- Quantity of each products
- Quantity through time (seasonal effect)
- Closed customer
- More?
enough for effective marketting?
Modern requirment
- Bigger and more complex information
- Insight about beahavior customer?
Tho Duy Nguyen
result <- apriori(data = data, parameter = list(support = 0.05, confidence = 0.05))
##
## Parameter specification:
## confidence minval smax arem aval originalSupport support minlen maxlen
## 0.05 0.1 1 none FALSE TRUE 0.05 1 10
## target ext
## rules FALSE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
## 0.1 TRUE TRUE FALSE TRUE 2 TRUE
##
## apriori - find association rules with the apriori algorithm
## version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[44 item(s), 10957 transaction(s)] done [0.00s].
## sorting and recoding items ... [13 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 done [0.00s].
## writing ... [15 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
plot(result, method="graph", control=list(type="items"))