1 Objetivo

Calcular probabilidades y probabilidades acumuladas bajo la fórmula de distribución de Poisson.

2 Descripción

Realizar distribuciones de probabilidad conforme a la distribución de probabilidad de Poisson a partir devalores iniciales dado en cada ejercicio.

Se generan las tablas de probabilidad conforme a distribución Poisson, se identifican los valores de probabilidad cuando la variable discreta \(x\) tenga algún exactamente algún valor, ≤ a algún valor o > o ≥, entre otros.

Se utilizan las funciones dpois() para la función de probabilidad o densidad y ppois() para la probabilidad acumulada.

También se utiliza la función f.prob.poisson() que ha sido programada con anticipación y calcula la probabilidad de un valor de variable aleatoria discreta. Esta función se encuentra en el enlace: https://github.com/rpizarrog/probabilidad-y-estad-stica/blob/master/funciones/funciones.distribuciones.r

3 Desarrollo

El desarrollo de los ejercicios comienza con la carga de librerías luego una serie de ejercicios relacionados con la distribución de Poisson, de cada uno de ellos se muestra la tabla de probabilidad se calculan algunas de sus probabilidades y se determina la esperanza, la varianza y las desviaciones. Al final se busca la interpretación de cada ejercicio.

3.1 Cargar librerías

Para nuevas librerías se requiere instalar con anticipación, ejemplo, install.packages(“cowplot”).

library(dplyr)
library(ggplot2)
library(mosaic) # Gráficos de distribuciones
## Warning: package 'mosaic' was built under R version 4.0.5
library(cowplot) #Imágenes en el mismo renglón
## Warning: package 'cowplot' was built under R version 4.0.5
options(scipen=999) # Notación normal

# options(scipen=1) # Notación científica

3.2 Cargar funciones

#source("../funciones/funciones.distribuciones.r")

# o

source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")

3.3 Ejercicios

Se describen ejercicios en donde se encuentra la función de distribución

  • Llegada de automóviles a rampa de un cajero

3.3.1 Llegadas de automóviles a rampa de un cajero

Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.(anderson_estadistica_2008?)

Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.

Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10;

Aquí la variable aleatoria es \(x\) número de automóviles que llegan en un lapso de 15 minutos.

3.3.1.1 Tabla de probabilidad

Valores iniciales

x <- 0:30 # Valores de variables aleatorias
media <- 10 # Llegada de automóviles

Se construye la tabla con la función cargada del enlace: https://github.com/rpizarrog/probabilidad-y-estad-stica/blob/master/funciones/funciones.distribuciones.r

tabla1 <- data.frame(x=x, f.prob.x = f.prob.poisson(media, x))

tabla1 <- cbind(tabla1, f.acum.x = cumsum(tabla1$f.prob.x))

tabla1
##     x        f.prob.x      f.acum.x
## 1   0 0.0000453999298 0.00004539993
## 2   1 0.0004539992976 0.00049939923
## 3   2 0.0022699964881 0.00276939572
## 4   3 0.0075666549604 0.01033605068
## 5   4 0.0189166374010 0.02925268808
## 6   5 0.0378332748021 0.06708596288
## 7   6 0.0630554580035 0.13014142088
## 8   7 0.0900792257192 0.22022064660
## 9   8 0.1125990321490 0.33281967875
## 10  9 0.1251100357211 0.45792971447
## 11 10 0.1251100357211 0.58303975019
## 12 11 0.1137363961101 0.69677614630
## 13 12 0.0947803300918 0.79155647639
## 14 13 0.0729079462244 0.86446442262
## 15 14 0.0520771044460 0.91654152707
## 16 15 0.0347180696307 0.95125959670
## 17 16 0.0216987935192 0.97295839022
## 18 17 0.0127639961878 0.98572238640
## 19 18 0.0070911089932 0.99281349540
## 20 19 0.0037321626280 0.99654565802
## 21 20 0.0018660813140 0.99841173934
## 22 21 0.0008886101495 0.99930034949
## 23 22 0.0004039137043 0.99970426319
## 24 23 0.0001756146541 0.99987987785
## 25 24 0.0000731727725 0.99995305062
## 26 25 0.0000292691090 0.99998231973
## 27 26 0.0000112573496 0.99999357708
## 28 27 0.0000041693887 0.99999774647
## 29 28 0.0000014890674 0.99999923553
## 30 29 0.0000005134715 0.99999974900
## 31 30 0.0000001711572 0.99999992016

Se construye la tabla2 con las funciones dpois() y ppois() , los valores deben ser los mismos que la tabla1.

tabla2 <- data.frame(x=x, f.prob.x = dpois(x = x, lambda = media))

tabla2 <- cbind(tabla2, f.acum.x = ppois(q = x, lambda = media))

tabla2
##     x        f.prob.x      f.acum.x
## 1   0 0.0000453999298 0.00004539993
## 2   1 0.0004539992976 0.00049939923
## 3   2 0.0022699964881 0.00276939572
## 4   3 0.0075666549604 0.01033605068
## 5   4 0.0189166374010 0.02925268808
## 6   5 0.0378332748021 0.06708596288
## 7   6 0.0630554580035 0.13014142088
## 8   7 0.0900792257192 0.22022064660
## 9   8 0.1125990321490 0.33281967875
## 10  9 0.1251100357211 0.45792971447
## 11 10 0.1251100357211 0.58303975019
## 12 11 0.1137363961101 0.69677614630
## 13 12 0.0947803300918 0.79155647639
## 14 13 0.0729079462244 0.86446442262
## 15 14 0.0520771044460 0.91654152707
## 16 15 0.0347180696307 0.95125959670
## 17 16 0.0216987935192 0.97295839022
## 18 17 0.0127639961878 0.98572238640
## 19 18 0.0070911089932 0.99281349540
## 20 19 0.0037321626280 0.99654565802
## 21 20 0.0018660813140 0.99841173934
## 22 21 0.0008886101495 0.99930034949
## 23 22 0.0004039137043 0.99970426319
## 24 23 0.0001756146541 0.99987987785
## 25 24 0.0000731727725 0.99995305062
## 26 25 0.0000292691090 0.99998231973
## 27 26 0.0000112573496 0.99999357708
## 28 27 0.0000041693887 0.99999774647
## 29 28 0.0000014890674 0.99999923553
## 30 29 0.0000005134715 0.99999974900
## 31 30 0.0000001711572 0.99999992016

3.3.1.2 Gráfica de probabilidad

Con la función ggplot() se hace la curva de la distribución, en rojo los puntos y en azul la curva o linea con cualquiera de las dos tablas, tabla1 o tabla2.

En g1 se construye la gráfica de densidad \(P(x)\) y en g2 se construye la gráfica de a probabilidad acumulada \(F(x)\). Las dos gráficas se construyen.

g1 <- ggplot(data = tabla2, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue') +
  ggtitle("Función de densidad P(x)")
#g1

g2 <- ggplot(data = tabla2, aes(x,f.acum.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue') +
  ggtitle("Función acumulada F(x)")
#g2

plot_grid(g1, g2)

3.3.1.3 Probabilidad de que lleguen cinco

Si la administración desea saber la probabilidad de que lleguen exactamente \(5\) automóviles en 15 minutos, \(P(x=5)\).

Utlizando la función f.prob.poisson() creada que se encuentra en el enlace https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r y calcula la función de probabilidad conforme a la fórmula.

x <- 5

prob <- round(f.prob.poisson(media, x),8)

paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de :  0.03783327"
  • Utilizando la función dpois() del paquete base de R
prob2 <- round(dpois(x = x, lambda = media),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de :  0.0378"

3.3.1.4 Probabilidad de que sea x menor o igual a diez

\(P(x≤10)=P(x=0)+P(x=1)+P(x=2)+P(x=3)+…+P(x=10)\) o la probabilidad acumulada hasta \(10\) \(F(x=10)\)

tabla1$f.acum[10+1]
## [1] 0.5830398
paste("La probabilidad de que el valor de x sea menor o igual a 10 es: ", tabla1$f.acum[10+1], " o ", round(tabla1$f.acum[10+1] * 100,4), "%" )
## [1] "La probabilidad de que el valor de x sea menor o igual a 10 es:  0.583039750192986  o  58.304 %"

Con ppois() que determina el valor acumulado

ppois(q = 10, lambda = media)
## [1] 0.5830398

con la función sum() y dpois()

sum(dpois(x = 0:10, lambda = media))
## [1] 0.5830398

3.3.1.5 Probabilidad con media diferente

En el ejemplo anterior se usó un lapso de 15 minutos, pero también se usan otros lapsos. Suponga que desea calcular la probabilidad de una llegada en un lapso de 3 minutos.

Regla de tres:

\(10=15\)

\(?=3\)

media <- (3 * 10) / 15
media
## [1] 2

Entonces, la probabilidad de \(x\) llegadas en un lapso de 3 minutos tiene una media \(μ=2\) está dada por la siguiente nueva función de probabilidad de Poisson.

\(f(x)=\frac{e^{-2}2^x}{x!}\)

Entonces nueva probabilidad para cuando \(x=5\)

prob <- round(dpois(x = 5, lambda = 2),4)

paste("La probabilidad cuando x = 5 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 5 y media igual a 2 es del: 3.61 %"

3.3.1.6 Valor esperado

La esperanza o valor esperado es igual a: \(10\) dado los valores iniciales del ejercicio

3.3.1.7 Varianza y desviación

La varianza es 10 y la desviación estándard es: 3.1623

3.3.1.8 Interpretación

En este ejercicio de distribución de Poisson se quiere determinar la probabilidades y cantidades de llegadas de automóviles de clientes a la rampa de un sistema de cajero automático en un lapso de 15 minutos. Se considera una media de 10, y se pueden determinar las probabilidades de una variable aleatoria de valor finito que se comprende entre 0 y 30. Apreciando la gráfica derivada de la tabla de probabilidades de dicho ejercicio, se aprecia que conforme los valores se aproximan más a la media ya mencionada, la probabilidad de que llegue esa cantidad es más alta, lo contrario al respecto de si se alejan de esta. La probabilidad de que lleguen exactamente 5 automóviles en esos 15 minutos, a través de una función de poisson, se determinó que es de 0.037, o 3.7%. La probabilidad acumulada, en el caso de que lleguen 10 o menos automóviles, es del 0.583, o 58.3%. También se consideró la probabilidades de que llegaran automóviles en un lapso de 3 minutos únicamente, por lo que la media se cambió a 2.

3.3.2 Accidentes en industria

En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es \(0.005\) y los accidentes son independientes entre sí (walpole_probabilidad_2012?).

La variable media es el números de accidentes promedio por dia. \(x\) será los valores de la variable aleatoria.

3.3.2.1 Tabla de distribución

Valores iniciales

n <- 365 # Dias del año
prob <- 0.005

media <- n * prob   # media al año
media <- round(media, 0)
media
## [1] 2
x <- 0:10

La media es 2

La variable aleatoria son los dias desde \(x=1\) … hasta \(x=n\)

La tabla de distribución de probablidad de Poisson con media igual a 2 usando dpois() y cumsum()

tabla <- data.frame(x=x, f.prob.x = round(dpois(x = x, lambda = media),4))

tabla <- cbind(tabla, f.acum.x = cumsum(tabla$f.prob.x))

tabla
##     x f.prob.x f.acum.x
## 1   0   0.1353   0.1353
## 2   1   0.2707   0.4060
## 3   2   0.2707   0.6767
## 4   3   0.1804   0.8571
## 5   4   0.0902   0.9473
## 6   5   0.0361   0.9834
## 7   6   0.0120   0.9954
## 8   7   0.0034   0.9988
## 9   8   0.0009   0.9997
## 10  9   0.0002   0.9999
## 11 10   0.0000   0.9999

3.3.2.2 Gráfica de probabilidad

Se construyen tanto la gráfica de densidad (lado izquierdo) como la gráfica de función acumulada (lado derecho).

g1 <- ggplot(data = tabla, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue') +
  ggtitle("Función de densidad P(x)")
#g1

g2 <- ggplot(data = tabla, aes(x,f.acum.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue') +
  ggtitle("Función acumulada F(x)")
#g2

plot_grid(g1, g2)

3.3.2.3 Probabilidad de un accidente al dia

¿Cuál es la probabilidad de que en cualquier periodo dado habrá un accidente en un día?

  • \(P(x=1)\)

  • Recordar que el índice de la tabla empieza en el valor cero de tal forma que se necesita el siguiente valor x+1 en la tabla:

x <- 1
prob <- tabla$f.prob.x[x+1]
paste("La probabiidad del valor de x=1 es: ", prob)
## [1] "La probabiidad del valor de x=1 es:  0.2707"

o mediante la función dpois() y

dpois(x = 1, lambda = media)
## [1] 0.2706706

3.3.2.4 Probabilidad de tres o menos

¿Cuál es la probabilidad de que haya a lo más tres días con un accidente?

  • El indice en la tabla comienza en cero
x <- 3
prob <- tabla$f.acum.x[x+1]
paste("La probabiidad del valor de x<=3 es: ", prob)
## [1] "La probabiidad del valor de x<=3 es:  0.8571"

Función acumulada \(F(x=3)\) o lo que es lo mismo \(P(x=0)+P(x=1)+P(x=2)+P(x=3)\)

ppois(q = 3, lambda = media)
## [1] 0.8571235

3.3.2.5 Interpretación

En este ejercicio se considera que en distintas instalaciones industriales, siempre existe una probabilidad baja de que ocurra un accidente, siendo la probabilidad de que un accidente ocurra en un día dado sea de 0.005, o 0.5%. Considerando los 365 días del año, esto lleva a tener una media de 2 accidentes por año. Al realizar una tabla de probabilidad y observar la gráfica obtenida de ello, se puede notar que las probabilidades son más altas cuando se está más cerca de la media. Al obtener la probabilidad de que ocurra un accidente en un día cualquiera de todo año, se obtuvo un resultado de 0.2707, o 27.07% de probabilidades de que ocurra un accidente en un año. Después, al determinar las probabilidades de que ocurran tres o menos accidentes, se obtuvo un resultado de 0.8571, lo que se traduce como un 85.7% de probabilidades de que ocurran 3 o menos accidentes en un solo año.

3.3.3 Fabricante de automóviles

Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con \(λ=5\) (walpole_probabilidad_2012?).

3.3.3.1 La tabla de distribución cuando media igual a 5

Se construye la tabla de distribución de veinte valores en variable aleatoria y media igual a cinco.

x <- 0:20
media <- 5

tabla <- data.frame(x=x, f.prob.x = round(dpois(x = x, lambda = media),8), f.acum.x = round(ppois(q = x, lambda = media), 8))

tabla
##     x   f.prob.x   f.acum.x
## 1   0 0.00673795 0.00673795
## 2   1 0.03368973 0.04042768
## 3   2 0.08422434 0.12465202
## 4   3 0.14037390 0.26502592
## 5   4 0.17546737 0.44049329
## 6   5 0.17546737 0.61596065
## 7   6 0.14622281 0.76218346
## 8   7 0.10444486 0.86662833
## 9   8 0.06527804 0.93190637
## 10  9 0.03626558 0.96817194
## 11 10 0.01813279 0.98630473
## 12 11 0.00824218 0.99454691
## 13 12 0.00343424 0.99798115
## 14 13 0.00132086 0.99930201
## 15 14 0.00047174 0.99977375
## 16 15 0.00015725 0.99993099
## 17 16 0.00004914 0.99998013
## 18 17 0.00001445 0.99999458
## 19 18 0.00000401 0.99999860
## 20 19 0.00000106 0.99999965
## 21 20 0.00000026 0.99999992

3.3.3.2 Gráfica de probabilidades

Se visualizan la gráficas

g1 <- ggplot(data = tabla, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue') +
  ggtitle("Función de densidad P(x)")
#g1

g2 <- ggplot(data = tabla, aes(x,f.acum.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue') +
  ggtitle("Función acumulada F(x)")
#g2

plot_grid(g1, g2)

3.3.3.3 Probabilidad a lo mas tres

¿Cuál es la probabilidad de que, a lo más, 3 automóviles por año sufran una catástrofe?

\(P(X≤3)\)

\(P(X=0)+P(X=1)+P(X=2)+P(X=3)\)

x <- 3
prob <- tabla$f.acum.x[x+1]
paste("La probabiidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabiidad del valor de x<=3 es:  26.5026 %"

o por medio de la función ppois()

ppois(q = 3, lambda = media)
## [1] 0.2650259

3.3.3.4 Probabilidad de mas de uno

¿Cuál es la probabilidad de que más de 1 automóvil por año experimente una catástrofe?

\(1−F(X≤1)\)

\(1−(P(X=0)+P(x=1))\)

x <- 1
prob <- 1 - tabla$f.acum.x[x+1]

paste("La probabiidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabiidad del valor de x>1 es:  95.9572 %"

o bien con la función ppois() y la opción lower.tail = FALSE

ppois(q = x, lambda = media, lower.tail = FALSE)
## [1] 0.9595723

3.3.3.5 Interpretación

En este ejercicio se tiene el caso de un fabricante y manufacturador de automóviles que se preocupa por una falla en los frenos de un modelo específico, lo que puede ocasionar accidentes. Se considera que la media de automóviles por año que sufrirán un accidente por ello es de 5. Al determinar la tabla de distribuciones y la gráfica que la representa, se observa que las posibilidades de un accidente son mayores cuanto más nos acercamos al valor de la media. Al determinar las probabilidades de que ocurran un máximo de 3 accidentes por esa falla al año, se obtuvo un resultado de 0.265, o 26.5%. Luego, al determinar la probabilidad de que ocurran más de un accidente al año a causa de esa falla, se obtiene un preocupante resultado de 0.9595, lo que se traduce a un 95.95% de probabilidades.

3.3.4 Crucero peligroso

Supóngase que se está investigando la seguridad de un crucero muy peligroso. Los archivos de la policía indican una media de cinco \(λ=5\) accidentes por mes en el crucero.

El número de accidentes está distribuido conforme a la distribución de Poisson, y la división de seguridad en carreteras quiere calcular la probabilidad de exactamente \(0,1,2,3\) y \(4\) accidentes en un mes determinado (gestiopolis, n.d.).

3.3.4.1 Tabla de probabilidad

Valores iniciales

x <- 0:10
media <- 5

Construyendo los valores de la tabla de distribución \(P(x=0,1,2…10)\). Para responder a la pregunta del ejercicio, solo interesan solo los valores \(P(0)\), \(P(1)\), \(P(2)\), \(P(3)\), \(P(4)\)

tabla <- data.frame(x = x, f.prob.x = dpois(x = x, lambda = media), f.acum.x = ppois(q = x, lambda = media))
tabla
##     x    f.prob.x    f.acum.x
## 1   0 0.006737947 0.006737947
## 2   1 0.033689735 0.040427682
## 3   2 0.084224337 0.124652019
## 4   3 0.140373896 0.265025915
## 5   4 0.175467370 0.440493285
## 6   5 0.175467370 0.615960655
## 7   6 0.146222808 0.762183463
## 8   7 0.104444863 0.866628326
## 9   8 0.065278039 0.931906365
## 10  9 0.036265577 0.968171943
## 11 10 0.018132789 0.986304731

3.3.4.2 Gráfica de probabilidad

Se construyen las gráficas de densidad o valores de probabilidad de cada variable aleatoria discreta y la función de la probabilidad acumulada respectivamente.

g1 <- ggplot(data = tabla, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue') +
  ggtitle("Función de densidad P(x)")
#g1

g2 <- ggplot(data = tabla, aes(x,f.acum.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue') +
  ggtitle("Función acumulada F(x)")
#g2

plot_grid(g1, g2)

3.3.4.3 Interpretación

En este cuarto ejercicio se tiene el caso de un crucero con seguridad preocupante. Se considera una media de 5 accidentes mensuales en dicho crucero. Se desea determinar las probabilidades de que ocurran exactamente 1, 2, 3, 4 y ningún accidente en un mes determinado. Al realizar la tabla de distribuciones y la gráfica de la función acumulada de dicho caso, se puede apreciar que, aproximadamente, hay un 0.6% de probabilidades de que no ocurran accidentes, un 3.3% de que ocurra solo 1 accidente, 8.4% de que ocurran 2 accidentes, 14.03% de que ocurran 3 accidentes es de 14.03%, y de 4 accidentes, el 17.5%

3.3.5 Accidentes de cazadores

Supóngase que en un hotel donde descansan sufridos cazadores de elefantes ocurren de manera aleatoria e independiente dos accidentes de caídas con rompimiento de cadera por semana. Determinar la probabilidad de que ocurra un accidente en una semana (Quintela 2019b). \(λ=2\) se necesita calcular \(P(x=1)\)

paste("La probabilidad de ocurra un accidente en una semana es : ", dpois(x = 1, lambda = 2) ," o ", round(dpois(x = 1, lambda = 2) * 100, 2), "%")
## [1] "La probabilidad de ocurra un accidente en una semana es :  0.270670566473225  o  27.07 %"

3.3.5.1 Interpretación

En este último ejercicio, se supone que en un hotel de cazadores de elefantes, ocurren accidentes de rompimiento de cadera con una media de 2 por semana. Al considerar esta media, se utiliza la función dpois() para determinar la probabilidad de que ocurra un accidente en una determinada semana, y se obtiene una probabilidad de 27.07%

4 Referencias Bibliográficas

Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia Brasil Corea España Estados Unidos Japón México Reino Unido Singapur: Cengage Learning,.

gestiopolis. n.d. “¿Qué Es La Distribución de Poisson?” https://www.gestiopolis.com/que-es-la-distribucion-de-poisson/.

Mendenhall, William, Robert J. Beaver, and Barbara M. Beaver. 2010. Introducción a La Probabilidad y Estadística. 13th ed. Cengage Learning Editores, S.A. de C.V.,.

Quintela, Alejandro. 2019a. Estadística básica Edulcorada. https://bookdown.org/aquintela/EBE/.

———. 2019b. Estadística básica Edulcorada. https://bookdown.org/aquintela/EBE/.

Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.