0.0070911089932 0.99281349540
## 20 19 0.0037321626280 0.99654565802
## 21 20 0.0018660813140 0.99841173934
## 22 21 0.0008886101495 0.99930034949
## 23 22 0.0004039137043 0.99970426319
## 24 23 0.0001756146541 0.99987987785
## 25 24 0.0000731727725 0.99995305062
## 26 25 0.0000292691090 0.99998231973
## 27 26 0.0000112573496 0.99999357708
## 28 27 0.0000041693887 0.99999774647
## 29 28 0.0000014890674 0.99999923553
## 30 29 0.0000005134715 0.99999974900
## 31 30 0.0000001711572 0.99999992016
Con la función ggplot() se hace la curva de la distribución, en rojo los puntos y en azul la curva o linea con cualquiera de las dos tablas, tabla1 o tabla2.
En g1 se construye la gráfica de densidad P(x) y en g2 se construye la gráfica de a probabilidad acumulada F(x). Las dos gráficas se construyen.
g1 <- ggplot(data = tabla2, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función de densidad P(x)")
#g1
g2 <- ggplot(data = tabla2, aes(x,f.acum.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función acumulada F(x)")
#g2
plot_grid(g1, g2)
Si la administración desea saber la probabilidad de que lleguen exactamente 5 automóviles en 15 minutos, P(x=5).
Utlizando la función f.prob.poisson() creada que se encuentra en el enlace https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r y calcula la función de probabilidad conforme a la fórmula.
x <- 5
prob <- round(f.prob.poisson(media, x),8)
paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de : 0.03783327"
prob2 <- round(dpois(x = x, lambda = media),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de : 0.0378"
P(x≤10)=P(x=0)+P(x=1)+P(x=2)+P(x=3)+…+P(x=10) o la probabilidad acumulada hasta 10 F(x=10)
tabla1$f.acum[10+1]
## [1] 0.5830398
paste("La probabilidad de que el valor de x sea menor o igual a 10 es: ", tabla1$f.acum[10+1], " o ", round(tabla1$f.acum[10+1] * 100,4), "%" )
## [1] "La probabilidad de que el valor de x sea menor o igual a 10 es: 0.583039750192986 o 58.304 %"
Con ppois() que determina el valor acumulado
ppois(q = 10, lambda = media)
## [1] 0.5830398
con la función sum() y dpois()
sum(dpois(x = 0:10, lambda = media))
## [1] 0.5830398
En el ejemplo anterior se usó un lapso de 15 minutos, pero también se usan otros lapsos. Suponga que desea calcular la probabilidad de una llegada en un lapso de 3 minutos.
Regla de tres:
\[ 10=15 \]
\[ ?=3 \]
media <- (3 * 10) / 15
media
## [1] 2
Entonces, la probabilidad de x llegadas en un lapso de 3 minutos tiene una media μ=2 está dada por la siguiente nueva función de probabilidad de Poisson.
\[f(x) = \frac{{e^{ - 2} 2^x }}{{x!}}\]
Entonces nueva probabilidad para cuando x=5.
prob <- round(dpois(x = 5, lambda = 2),4)
paste("La probabilidad cuando x = 5 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 5 y media igual a 2 es del: 3.61 %"
La esperanza o valor esperado es igual a: 10 dado los valores iniciales del ejercicio
La varianza es 10 y la desviación estándard es: 3.1623
Durante este ejercicio pudimos ver cual era la probabilidad de que un \(x\) número de automóviles llegaran en un lapso de 15 minutos, también se tiene que tener a consideración que el promedio con el que se va a trabajar durante la primer parte del ejercicio es de 10. Como se puede ver con nuestro valor esperado, la mayor probabilidad es que lleguen 9 o 10 automóviles en un lapso de 15 minutos. El hecho de que la probabilidad sea igual con 9 o 10 carros es debido a que incluso con nuestro valor esperado, contamos con una desviación estándar del 3.16 aproximadamente. Ya después en el ejercicio se obtuvieron probabilidades para 5 automóviles y para menos de 10 o el propio 10. Después de eso se cambió la media de automóviles y se obtuvieron otras probabilidades.
En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es 0.005 y los accidentes son independientes entre sí (walpole_probabilidad_2012?).
La variable media es el números de accidentes promedio por dia. x será los valores de la variable aleatoria.
Valores iniciales
n <- 365 # Dias del año
prob <- 0.005
media <- n * prob # media al año
media <- round(media, 0)
media
## [1] 2
x <- 0:10
La media es 2
La variable aleatoria son los dias desde x=1…hasta x=n
La tabla de distribución de probablidad de Poisson con media igual a 2 usando dpois() y cumsum()
tabla <- data.frame(x=x, f.prob.x = round(dpois(x = x, lambda = media),4))
tabla <- cbind(tabla, f.acum.x = cumsum(tabla$f.prob.x))
tabla
## x f.prob.x f.acum.x
## 1 0 0.1353 0.1353
## 2 1 0.2707 0.4060
## 3 2 0.2707 0.6767
## 4 3 0.1804 0.8571
## 5 4 0.0902 0.9473
## 6 5 0.0361 0.9834
## 7 6 0.0120 0.9954
## 8 7 0.0034 0.9988
## 9 8 0.0009 0.9997
## 10 9 0.0002 0.9999
## 11 10 0.0000 0.9999
Se construyen tanto la gráfica de densidad (lado izquierdo) como la gráfica de función acumulada (lado derecho).
g1 <- ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función de densidad P(x)")
#g1
g2 <- ggplot(data = tabla, aes(x,f.acum.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función acumulada F(x)")
#g2
plot_grid(g1, g2)
¿Cuál es la probabilidad de que en cualquier periodo dado habrá un accidente en un día?
P(x=1)
Recorddar que el índice de la tabla empieza en el valor cero de tal forma que se necesita el siguiente valor x+1 en la tabla:
x <- 1
prob <- tabla$f.prob.x[x+1]
paste("La probabiidad del valor de x=1 es: ", prob)
## [1] "La probabiidad del valor de x=1 es: 0.2707"
o mediante la función dpois() y
dpois(x = 1, lambda = media)
## [1] 0.2706706
¿Cuál es la probabilidad de que haya a lo más tres días con un accidente?
x <- 3
prob <- tabla$f.acum.x[x+1]
paste("La probabiidad del valor de x<=3 es: ", prob)
## [1] "La probabiidad del valor de x<=3 es: 0.8571"
Función acumulada F(x=3) o lo que es lo mismo P(x=0)+P(x=1)+P(x=2)+P(x=3)
ppois(q = 3, lambda = media)
## [1] 0.8571235
Durante este ejercicio pudimos ver las probabilidades de los accidentes en una industria, los cuales ocurren con muy poca frecuencia; la probabilidad de que ocurra un accidente es de 0.005 y son independientes entre si. Haciendo la tabla de distribución de Poisson con una media de 2, podemos notar que nuestra probabilidad máxima esta entre 1 y 2 accidentes, ya que cuentan con una probabilidad del 27.07% de que sucedan. Posteriormente en el ejercicio se obtuvieron las probabilidades para 3 o menos y nos percatamos de que la probabilidad es de 85.71%, es decir, que con una gran posibilidad no habrán más de 3 accidentes, que aunque puede haberlos, su probabilidad es muy baja.
Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con λ=5 (walpole_probabilidad_2012?).
Se construye la tabla de distribución de veinte valores en variable aleatoria y media igual a cinco.
x <- 0:20
media <- 5
tabla <- data.frame(x=x, f.prob.x = round(dpois(x = x, lambda = media),8), f.acum.x = round(ppois(q = x, lambda = media), 8))
tabla
## x f.prob.x f.acum.x
## 1 0 0.00673795 0.00673795
## 2 1 0.03368973 0.04042768
## 3 2 0.08422434 0.12465202
## 4 3 0.14037390 0.26502592
## 5 4 0.17546737 0.44049329
## 6 5 0.17546737 0.61596065
## 7 6 0.14622281 0.76218346
## 8 7 0.10444486 0.86662833
## 9 8 0.06527804 0.93190637
## 10 9 0.03626558 0.96817194
## 11 10 0.01813279 0.98630473
## 12 11 0.00824218 0.99454691
## 13 12 0.00343424 0.99798115
## 14 13 0.00132086 0.99930201
## 15 14 0.00047174 0.99977375
## 16 15 0.00015725 0.99993099
## 17 16 0.00004914 0.99998013
## 18 17 0.00001445 0.99999458
## 19 18 0.00000401 0.99999860
## 20 19 0.00000106 0.99999965
## 21 20 0.00000026 0.99999992
Se visualizan la gráficas
g1 <- ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función de densidad P(x)")
#g1
g2 <- ggplot(data = tabla, aes(x,f.acum.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función acumulada F(x)")
#g2
plot_grid(g1, g2)
¿Cuál es la probabilidad de que, a lo más, 3 automóviles por año sufran una catástrofe?
\[P(X \leq 3)\]
\[P(X=0) + P(X=1) + P(X=2) + P(X=3)\]
x <- 3
prob <- tabla$f.acum.x[x+1]
paste("La probabiidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabiidad del valor de x<=3 es: 26.5026 %"
o por medio de la función ppois()
ppois(q = 3, lambda = media)
## [1] 0.2650259
¿Cuál es la probabilidad de que más de 1 automóvil por año experimente una catástrofe?
\[1 - F(X \leq 1)\]
\[1 - (P(X=0) + P(x=1))\]
x <- 1
prob <- 1 - tabla$f.acum.x[x+1]
paste("La probabiidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabiidad del valor de x>1 es: 95.9572 %"
o bien con la función ppois() y la opción lower.tail = FALSE
ppois(q = x, lambda = media, lower.tail = FALSE)
## [1] 0.9595723
Durante este ejercicio se pudieron ver las probabilidades de falla de un freno en unos automóviles de un modelo específico, para obtener las probabilidades se trabajó con una media de 5. Al obtener la tabla de distribuciones de Poisson nos podemos dar cuenta que las probabilidades más altas concuerdan bastante con la media, ya que las probabilidades más altas son 4 y 5, con una probabilidad de 17.54% aproximadamente. Después en el ejercicio se vieron las probabilidades de que las fallas se presentaran en menos de 3 carros o en 3 carros y su probabilidad fue algo baja con un 26.5% de probabilidades. Para finalizar se obtuvo la probabilidad de que fuera más de uno, obteniendo 95.95% de posibilidades, esto significa que es muy probable que más de un carro presente la falla.
Supóngase que se está investigando la seguridad de un crucero muy peligroso. Los archivos de la policía indican una media de cinco λ=5 accidentes por mes en el crucero.
El número de accidentes está distribuido conforme a la distribución de Poisson, y la división de seguridad en carreteras quiere calcular la probabilidad de exactamente 0,1,2,3 y 4 accidentes en un mes determinado (gestiopolis, n.d.).
Valores iniciales
x <- 0:10
media <- 5
Construyendo los valores de la tabla de distribución P(x=0,1,2…10). Para responder a la pregunta del ejercicio, solo interesan solo los valores P(0), P(1), P(2), P(3), P(4)
tabla <- data.frame(x = x, f.prob.x = dpois(x = x, lambda = media), f.acum.x = ppois(q = x, lambda = media))
tabla
## x f.prob.x f.acum.x
## 1 0 0.006737947 0.006737947
## 2 1 0.033689735 0.040427682
## 3 2 0.084224337 0.124652019
## 4 3 0.140373896 0.265025915
## 5 4 0.175467370 0.440493285
## 6 5 0.175467370 0.615960655
## 7 6 0.146222808 0.762183463
## 8 7 0.104444863 0.866628326
## 9 8 0.065278039 0.931906365
## 10 9 0.036265577 0.968171943
## 11 10 0.018132789 0.986304731
Se construyen las gráficas de densidad o valores de probabilidad de cada variable aleatoria discreta y la función de la probabilidad acumulada respectivamente.
g1 <- ggplot(data = tabla, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función de densidad P(x)")
#g1
g2 <- ggplot(data = tabla, aes(x,f.acum.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue') +
ggtitle("Función acumulada F(x)")
#g2
plot_grid(g1, g2)
Durante este ejercicio se evaluó la seguridad de un crucero muy peligroso, en el cual acorde a los archivos de la policía suceden aproximadamente 5 accidentes al mes en el crucero. Aunque se obtuvieron las probabilidades de Poisson para 10 accidentes en el crucero, las que nos importan son las probabilidades de 0 a 4 accidentes. La probabilidad de que ocurran 0 accidentes es del 0.67% aproximadamente. La probabilidad de que ocurra 1 accidente es del 3.3%. La probabilidad de que ocurran 2 accidentes es alrededor del 8.4%. La posibilidad de que ocurran 3 accidentes es del 14.03%. La probabilidad de que ocurran 4 accidentes es del 17.54% aproximadamente, la cual es la misma probabilidad que 5 accidentes, siendo estas ultimas las más altas de la distribución.
Supóngase que en un hotel donde descansan sufridos cazadores de elefantes ocurren de manera aleatoria e independiente dos accidentes de caídas con rompimiento de cadera por semana. Determinar la probabilidad de que ocurra un accidente en una semana (Quintela 2019b).λ=2 se necesita calcular P(x=1)
paste("La probabilidad de ocurra un accidente en una semana es : ", dpois(x = 1, lambda = 2) ," o ", round(dpois(x = 1, lambda = 2) * 100, 2), "%")
## [1] "La probabilidad de ocurra un accidente en una semana es : 0.270670566473225 o 27.07 %"
Durante este corto ejercicio se vio como unos cazadores de elefantes descansaban en un hotel luego de sufrir accidentes de caída con rompimiento de cadera por semana, cabe recalcar que los accidentes fueron independientes entre si. Para este ejercicio se trabajó con una media de 2 y se calculo la posibilidad de que ocurra un solo accidente en una semana, la probabilidad fue del 27.07%. Esto implica que el que ocurran 0 o más de 1 accidentes es del 72.93% aproximadamente.
Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia Brasil Corea España Estados Unidos Japón México Reino Unido Singapur: Cengage Learning,.
gestiopolis. n.d. “¿Qué Es La Distribución de Poisson?” https://www.gestiopolis.com/que-es-la-distribucion-de-poisson/.
Mendenhall, William, Robert J. Beaver, and Barbara M. Beaver. 2010. Introducción a La Probabilidad y Estadística. 13th ed. Cengage Learning Editores, S.A. de C.V.,.
Quintela, Alejandro. 2019a. Estadística básica Edulcorada. https://bookdown.org/aquintela/EBE/.
———. 2019b. Estadística básica Edulcorada. https://bookdown.org/aquintela/EBE/.
Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.