Datos: Censo Nacional DANE:

La bases de datos autilizar son los microdatos anonimizados del Censo Nacional de Población y Vivienda DANE 2018.

El Censo de Población y Vivienda, es la operación estadística mÔs grande y de mayor importancia que se realiza en cualquier país. Se constituye en la columna vertebral del sistema nacional de información estadística. Por su universalidad, la información que se obtiene es el soporte de la planeación y formulación de políticas públicas. De igual forma, es la herramienta que permite llevar a cabo la caracterización de la población, sus hogares y viviendas como insumo para el ordenamiento territorial y para el seguimiento, la evaluación y la formulación de nuevas metas a los compromisos del país, entre otros como los Objetivos de Desarrollo Sostenible (ODS), el Consenso de Montevideo (CDM) y los compromisos con la Organización para la Cooperación y el Desarrollo Económico - OCDE. (DANE,2018) El propósito del Censo Nacional de Población y Vivienda, en adelante - CNPV 2018, es el de contar la población residente en el territorio nacional y obtener información sociodemogrÔfica para la planificación, gestión y toma de decisiones de política pública a nivel nacional, territorial y local.

La iformación se encuentra dividida en 5 arvhivos: Personas (825.364 observacioses), Viviendas (239.595 observaciones), Hogares (227.428 observaciones), fallecidos (6.646 observaciones) y un Marco de georreferenciación.

Ubicación y diccionario de Variables: http://microdatos.dane.gov.co/index.php/catalog/643/data_dictionary

1. AnƔlisis Descriptivo

1.1 Valores faltantes y atĆ­picos

En primer lugar, se realiza la revisión, y preparanción de la base de datos, para posteriormente obtener algunas estadísticas descriptivas.

LibrerĆ­as

library(readr)
library(magrittr)
library(tidyverse)
library(kableExtra)
library(MVN)
library(psych)
library(polycor)
library(ggcorrplot)

Cargar bases de datos

personas <- read_csv("CENSO/CNPV2018_5PER_A2_44.CSV", 
    locale = locale(decimal_mark = ",", grouping_mark = "."))
hogares <- read_csv("CENSO/CNPV2018_2HOG_A2_44.csv")
viviendas<- read_csv("CENSO/CNPV2018_1viv_A2_44.csv")
fallecidos<- read_csv("CENSO/CNPV2018_3FALL_A2_44.csv")

head(personas) #Primeras filas
## # A tibble: 6 x 48
##   TIPO_REG U_DPTO U_MPIO UA_CLASE COD_ENCUESTAS U_VIVIENDA P_NROHOG P_NRO_PER
##      <dbl>  <dbl> <chr>     <dbl>         <dbl>      <dbl>    <dbl>     <dbl>
## 1        5     44 001           1        333492          2        1         1
## 2        5     44 001           1        333492          2        1         2
## 3        5     44 001           1        333492          2        1         3
## 4        5     44 001           1        333492          2        1         4
## 5        5     44 001           1        333492          2        1         5
## 6        5     44 001           1        333493          1        1         1
## # ... with 40 more variables: P_SEXO <dbl>, P_EDADR <dbl>, P_PARENTESCOR <dbl>,
## #   PA1_GRP_ETNIC <dbl>, PA11_COD_ETNIA <dbl>, PA12_CLAN <dbl>,
## #   PA21_COD_VITSA <lgl>, PA22_COD_KUMPA <lgl>, PA_HABLA_LENG <dbl>,
## #   PA1_ENTIENDE <dbl>, PB_OTRAS_LENG <dbl>, PB1_QOTRAS_LENG <dbl>,
## #   PA_LUG_NAC <dbl>, PA_VIVIA_5ANOS <dbl>, PA_VIVIA_1ANO <dbl>,
## #   P_ENFERMO <dbl>, P_QUEHIZO_PPAL <dbl>, PA_LO_ATENDIERON <dbl>,
## #   PA1_CALIDAD_SERV <dbl>, CONDICION_FISICA <dbl>, P_ALFABETA <dbl>,
## #   PA_ASISTENCIA <dbl>, P_NIVEL_ANOSR <dbl>, P_TRABAJO <dbl>,
## #   P_EST_CIVIL <dbl>, PA_HNV <dbl>, PA1_THNV <dbl>, PA2_HNVH <dbl>,
## #   PA3_HNVM <dbl>, PA_HNVS <dbl>, PA1_THSV <dbl>, PA2_HSVH <dbl>,
## #   PA3_HSVM <dbl>, PA_HFC <dbl>, PA1_THFC <dbl>, PA2_HFCH <dbl>,
## #   PA3_HFCM <dbl>, PA_UHNV <dbl>, PA1_MES_UHNV <dbl>, PA2_ANO_UHNV <dbl>
dim(personas)
## [1] 825364     48
head(hogares)
## # A tibble: 6 x 13
##   TIPO_REG U_DPTO U_MPIO UA_CLASE COD_ENCUESTAS U_VIVIENDA H_NROHOG
##      <dbl>  <dbl> <chr>     <dbl>         <dbl>      <dbl>    <dbl>
## 1        2     44 001           1        333492          2        1
## 2        2     44 001           1        333493          1        1
## 3        2     44 001           1        333494         11        1
## 4        2     44 001           1        333495          1        1
## 5        2     44 001           1        333496          1        1
## 6        2     44 001           1        333497          1        1
## # ... with 6 more variables: H_NRO_CUARTOS <dbl>, H_NRO_DORMIT <dbl>,
## #   H_DONDE_PREPALIM <dbl>, H_AGUA_COCIN <dbl>, HA_NRO_FALL <dbl>,
## #   HA_TOT_PER <dbl>
dim(hogares)
## [1] 227428     13
head(viviendas)
## # A tibble: 6 x 30
##   TIPO_REG U_DPTO U_MPIO UA_CLASE U_EDIFICA COD_ENCUESTAS U_VIVIENDA UVA_ESTATER
##      <dbl>  <dbl> <chr>     <dbl>     <dbl>         <dbl>      <dbl> <lgl>      
## 1        1     44 001           1         1        351875          1 NA         
## 2        1     44 001           1         1        351908          3 NA         
## 3        1     44 001           1         1        352022          1 NA         
## 4        1     44 001           1         1        352981          2 NA         
## 5        1     44 001           1         1        379761          1 NA         
## 6        1     44 001           1         1        382524          1 NA         
## # ... with 22 more variables: UVA1_TIPOTER <lgl>, UVA2_CODTER <lgl>,
## #   UVA_ESTA_AREAPROT <dbl>, UVA1_COD_AREAPROT <dbl>, UVA_USO_UNIDAD <dbl>,
## #   V_TIPO_VIV <dbl>, V_CON_OCUP <dbl>, V_TOT_HOG <dbl>, V_MAT_PARED <dbl>,
## #   V_MAT_PISO <dbl>, VA_EE <dbl>, VA1_ESTRATO <dbl>, VB_ACU <dbl>,
## #   VC_ALC <dbl>, VD_GAS <dbl>, VE_RECBAS <dbl>, VE1_QSEM <dbl>,
## #   VF_INTERNET <dbl>, V_TIPO_SERSA <dbl>, L_TIPO_INST <lgl>,
## #   L_EXISTEHOG <lgl>, L_TOT_PERL <lgl>
dim(viviendas)
## [1] 239595     30
head(fallecidos)
## # A tibble: 6 x 11
##   TIPO_REG U_DPTO U_MPIO UA_CLASE COD_ENCUESTAS U_VIVIENDA F_NROHOG FA1_NRO_FALL
##      <dbl>  <dbl> <chr>     <dbl>         <dbl>      <dbl>    <dbl>        <dbl>
## 1        3     44 001           1        333495          1        1            1
## 2        3     44 001           1        352564          1        1            1
## 3        3     44 001           1        353037          1        1            1
## 4        3     44 001           1        444248          1        1            1
## 5        3     44 001           1        452116          2        2            1
## 6        3     44 001           1        452116          2        3            1
## # ... with 3 more variables: FA2_SEXO_FALL <dbl>, FA3_EDAD_FALL <dbl>,
## #   FA4_CERT_DEFUN <dbl>
dim(fallecidos)
## [1] 6646   11

Valores faltantes

Viviendas:

  • Proporción de Nas por variable (Aplica solo para las variables que tengan algĆŗn valor faltante)
  • Las variables identificadas con prefijo UVA hacen referencia a viviendas etnicas, por lo que tienen una proporción alta de viviendas que no cumplen esta condición y no aplican dichas variables (tienen misma proporción de Nas: 68%)
  • Los valores faltantes para materiales de paredes, pisos estrato, total de hogares, acceso a servicios pĆŗblicos (Misma proporción para todas las variables: 10,3%) equivale a las viviendas que estavan vacĆ­as durante el censo.
  • Las variables con prefijo L hacen referencia a Lugares Especiales de Alojamiento, la mayor parte de viviendas no aplica para esta variable
var_na_v<-sapply(viviendas, function(x) (sum(is.na(x))/length(x)*100))
var_na_v[var_na_v>0] #Proporción de Nas (Aplica solo para variables con Nas)
##       UVA_ESTATER      UVA1_TIPOTER       UVA2_CODTER UVA1_COD_AREAPROT 
##       68.39124356       68.40084309      100.00000000       97.40937833 
##        V_TIPO_VIV        V_CON_OCUP         V_TOT_HOG       V_MAT_PARED 
##        0.02545963        0.02545963       10.32074960       10.32074960 
##        V_MAT_PISO             VA_EE       VA1_ESTRATO            VB_ACU 
##       10.32074960       10.32074960       45.60195330       10.32074960 
##            VC_ALC            VD_GAS         VE_RECBAS          VE1_QSEM 
##       10.32074960       10.32074960       10.32074960       58.61683257 
##       VF_INTERNET      V_TIPO_SERSA       L_TIPO_INST       L_EXISTEHOG 
##       10.32074960       10.32074960       99.99958263       99.99916526 
##        L_TOT_PERL 
##       99.99499155

Hogares

  • La variable NĆŗmero de fallecidos tiene una alta proporción de valores faltantes (97,4%) pues depende de la pregunta anterior donde se indaga si hubo un fallecido en el hogar, por lo que cierto nĆŗmero de hogares no aplica.
  • La proporción de Nas en el resto de variables fue de 0.02%.
var_na_h<-sapply(hogares, function(x) (sum(is.na(x))/length(x)*100))
var_na_h[var_na_h>0] #Proporción de Nas (Aplica solo para variables con Nas)
##         H_NROHOG    H_NRO_CUARTOS     H_NRO_DORMIT H_DONDE_PREPALIM 
##       0.02682168       0.02682168       0.02682168       0.02682168 
##     H_AGUA_COCIN      HA_NRO_FALL       HA_TOT_PER 
##       3.25949311      97.45413933       0.02682168

Personas

  • Los valores faltantes en las variables con prefijo PA11,PA12,PA21, PA22 hacen referencia a pertenecer a una etnia, por lo que muchas personas no aplican
  • Las variables con el sufino HNVM Hace referencia a las personas con hijos nacidos vivos (mujeres mayores de 10 aƱos) por lo que la proporción de Nas es alta
  • Las variables referentes a nivel de estudios, trabajo y estado civil, aplican para mayores de 5 y 10 aƱos respectivamente
var_na_p<-sapply(personas, function(x) (sum(is.na(x))/length(x)*100))
var_na_p[var_na_p>0] #Proporción de Nas (Aplica solo para variables con Nas)
##         P_NROHOG    P_PARENTESCOR   PA11_COD_ETNIA        PA12_CLAN 
##        0.8461721        0.8461721       52.1807348       54.2398263 
##   PA21_COD_VITSA   PA22_COD_KUMPA    PA_HABLA_LENG     PA1_ENTIENDE 
##      100.0000000       99.9996365       52.7322490       94.2744050 
##    PB_OTRAS_LENG  PB1_QOTRAS_LENG   PA_VIVIA_5ANOS    PA_VIVIA_1ANO 
##       52.7322490       90.5154574        0.8461721        0.8461721 
##        P_ENFERMO   P_QUEHIZO_PPAL PA_LO_ATENDIERON PA1_CALIDAD_SERV 
##        0.8461721       94.8024144       96.2363272       96.3291348 
## CONDICION_FISICA       P_ALFABETA    PA_ASISTENCIA    P_NIVEL_ANOSR 
##        0.8461721       11.8086081       12.6519935       11.8086081 
##        P_TRABAJO      P_EST_CIVIL           PA_HNV         PA1_THNV 
##       24.5512283       23.7812650       60.9538337       78.5832675 
##         PA2_HNVH         PA3_HNVM          PA_HNVS         PA1_THSV 
##       78.5832675       78.5832675       78.5832675       79.5018925 
##         PA2_HSVH         PA3_HSVM           PA_HFC         PA1_THFC 
##       79.5018925       79.5018925       78.5832675       93.4972933 
##         PA2_HFCH         PA3_HFCM          PA_UHNV     PA1_MES_UHNV 
##       93.4972933       93.4972933       78.5832675       85.7176955 
##     PA2_ANO_UHNV 
##       85.7176955

Descriptivas bƔsicas

Viviendas

Al tratarse de variables categóricas, no se encuentran datos atípicos.

summary(viviendas)
##     TIPO_REG     U_DPTO      U_MPIO             UA_CLASE       U_EDIFICA     
##  Min.   :1   Min.   :44   Length:239595      Min.   :1.000   Min.   :  1.00  
##  1st Qu.:1   1st Qu.:44   Class :character   1st Qu.:1.000   1st Qu.:  2.00  
##  Median :1   Median :44   Mode  :character   Median :1.000   Median :  6.00  
##  Mean   :1   Mean   :44                      Mean   :1.856   Mean   : 12.77  
##  3rd Qu.:1   3rd Qu.:44                      3rd Qu.:3.000   3rd Qu.: 13.00  
##  Max.   :1   Max.   :44                      Max.   :3.000   Max.   :620.00  
##                                                                              
##  COD_ENCUESTAS         U_VIVIENDA     UVA_ESTATER    UVA1_TIPOTER  
##  Min.   :   333492   Min.   :  1.00   Mode:logical   Mode:logical  
##  1st Qu.:  5984571   1st Qu.:  1.00   TRUE:75733     TRUE:75710    
##  Median : 11079259   Median :  2.00   NA's:163862    NA's:163885   
##  Mean   : 63801081   Mean   : 23.03                                
##  3rd Qu.: 15009520   3rd Qu.:  7.00                                
##  Max.   :950003460   Max.   :990.00                                
##                                                                    
##  UVA2_CODTER    UVA_ESTA_AREAPROT UVA1_COD_AREAPROT UVA_USO_UNIDAD 
##  Mode:logical   Min.   :1.000     Min.   :1106      Min.   :1.000  
##  NA's:239595    1st Qu.:2.000     1st Qu.:1113      1st Qu.:1.000  
##                 Median :2.000     Median :1113      Median :1.000  
##                 Mean   :1.974     Mean   :2695      Mean   :1.022  
##                 3rd Qu.:2.000     3rd Qu.:5061      3rd Qu.:1.000  
##                 Max.   :2.000     Max.   :5061      Max.   :4.000  
##                                   NA's   :233388                   
##    V_TIPO_VIV      V_CON_OCUP      V_TOT_HOG       V_MAT_PARED   
##  Min.   :1.000   Min.   :1.000   Min.   : 1.000   Min.   :1.000  
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.: 1.000   1st Qu.:1.000  
##  Median :1.000   Median :1.000   Median : 1.000   Median :1.000  
##  Mean   :2.159   Mean   :1.263   Mean   : 1.058   Mean   :3.257  
##  3rd Qu.:4.000   3rd Qu.:1.000   3rd Qu.: 1.000   3rd Qu.:5.000  
##  Max.   :6.000   Max.   :4.000   Max.   :11.000   Max.   :9.000  
##  NA's   :61      NA's   :61      NA's   :24728    NA's   :24728  
##    V_MAT_PISO        VA_EE        VA1_ESTRATO         VB_ACU     
##  Min.   :1.000   Min.   :1.000   Min.   :0.0      Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:1.000   1st Qu.:1.0      1st Qu.:1.000  
##  Median :4.000   Median :1.000   Median :1.0      Median :2.000  
##  Mean   :4.485   Mean   :1.393   Mean   :1.3      Mean   :1.534  
##  3rd Qu.:6.000   3rd Qu.:2.000   3rd Qu.:2.0      3rd Qu.:2.000  
##  Max.   :6.000   Max.   :2.000   Max.   :9.0      Max.   :2.000  
##  NA's   :24728   NA's   :24728   NA's   :109260   NA's   :24728  
##      VC_ALC          VD_GAS        VE_RECBAS        VE1_QSEM     
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.0     
##  1st Qu.:1.000   1st Qu.:1.000   1st Qu.:1.000   1st Qu.:2.0     
##  Median :2.000   Median :2.000   Median :2.000   Median :3.0     
##  Mean   :1.581   Mean   :1.633   Mean   :1.539   Mean   :2.5     
##  3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:2.000   3rd Qu.:3.0     
##  Max.   :2.000   Max.   :9.000   Max.   :2.000   Max.   :9.0     
##  NA's   :24728   NA's   :24728   NA's   :24728   NA's   :140443  
##   VF_INTERNET     V_TIPO_SERSA   L_TIPO_INST    L_EXISTEHOG    L_TOT_PERL    
##  Min.   :1.00    Min.   :1.000   Mode:logical   Mode:logical   Mode:logical  
##  1st Qu.:2.00    1st Qu.:1.000   TRUE:1         TRUE:2         TRUE:12       
##  Median :2.00    Median :2.000   NA's:239594    NA's:239593    NA's:239583   
##  Mean   :1.93    Mean   :3.287                                               
##  3rd Qu.:2.00    3rd Qu.:6.000                                               
##  Max.   :9.00    Max.   :9.000                                               
##  NA's   :24728   NA's   :24728

Hogares

Al tratarse de variables categóricas, no se encuentran datos atípicos. Las únicas variables continuas hacen referencia al número de personas en el hogar, el número de cuartos y el número de dormitorios.

summary(hogares)
##  TIPO_REG   U_DPTO          U_MPIO      UA_CLASE    COD_ENCUESTAS   
##  2:227428   44:227428   001    :50750   1:114085   10705779:    11  
##                         430    :44260   2: 20116   14230976:    11  
##                         847    :41173   3: 93227   15197146:    11  
##                         560    :20015              16167288:    11  
##                         650    :13380              15457182:    10  
##                         279    :11308              15845585:    10  
##                         (Other):46542              (Other) :227364  
##    U_VIVIENDA        H_NROHOG      H_NRO_CUARTOS   H_NRO_DORMIT   
##  1      :109451   Min.   : 1.000   Min.   : 1.0   Min.   : 1.000  
##  2      : 26986   1st Qu.: 1.000   1st Qu.: 1.0   1st Qu.: 1.000  
##  3      : 12323   Median : 1.000   Median : 2.0   Median : 1.000  
##  4      :  7443   Mean   : 1.077   Mean   : 2.3   Mean   : 1.694  
##  5      :  5269   3rd Qu.: 1.000   3rd Qu.: 3.0   3rd Qu.: 2.000  
##  6      :  4101   Max.   :11.000   Max.   :19.0   Max.   :17.000  
##  (Other): 61855   NA's   :61       NA's   :61     NA's   :61      
##  H_DONDE_PREPALIM  H_AGUA_COCIN    HA_NRO_FALL       HA_TOT_PER    
##  1      :112161   1      :89414   1      :  5263   Min.   : 1.000  
##  5      : 68323   5      :51814   2      :   366   1st Qu.: 2.000  
##  3      : 13484   9      :26186   3      :    91   Median : 3.000  
##  2      : 13039   3      :14192   4      :    36   Mean   : 3.599  
##  4      : 10886   4      :13826   5      :    14   3rd Qu.: 5.000  
##  (Other):  9474   (Other):24583   (Other):    20   Max.   :32.000  
##  NA's   :    61   NA's   : 7413   NA's   :221638   NA's   :61

Personas

Al igual que la base de datos de hogares, la mayor parte de las variables son categóricas por lo que no se encuentran datos atípicos en estas. Sin embargo, las variables continuas son aquellas relacionadas con el total de personas en el higar, y el total de hijos.

summary(personas)
##  TIPO_REG   U_DPTO          U_MPIO       UA_CLASE     COD_ENCUESTAS   
##  5:825364   44:825364   001    :177573   1:391901   750000695:  1182  
##                         847    :160711   2: 72681   750001039:   553  
##                         430    :159223   3:360782   750000643:   491  
##                         560    : 74528              750000267:   462  
##                         650    : 46077              750000863:   404  
##                         279    : 40852              750000701:   335  
##                         (Other):166400              (Other)  :821937  
##    U_VIVIENDA        P_NROHOG        P_NRO_PER        P_SEXO    
##  1      :389124   Min.   : 1.000   Min.   :   1.000   1:404215  
##  2      : 93055   1st Qu.: 1.000   1st Qu.:   1.000   2:421149  
##  3      : 43064   Median : 1.000   Median :   3.000             
##  4      : 26635   Mean   : 1.069   Mean   :   4.963             
##  5      : 19234   3rd Qu.: 1.000   3rd Qu.:   4.000             
##  6      : 15074   Max.   :11.000   Max.   :1182.000             
##  (Other):239178   NA's   :6984                                  
##     P_EDADR       P_PARENTESCOR PA1_GRP_ETNIC PA11_COD_ETNIA     PA12_CLAN     
##  2      : 98818   1   :227367   1:394683      720    :371130   2      : 78117  
##  1      : 97464   2   :109903   2:    29      50     : 12855   3      : 61190  
##  3      : 90547   3   :388984   3:   108      370    :  6558   13     : 59637  
##  4      : 87425   4   : 86108   4:   111      40     :  2031   8      : 51686  
##  5      : 77426   5   :  6018   5: 60256      800    :  1307   19     : 27787  
##  6      : 66200   NA's:  6984   6:360151      (Other):   802   (Other): 99271  
##  (Other):307484                 9: 10026      NA's   :430681   NA's   :447676  
##  PA21_COD_VITSA PA22_COD_KUMPA PA_HABLA_LENG PA1_ENTIENDE  PB_OTRAS_LENG
##  NA's:825364    TRUE:     3    1   :342187   1   : 17876   1   : 78282  
##                 NA's:825361    2   : 47257   2   : 29193   2   :309992  
##                                9   :   687   9   :   188   9   :  1857  
##                                NA's:435233   NA's:778107   NA's:435233  
##                                                                         
##                                                                         
##                                                                         
##  PB1_QOTRAS_LENG  PA_LUG_NAC PA_VIVIA_5ANOS PA_VIVIA_1ANO P_ENFERMO    
##  1      : 40967   1:590755   1   : 95464    1   : 17784   1   : 42899  
##  2      : 36032   2:180094   2   :645047    2   :768321   2   :767765  
##  99     :  1013   3: 45739   3   : 25134    3   :  7656   9   :  7716  
##  3      :    88   9:  8776   4   : 41803    4   : 15626   NA's:  6984  
##  4      :    36              9   : 10932    9   :  8993                
##  (Other):   146              NA's:  6984    NA's:  6984                
##  NA's   :747082                                                        
##  P_QUEHIZO_PPAL   PA_LO_ATENDIERON PA1_CALIDAD_SERV CONDICION_FISICA
##  1      : 31064   1   : 30298      1   :  4060      1   : 25419     
##  7      :  3870   2   :   733      2   : 22128      2   :792961     
##  8      :  2346   9   :    33      3   :  3264      NA's:  6984     
##  2      :  1955   NA's:794300      4   :   846                      
##  9      :  1699                    NA's:795066                      
##  (Other):  1965                                                     
##  NA's   :782465                                                     
##  P_ALFABETA    PA_ASISTENCIA P_NIVEL_ANOSR      P_TRABAJO       P_EST_CIVIL    
##  1   :600457   1   :260971   2      :240323   1      :181844   7      :266902  
##  2   :116909   2   :450005   3      :127660   7      :152618   1      :238804  
##  9   : 10534   9   :  9963   4      :119176   6      :141236   2      : 48929  
##  NA's: 97464   NA's:104425   10     :101501   9      : 52333   4      : 40467  
##                              8      : 45254   4      : 48180   9      : 14545  
##                              (Other): 93986   (Other): 46516   (Other): 19435  
##                              NA's   : 97464   NA's   :202637   NA's   :196282  
##   PA_HNV          PA1_THNV         PA2_HNVH         PA3_HNVM      PA_HNVS      
##  1   :176766   Min.   : 1.0     Min.   : 1.0     Min.   : 1.0     1   :169184  
##  2   :133744   1st Qu.: 2.0     1st Qu.: 2.0     1st Qu.: 2.0     2   :  7301  
##  9   : 11763   Median : 3.0     Median : 2.0     Median : 2.0     9   :   281  
##  NA's:503091   Mean   : 3.4     Mean   : 2.8     Mean   : 2.7     NA's:648598  
##                3rd Qu.: 4.0     3rd Qu.: 3.0     3rd Qu.: 3.0                  
##                Max.   :25.0     Max.   :18.0     Max.   :19.0                  
##                NA's   :648598   NA's   :648598   NA's   :648598                
##     PA1_THSV         PA2_HSVH         PA3_HSVM       PA_HFC      
##  Min.   : 1.0     Min.   : 1.0     1      : 60717   1   : 53671  
##  1st Qu.: 3.0     1st Qu.: 2.0     2      : 36672   2   :121203  
##  Median : 4.0     Median : 2.0     0      : 34627   9   :  1892  
##  Mean   : 4.5     Mean   : 2.8     3      : 18585   NA's:648598  
##  3rd Qu.: 5.0     3rd Qu.: 3.0     4      :  8549                
##  Max.   :22.0     Max.   :14.0     (Other): 10034                
##  NA's   :656180   NA's   :656180   NA's   :656180                
##     PA1_THFC         PA2_HFCH         PA3_HFCM      PA_UHNV      
##  0      : 42654   0      : 45613   0      : 45860   1   :117881  
##  1      :  4162   1      :  4426   1      :  4356   9   : 58885  
##  2      :  2652   2      :  1964   2      :  1909   NA's:648598  
##  3      :  1771   3      :   878   3      :   766                
##  4      :   947   4      :   331   4      :   325                
##  (Other):  1485   (Other):   459   (Other):   455                
##  NA's   :771693   NA's   :771693   NA's   :771693                
##   PA1_MES_UHNV     PA2_ANO_UHNV   
##  10     : 11068   2017   : 12300  
##  11     : 10770   2016   : 10377  
##  9      : 10707   2015   :  8248  
##  12     : 10614   2014   :  6702  
##  8      :  9937   2013   :  5786  
##  (Other): 64785   (Other): 74468  
##  NA's   :707483   NA's   :707483

Fallecidos

Al igual que la base de datos de hogares, la mayor parte de las variables son categóricas por lo que no se encuentran datos atípicos en estas. Sin embargo, las variables continuas son aquellas relacionadas con el total de personas en el higar, y el total de hijos.

summary(fallecidos)
##     TIPO_REG U_DPTO       U_MPIO             UA_CLASE     COD_ENCUESTAS      
##  Min.   :3   44:6646   Length:6646        Min.   :1.000   Min.   :   333495  
##  1st Qu.:3             Class :character   1st Qu.:1.000   1st Qu.:  8250271  
##  Median :3             Mode  :character   Median :3.000   Median : 12409480  
##  Mean   :3                                Mean   :2.348   Mean   : 44895627  
##  3rd Qu.:3                                3rd Qu.:3.000   3rd Qu.: 14646787  
##  Max.   :3                                Max.   :3.000   Max.   :902429324  
##    U_VIVIENDA        F_NROHOG       FA1_NRO_FALL    FA2_SEXO_FALL 
##  Min.   :  1.00   Min.   : 1.000   Min.   : 1.000   Min.   :1.00  
##  1st Qu.:  1.00   1st Qu.: 1.000   1st Qu.: 1.000   1st Qu.:1.00  
##  Median :  2.00   Median : 1.000   Median : 1.000   Median :1.00  
##  Mean   : 32.51   Mean   : 1.093   Mean   : 1.244   Mean   :1.45  
##  3rd Qu.: 13.00   3rd Qu.: 1.000   3rd Qu.: 1.000   3rd Qu.:2.00  
##  Max.   :866.00   Max.   :10.000   Max.   :15.000   Max.   :9.00  
##  FA3_EDAD_FALL    FA4_CERT_DEFUN
##  Min.   :  0.00   1:2169        
##  1st Qu.:  4.00   2:3443        
##  Median : 42.00   9:1034        
##  Mean   : 42.14                 
##  3rd Qu.: 70.00                 
##  Max.   :999.00

1.2 Visualizaciones claves

2. Construcción de variables

Las variables seleccionadas (hasta ahora) son las siguientes:

Trampas de pobreza

  • Embarazo adolescente (e_adol): Proporción de jóvenes hasta los 19 aƱos que han tenido almenos un hijo vivo.
  • No estudian ni trabajan (ninis): Proporción de personas mayores de 14 aƱos que no estudian ni trabajan
  • Analfabetismo (analfa): Proporción de personas que no saben leer ni escribir

Condiciones habitacionales

  • Material de la vivienda: (pisos_in): proporción de viviendas con pisos inadecuados, (paredes_in): Proporción de viviendas con paredes inadecuadas.

  • Acceso a servicios pĆŗblicos: (sin_elec): Proporción de viviendas sin acceso a energĆ­a electrica, (sin_gas): Proporción de viviendas sin acceso al servicio de gas natural, (sin_alc): Proporción de viviendas sin servicio de alcantarillado, (sin_basu): proporción de viviendas sin recolección de basuras,(sin_acu): Proporción de viviendas sin acueducto.

  • Conexión (sin_int): proporción de viviendas sin acceso a intertet.

-Ruralidad (v_rural): Proporción de viviendas en zona rural

-ĀØNĆŗmero de personas (T_hogar): nĆŗmero promedio de personas por hogar

VehĆ­culos de movilidad social

  • Sin estudio (no_estu:): Proporción de Jóvenes entre 5 a 19 aƱos que no estudian.
  • Sin educación bĆ”sica (sin_educm): Proporción de personas mayores de 5 aƱos sin educación bĆ”sica

Salud

  • Sin atención (aten_salud): Proporción de personas que estuvieron enfermas y no recibieron atención medica. -Condición fĆ­sica (disc): Proporción de personas que padecen alguna condición fĆ­sica.
  • NiƱos fallecido (fall_menor): Proporción de muertes en niƱos de 0 a 4 aƱos.

Etnia:

  • Pertenece a alguna Ć©tnia (per_etnia): PRoporción de personas qque pertenecen a alguna etnia.
  • Lengua nativa (leng_etnia): Proporción de personas que hablan una lengua nativa.
  • Vivienda etnica (viv_etnia): Proporción de viviendas Ć©tnicas.

Contrucción de los 22 indicadores relacionados con la marginación socioeconómica:

########################### CƁLCULO DE INDICADORES ##############################
################################# MARGINACIƓN  ##################################


##### Trampas de pobreza #####

#Embarazo adolescente (menos de 19 aƱos)
e_adol<- personas %>% group_by(U_MPIO)%>%
  dplyr::summarise(embar_a=(sum(P_EDADR<=4& P_SEXO==2&PA_HNV==1,na.rm = T))/sum(P_EDADR<=4& P_SEXO==2))

#Analfabetismo
analf<-personas %>% group_by(U_MPIO) %>% 
 dplyr::summarise(analfa=(sum(P_ALFABETA==2,na.rm = T)/sum(P_EDADR>=2)))

#Jóvenes que no estudian ni trabajan
NINI<-personas %>% group_by(U_MPIO) %>% 
  dplyr::summarise(ninis=(sum(P_EDADR>=4&P_EDADR<7&(P_TRABAJO==4|P_TRABAJO==7),na.rm = T)/sum(P_EDADR>=4&P_EDADR<7)))

### Condiciones habitacionales ####

#Filtrar viviendas de uso residencial
viviendas<-filter(viviendas,UVA_USO_UNIDAD==1|UVA_USO_UNIDAD==2)

#Material de la vivienda

#Pisos inadecuados
pisos<- viviendas %>% group_by(U_MPIO)%>%
  dplyr::summarise(piso_in=(sum(V_MAT_PISO==6,na.rm = T))/n())

#Paredes inadecuadas
paredes<-viviendas %>% group_by(U_MPIO)%>%
  dplyr::summarise(pared_in=(sum(V_MAT_PARED==7|V_MAT_PARED==8,na.rm = T))/n())


#Acceso a servicios pĆŗblicos
#Sin acceso a electricidad
elec<-viviendas %>% group_by(U_MPIO)%>%
  dplyr::summarise(sin_elec=(sum(VA_EE==2,na.rm = T))/n())

#Sin acceso a gas natural
gasn<-viviendas %>% group_by(U_MPIO)%>%
  dplyr::summarise(sin_gas=(sum(VD_GAS==2,na.rm = T))/n())

#Sin acceso a alcantarillado
alc<-viviendas %>% group_by(U_MPIO)%>%
  dplyr::summarise(sin_alc=(sum(VC_ALC==2,na.rm = T))/n())

#Sin acceso a recolección de basuras
desec<-viviendas %>% group_by(U_MPIO)%>%
  dplyr::summarise(sin_basu=(sum(VE_RECBAS==2,na.rm = T))/n())

#Sin acceso a acueducto
acued<-viviendas %>% group_by(U_MPIO)%>%
  dplyr::summarise(sin_acu=(sum(VB_ACU==2,na.rm = T))/n())


#Ruralidad
rural<-viviendas %>% group_by(U_MPIO)%>%
  dplyr::summarise(v_rural=(sum(UA_CLASE==2|UA_CLASE==3|UA_CLASE==4,na.rm = T))/n())

#Numero de personas en el hogar
hogar<-hogares %>% group_by(U_MPIO)%>%
  dplyr::summarise(T_hog=(sum(HA_TOT_PER,na.rm = T))/n())


#### VehĆ­culos de movilidad social ####
#Jovenes entre 5 a 10 aƱos que no estudian
no_estu<- personas %>% group_by(U_MPIO)%>%
  dplyr::summarise(no_estu=(sum(P_EDADR<=4&P_EDADR>2&PA_ASISTENCIA==2,na.rm = T))/sum(P_EDADR<=4&P_EDADR>2))

#Mayores de 15 años sin educación media
educacion<- personas %>% group_by(U_MPIO)%>%
  dplyr::summarise(sin_educm=(sum(P_EDADR>=4&P_NIVEL_ANOSR<4,na.rm = T))/sum(P_EDADR>=4))

#Viviendas sin acceso a internet
internet<-viviendas %>% group_by(U_MPIO)%>%
  dplyr::summarise(sin_int=(sum(VF_INTERNET==2,na.rm = T))/n())


####### SALUD ######

#Personas sin atención estando enfermas
atencion<-personas %>% group_by(U_MPIO)%>%
  dplyr::summarise(aten_salud=(sum(P_ENFERMO==1&PA_LO_ATENDIERON==2,na.rm = T))/sum(P_ENFERMO==1,na.rm = T))

#Personas con alguna discapacidad fĆ­sica
discapacidad<-personas %>% group_by(U_MPIO)%>%
  dplyr::summarise(disc=(sum(CONDICION_FISICA==1,na.rm = T))/n())

#Proporción de niños menores de 5 años fallecidos

fallec<- fallecidos %>% group_by(U_MPIO)%>%
  dplyr::summarise(fall_men=(sum(FA3_EDAD_FALL<=5,na.rm = T))/n())

#### Pertenencia etnica ####

#Proporción de personas que pertenecen a una etnia
etnia<-personas %>% group_by(U_MPIO) %>% 
  dplyr::summarise(per_etnia=(sum(PA1_GRP_ETNIC<6,na.rm = T)/n()))

#Proproción de personas que hablan lenguas nativas
etnia_leng<-personas %>% group_by(U_MPIO) %>% 
  dplyr::summarise(leng_etnia=(sum(PA_HABLA_LENG==1,na.rm = T)/sum(PA1_GRP_ETNIC<6)))

#Proporción viviendas etnicas
viv_etnia<-viviendas %>% group_by(U_MPIO)%>%
  dplyr::summarise(viv_etnia=(sum(UVA_ESTATER==1,na.rm = T))/n())

Base de datos de indicadores:

Para cada mucicipio se obtienen un total de 22 indicadores:

##### UNIR TODAS LAS VARIABLES #####

base_in<-cbind(e_adol,analf[,2],NINI[,2],pisos[,2],paredes[,2],elec[,2],gasn[,2],alc[,2],desec[,2],acued[,2],rural[,2],hogar[,2],no_estu[,2],educacion[,2],internet[,2],atencion[,2],discapacidad[,2],fallec[,2],etnia[,2],etnia_leng[,2],viv_etnia[,2])

#Base de datos a utilizar

base_in %>% 
  kable() %>% 
  kable_styling(bootstrap_options = c("striped", "hover")) %>% 
  scroll_box(width = "100%", height = "400px")
U_MPIO embar_a analfa ninis piso_in pared_in sin_elec sin_gas sin_alc sin_basu sin_acu v_rural T_hog no_estu sin_educm sin_int aten_salud disc fall_men per_etnia leng_etnia viv_etnia
001 0.0444579 0.1082951 0.2631219 0.2423565 0.0757550 0.1678684 0.3587092 0.4067222 0.2929965 0.2809979 0.2920835 3.484335 0.2213295 0.3534969 0.6808079 0.0195488 0.0325218 0.1877058 0.4279310 0.5555015 0.1118439
035 0.0405340 0.1052853 0.3059067 0.3340153 0.0589198 0.3342881 0.6591653 0.4191217 0.4742226 0.3518822 0.4058920 3.435546 0.1892840 0.3781426 0.8359247 0.0122117 0.0331849 0.2142857 0.4060134 0.7842384 0.2336334
078 0.0468404 0.0726198 0.2892999 0.2662947 0.1093435 0.1004393 0.3736199 0.2676006 0.3217381 0.3044046 0.4237208 3.668337 0.1906198 0.3875774 0.7922355 0.0158730 0.0293881 0.1964286 0.5500718 0.4628757 0.1409237
090 0.0489282 0.2713166 0.3075681 0.3757962 0.1046257 0.3060457 0.5455779 0.6468623 0.5005743 0.4282134 0.8638405 3.930551 0.3732006 0.3480785 0.8418085 0.0243682 0.0564427 0.2786885 0.3941319 0.6868078 0.2242874
098 0.0350211 0.0914826 0.2564178 0.2312746 0.0210250 0.0522996 0.3760841 0.2927727 0.3056505 0.2402102 0.5208936 3.441290 0.1950627 0.3364497 0.7582129 0.0012987 0.0449137 0.0312500 0.2735043 0.3872549 0.1516426
110 0.0363153 0.0778053 0.3243243 0.1053065 0.0012341 0.1168244 0.2422871 0.1846977 0.2328260 0.1690662 0.2081448 3.556180 0.1996753 0.3673743 0.7379679 0.0000000 0.0893293 0.0714286 0.1173345 0.0832313 0.0000000
279 0.0436368 0.0691039 0.2755715 0.0979427 0.0365470 0.0427592 0.1943526 0.1753126 0.1922549 0.1827350 0.1749092 3.611337 0.2267846 0.3452624 0.7449778 0.0064915 0.0355919 0.0409357 0.1041809 0.1217105 0.0033885
378 0.0483956 0.0727215 0.2765675 0.3028786 0.0244949 0.1503665 0.4793492 0.3393528 0.3302342 0.3393528 0.3161094 3.370589 0.2436627 0.3671346 0.8042196 0.0118959 0.0316320 0.1511628 0.4717632 0.5695094 0.2460218
420 0.0500000 0.1086632 0.3125000 0.1885057 0.0241379 0.0919540 0.3735632 0.2517241 0.3494253 0.2034483 0.4275862 3.290970 0.2000000 0.4401751 0.8321839 0.0187166 0.1043360 0.0000000 0.1355014 0.0300000 0.0000000
430 0.0352408 0.1211946 0.3251288 0.3370441 0.1500166 0.2829193 0.5192116 0.4903007 0.4019066 0.5122747 0.3176871 3.594239 0.2616792 0.4537651 0.7901886 0.0210464 0.0274583 0.3323529 0.4651652 0.8062648 0.1842029
560 0.0370243 0.2675432 0.3212249 0.7749878 0.3279319 0.6981509 0.8858881 0.8775669 0.8454501 0.8907056 0.8430657 3.654859 0.1975575 0.4461012 0.9168856 0.0198646 0.0093119 0.2441628 0.9361851 0.9081150 0.7911436
650 0.0391787 0.0782240 0.2797546 0.1121114 0.0139249 0.1755829 0.3330959 0.3630829 0.3907383 0.2337435 0.3674223 3.419656 0.2089923 0.3724574 0.7506477 0.0163218 0.0858129 0.1073446 0.4471428 0.0836286 0.0605570
847 0.0238349 0.2993056 0.4104763 0.8071380 0.2932331 0.8681801 0.9025930 0.8960382 0.8930981 0.8992674 0.8916763 3.841498 0.3503425 0.4833075 0.9104251 0.0199813 0.0107460 0.3666882 0.9648313 0.9201788 0.8821814
855 0.0342950 0.0671954 0.2826415 0.1436407 0.0085704 0.1021598 0.2272883 0.1621529 0.6732945 0.1391841 0.1631814 3.391145 0.1879230 0.3185794 0.8056222 0.0120275 0.0501079 0.0285714 0.0885468 0.0841639 0.0000000
874 0.0376182 0.0749967 0.3135647 0.0841081 0.0139454 0.0517141 0.1658919 0.1140325 0.1398896 0.0772807 0.0797501 3.267373 0.1793376 0.3552896 0.7838466 0.0081177 0.0452472 0.0878378 0.0325652 0.1990172 0.0000000

Correlación

bdf<-base_in[1:15,2:22]
mat_cor <- hetcor(bdf)$correlations #matriz de correlación policorica
## Warning in hetcor.data.frame(bdf): the correlation matrix has been adjusted to
## make it positive-definite
ggcorrplot(mat_cor,type="lower",hc.order = T)

Prueba de Barlett

cortest.bartlett(mat_cor,n=NULL)->p_esf
## Warning in cortest.bartlett(mat_cor, n = NULL): n not specified, 100 used
p_esf$p
## [1] 0

El resultado del p valor de la prueba permite rechazar las hipotesis nula de que las variables no estƔn correlacionadas entre sƭ.

Boxplot: Caja y bigotes Para cada variable

# GrƔficos univariados
Result <- mvn(data=base_in[,2:22], mvnTest="royston", univariatePlot="box")
## Warning in uniPlot(data, type = univariatePlot): Box-Plots are based on
## standardized values (centered and scaled).

#Result2<- mvn(data=base_in[,2:22], mvnTest="royston", univariatePlot="histogram")
#result3<-mvn(data=base_in[,2:22], mvnTest = "royston", univariatePlot = "qqplot")

Test de normalidad univariada:

Para cada variable se realiza el test Shapiro-Wilks, los reusltados muestran que sólo 3 variables siguen esta distribución:

# test de normalidad univariante
# Test de Shapiro-Wilks
result <- mvn(data = base_in[,2:22], univariateTest = "SW", desc = TRUE)
result$univariateNormality
##            Test   Variable Statistic   p value Normality
## 1  Shapiro-Wilk  embar_a      0.9386    0.3652    YES   
## 2  Shapiro-Wilk   analfa      0.6853    0.0002    NO    
## 3  Shapiro-Wilk   ninis       0.8491    0.0169    NO    
## 4  Shapiro-Wilk  piso_in      0.7927    0.0030    NO    
## 5  Shapiro-Wilk  pared_in     0.7579    0.0011    NO    
## 6  Shapiro-Wilk  sin_elec     0.7456    0.0008    NO    
## 7  Shapiro-Wilk  sin_gas      0.8953    0.0806    YES   
## 8  Shapiro-Wilk  sin_alc      0.8709    0.0348    NO    
## 9  Shapiro-Wilk  sin_basu     0.8850    0.0563    YES   
## 10 Shapiro-Wilk  sin_acu      0.8122    0.0053    NO    
## 11 Shapiro-Wilk  v_rural      0.8784    0.0450    NO    
## 12 Shapiro-Wilk   T_hog       0.9482    0.4973    YES   
## 13 Shapiro-Wilk  no_estu      0.7346    0.0006    NO    
## 14 Shapiro-Wilk sin_educm     0.8908    0.0691    YES   
## 15 Shapiro-Wilk  sin_int      0.9616    0.7201    YES   
## 16 Shapiro-Wilk aten_salud    0.9347    0.3202    YES   
## 17 Shapiro-Wilk    disc       0.8966    0.0845    YES   
## 18 Shapiro-Wilk  fall_men     0.9457    0.4598    YES   
## 19 Shapiro-Wilk per_etnia     0.8885    0.0638    YES   
## 20 Shapiro-Wilk leng_etnia    0.8933    0.0754    YES   
## 21 Shapiro-Wilk viv_etnia     0.7103    0.0003    NO

Test Normalidad Multivariada:

Test de Mardia. No se cumple normalidad multivariada en la base de datos de 22 indicadores.

Se viola el supuesto de normalidad multivariada Hay que utilizar un estimador robusto para obtener las componentes ¿cuÔl?

Preguntar al profe MartĆ­n

############## PRUEBAS ########################
# test de normalidad
# test de Mardia en MVN
prueba1 <- mvn(data = base_in[,2:22], mvnTest = "mardia")
prueba1$multivariateNormality
##              Test         Statistic               p value Result
## 1 Mardia Skewness  4628.15001992833 8.27116713126411e-254     NO
## 2 Mardia Kurtosis -0.28638447720968     0.774583662441416    YES
## 3             MVN              <NA>                  <NA>     NO

Componentes principales

Aún sin cumplir el supuesto de normalidad, se realizó el CPA como ejercicio, y para tener una línea de código hecha.

Preparar base de datos.

N_MUN<-c('Riohacha',    'Albania',  'Barrancas',    'Dibulla',  'Distracción',  'El Molino',    'Fonseca',  'Hatonuevo',    'La Jagua del Pilar',   'Maicao',   'Manaure',  'San Juan del Cesar',   'Uribia',   'Urumita',  'Villanueva')

base_in<-base_in %>% data.frame %>% set_rownames(N_MUN) #ID = Municipios
base_in$N_MUN<-NULL #Borrar columna municipior
x<-base_in[,2:22] #Seleccionar datos numericos

PCA automƔtico

Se obtienen las componentes, la primera explica el 68,7% de la variabilidad.

## pca using R base facilities
pca1 <- prcomp(x, scale = TRUE)
res.pca <- PCA(x,  graph = FALSE)
summary(pca1)
## Importance of components:
##                           PC1     PC2     PC3     PC4     PC5     PC6     PC7
## Standard deviation     3.7977 1.29572 1.14753 1.03169 0.90839 0.66751 0.63886
## Proportion of Variance 0.6868 0.07995 0.06271 0.05068 0.03929 0.02122 0.01944
## Cumulative Proportion  0.6868 0.76674 0.82945 0.88013 0.91943 0.94064 0.96008
##                            PC8     PC9    PC10    PC11    PC12    PC13    PC14
## Standard deviation     0.54813 0.41028 0.37550 0.32137 0.26890 0.18504 0.13684
## Proportion of Variance 0.01431 0.00802 0.00671 0.00492 0.00344 0.00163 0.00089
## Cumulative Proportion  0.97439 0.98240 0.98912 0.99403 0.99748 0.99911 1.00000
##                             PC15
## Standard deviation     3.403e-16
## Proportion of Variance 0.000e+00
## Cumulative Proportion  1.000e+00

PCA automƔtico

1ra componente: Mayor peso las variables relacionadas con las condiciones habitacionales de los habitantes.

2da componente: Mayor peso condiciones socioeconómicas relacionadas con trampas de pobreza: Embarazo adolescente, no atención en salud.

3ra componente: Niveles educativos y etnia, jóvenes que no estudian ni trabajan.

pca1
## Standard deviations (1, .., p=15):
##  [1] 3.797721e+00 1.295721e+00 1.147533e+00 1.031690e+00 9.083894e-01
##  [6] 6.675062e-01 6.388604e-01 5.481258e-01 4.102803e-01 3.755043e-01
## [11] 3.213679e-01 2.688970e-01 1.850381e-01 1.368449e-01 3.402929e-16
## 
## Rotation (n x k) = (21 x 15):
##                   PC1         PC2          PC3          PC4          PC5
## embar_a    -0.1057460 -0.54078550 -0.058952662 -0.482314329  0.037741890
## analfa      0.2396843 -0.14129895  0.187231232  0.085200840  0.198312567
## ninis       0.1867735  0.20571658  0.407555565  0.210693795 -0.354182659
## piso_in     0.2575907  0.07896432 -0.059449242 -0.077161437  0.099948103
## pared_in    0.2493973  0.07514911 -0.086369431 -0.050676270 -0.044723139
## sin_elec    0.2544580  0.13414926  0.060742690  0.022203960  0.014476477
## sin_gas     0.2504166  0.04146080 -0.051068494 -0.167982144  0.063621864
## sin_alc     0.2559412 -0.07863813 -0.004621535 -0.032495706  0.083224032
## sin_basu    0.2191461  0.16234403  0.114319042 -0.082339620  0.305093596
## sin_acu     0.2585183  0.06117896 -0.055756810 -0.048716339 -0.001772725
## v_rural     0.2265844 -0.18324150  0.139924416 -0.056270723  0.360851727
## T_hog       0.1811530 -0.33026522  0.031484802  0.434703758  0.109932778
## no_estu     0.1618470 -0.41489711  0.216576454  0.408061564 -0.052724020
## sin_educm   0.1910144  0.15939797  0.227665933 -0.260583848 -0.515852784
## sin_int     0.2061226  0.12845499  0.232832366 -0.244489953  0.205466499
## aten_salud  0.1633163 -0.38397662  0.075901820 -0.341306294 -0.283637621
## disc       -0.1562521 -0.09706058  0.620593329 -0.149086411  0.035384569
## fall_men    0.2215252 -0.17929429 -0.177145241  0.157152095 -0.386974180
## per_etnia   0.2392723  0.01748122 -0.189668697 -0.134033967 -0.016324866
## leng_etnia  0.2241782 -0.09029088 -0.353524028  0.003921204 -0.123535849
## viv_etnia   0.2512391  0.15238871 -0.071607908 -0.023632620  0.131015906
##                     PC6         PC7          PC8         PC9         PC10
## embar_a    -0.298340856  0.25923803  0.152030850  0.02459516 -0.140933493
## analfa     -0.008515441  0.01859478  0.005835512  0.27872511  0.500956697
## ninis      -0.083452000  0.27661621  0.060726245 -0.04771364  0.009473976
## piso_in    -0.086794440  0.03066747  0.006304001  0.13818934 -0.019042811
## pared_in   -0.063542990 -0.12818448  0.432734700  0.12648833  0.274718149
## sin_elec    0.053650816 -0.06789086 -0.080957168  0.02846338  0.013443916
## sin_gas    -0.121930801  0.05911879 -0.330504085 -0.19484271 -0.034378443
## sin_alc    -0.001086608 -0.20750283 -0.173903920  0.09899477  0.163824587
## sin_basu    0.538644052 -0.05163337  0.086558188 -0.24362518 -0.226154745
## sin_acu    -0.100424165 -0.11573956  0.056064057  0.08536731 -0.056189068
## v_rural    -0.228444136 -0.11916930 -0.124896676 -0.05313595  0.100204009
## T_hog      -0.192862488 -0.10124629  0.505091938 -0.42651726 -0.052173889
## no_estu     0.095112035  0.16048604 -0.247542979  0.41585657 -0.420785424
## sin_educm  -0.281628287 -0.10957058  0.128042797  0.09673980 -0.093573382
## sin_int     0.049948272  0.63202238  0.125717612 -0.18838059 -0.082632556
## aten_salud  0.580534542 -0.13499023  0.134133646  0.09010096  0.107608616
## disc       -0.123706547 -0.34347838 -0.286263205 -0.30409128  0.078591488
## fall_men    0.098685912  0.05103922 -0.172664963 -0.38777883  0.068232831
## per_etnia  -0.108962553 -0.34998180 -0.018297384 -0.10534196 -0.488329831
## leng_etnia -0.059069146  0.21865301 -0.366187502 -0.20623909  0.265456654
## viv_etnia  -0.129433379 -0.02390110 -0.028750124  0.24900614 -0.184392888
##                    PC11        PC12         PC13        PC14         PC15
## embar_a    -0.366067085  0.20771597 -0.097552073 -0.09124767  0.083438670
## analfa     -0.152729249 -0.05746618  0.029890016 -0.11592010  0.479225993
## ninis      -0.374573369 -0.15581227 -0.349175125 -0.06376331 -0.256804106
## piso_in    -0.027129597  0.08700597 -0.298171806 -0.37429903  0.054342308
## pared_in    0.014905026  0.01706911  0.125853381 -0.17097222 -0.221397183
## sin_elec   -0.431169729  0.13856182  0.047884104  0.48559463  0.034888609
## sin_gas     0.007362767  0.25209013 -0.127608462  0.41953352  0.081445310
## sin_alc    -0.080953524  0.12566913  0.329732966  0.13551531 -0.187518232
## sin_basu    0.021302789  0.34865246 -0.247940105 -0.24343716  0.187674128
## sin_acu     0.074064196  0.27341928  0.340515934 -0.19080199 -0.168549206
## v_rural     0.359186761 -0.43102433 -0.337880503  0.11907557 -0.011263787
## T_hog       0.044431089  0.16461591 -0.033784677  0.17118562 -0.076973999
## no_estu     0.180024716  0.12821943  0.091052280 -0.05515714 -0.048878193
## sin_educm   0.434514590  0.20929415 -0.073372317  0.09593910  0.294888281
## sin_int     0.179805249 -0.22772213  0.443187389  0.04446350 -0.060087016
## aten_salud  0.041852388 -0.19144821 -0.111957385  0.17193626 -0.234537108
## disc       -0.100864390  0.08480817  0.174594622 -0.28914319 -0.169827543
## fall_men   -0.107423491 -0.19840341  0.236084309 -0.20745212  0.451463575
## per_etnia  -0.169649042 -0.42148836  0.067295798 -0.10549636  0.009253073
## leng_etnia  0.144856246  0.15802033 -0.171754866 -0.21536890 -0.381616885
## viv_etnia  -0.212581187 -0.12546336  0.004434784 -0.08703323 -0.080139024

Valores propios

## Valores propios
res.pca$eig
##          eigenvalue percentage of variance cumulative percentage of variance
## comp 1  14.42268836            68.67946840                          68.67947
## comp 2   1.67889321             7.99472959                          76.67420
## comp 3   1.31683201             6.27062862                          82.94483
## comp 4   1.06438422             5.06849628                          88.01332
## comp 5   0.82517127             3.92938700                          91.94271
## comp 6   0.44556457             2.12173603                          94.06445
## comp 7   0.40814257             1.94353605                          96.00798
## comp 8   0.30044188             1.43067562                          97.43866
## comp 9   0.16832989             0.80157089                          98.24023
## comp 10  0.14100350             0.67144524                          98.91167
## comp 11  0.10327731             0.49179671                          99.40347
## comp 12  0.07230558             0.34431228                          99.74778
## comp 13  0.03423909             0.16304329                          99.91083
## comp 14  0.01872654             0.08917399                         100.00000

Resultados por variables:

## resultados por variables
res.pca$var
## $coord
##                 Dim.1       Dim.2        Dim.3        Dim.4        Dim.5
## embar_a    -0.4015938  0.70070719 -0.067650126  0.497598861 -0.034284332
## analfa      0.9102540  0.18308403  0.214854019 -0.087900853 -0.180145030
## ninis       0.7093136 -0.26655131  0.467683465 -0.217370678  0.321735767
## piso_in     0.9782577 -0.10231574 -0.068219967  0.079606681 -0.090791796
## pared_in    0.9471416 -0.09737228 -0.099111773  0.052282200  0.040626025
## sin_elec    0.9663607 -0.17382002  0.069704242 -0.022907603 -0.013150278
## sin_gas     0.9510125 -0.05372164 -0.058602782  0.173305495 -0.057793426
## sin_alc     0.9719933  0.10189308 -0.005303364  0.033525494 -0.075599827
## sin_basu    0.8322558 -0.21035258  0.131184874  0.084948962 -0.277143784
## sin_acu     0.9817804 -0.07927087 -0.063982781  0.050260159  0.001610324
## v_rural     0.8605043  0.23742988  0.160567886  0.058053941 -0.327793878
## T_hog       0.6879686  0.42793162  0.036129850 -0.448479512 -0.099861768
## no_estu     0.6146497  0.53759094  0.248528630 -0.420993027  0.047893940
## sin_educm   0.7254196 -0.20653531  0.261254173  0.268841746  0.468595192
## sin_int     0.7827964 -0.16644185  0.267182826  0.252237836 -0.186643586
## aten_salud  0.6202300  0.49752662  0.087099844  0.352122284  0.257653403
## disc       -0.5934020  0.12576344  0.712151331  0.153810956 -0.032142967
## fall_men    0.8412911  0.23231539 -0.203280011 -0.162132242  0.351523237
## per_etnia   0.9086895 -0.02265079 -0.217651090  0.138281501  0.014829335
## leng_etnia  0.8513664  0.11699180 -0.405680492 -0.004045467  0.112218654
## viv_etnia   0.9541362 -0.19745327 -0.082172439  0.024381537 -0.119013458
## 
## $cor
##                 Dim.1       Dim.2        Dim.3        Dim.4        Dim.5
## embar_a    -0.4015938  0.70070719 -0.067650126  0.497598861 -0.034284332
## analfa      0.9102540  0.18308403  0.214854019 -0.087900853 -0.180145030
## ninis       0.7093136 -0.26655131  0.467683465 -0.217370678  0.321735767
## piso_in     0.9782577 -0.10231574 -0.068219967  0.079606681 -0.090791796
## pared_in    0.9471416 -0.09737228 -0.099111773  0.052282200  0.040626025
## sin_elec    0.9663607 -0.17382002  0.069704242 -0.022907603 -0.013150278
## sin_gas     0.9510125 -0.05372164 -0.058602782  0.173305495 -0.057793426
## sin_alc     0.9719933  0.10189308 -0.005303364  0.033525494 -0.075599827
## sin_basu    0.8322558 -0.21035258  0.131184874  0.084948962 -0.277143784
## sin_acu     0.9817804 -0.07927087 -0.063982781  0.050260159  0.001610324
## v_rural     0.8605043  0.23742988  0.160567886  0.058053941 -0.327793878
## T_hog       0.6879686  0.42793162  0.036129850 -0.448479512 -0.099861768
## no_estu     0.6146497  0.53759094  0.248528630 -0.420993027  0.047893940
## sin_educm   0.7254196 -0.20653531  0.261254173  0.268841746  0.468595192
## sin_int     0.7827964 -0.16644185  0.267182826  0.252237836 -0.186643586
## aten_salud  0.6202300  0.49752662  0.087099844  0.352122284  0.257653403
## disc       -0.5934020  0.12576344  0.712151331  0.153810956 -0.032142967
## fall_men    0.8412911  0.23231539 -0.203280011 -0.162132242  0.351523237
## per_etnia   0.9086895 -0.02265079 -0.217651090  0.138281501  0.014829335
## leng_etnia  0.8513664  0.11699180 -0.405680492 -0.004045467  0.112218654
## viv_etnia   0.9541362 -0.19745327 -0.082172439  0.024381537 -0.119013458
## 
## $cos2
##                Dim.1        Dim.2        Dim.3        Dim.4        Dim.5
## embar_a    0.1612776 0.4909905636 4.576540e-03 0.2476046266 1.175415e-03
## analfa     0.8285624 0.0335197610 4.616225e-02 0.0077265600 3.245223e-02
## ninis      0.5031258 0.0710496029 2.187278e-01 0.0472500115 1.035139e-01
## piso_in    0.9569882 0.0104685109 4.653964e-03 0.0063372237 8.243150e-03
## pared_in   0.8970773 0.0094813616 9.823144e-03 0.0027334284 1.650474e-03
## sin_elec   0.9338530 0.0302134009 4.858681e-03 0.0005247583 1.729298e-04
## sin_gas    0.9044247 0.0028860144 3.434286e-03 0.0300347947 3.340080e-03
## sin_alc    0.9447710 0.0103821999 2.812567e-05 0.0011239587 5.715334e-03
## sin_basu   0.6926497 0.0442482097 1.720947e-02 0.0072163261 7.680868e-02
## sin_acu    0.9638928 0.0062838703 4.093796e-03 0.0025260836 2.593144e-06
## v_rural    0.7404677 0.0563729480 2.578205e-02 0.0033702601 1.074488e-01
## T_hog      0.4733008 0.1831254715 1.305366e-03 0.2011338726 9.972373e-03
## no_estu    0.3777943 0.2890040208 6.176648e-02 0.1772351290 2.293829e-03
## sin_educm  0.5262336 0.0426568345 6.825374e-02 0.0722758842 2.195815e-01
## sin_int    0.6127702 0.0277028888 7.138666e-02 0.0636239257 3.483583e-02
## aten_salud 0.3846852 0.2475327356 7.586383e-03 0.1239901027 6.638528e-02
## disc       0.3521259 0.0158164433 5.071595e-01 0.0236578103 1.033170e-03
## fall_men   0.7077707 0.0539704418 4.132276e-02 0.0262868638 1.235686e-01
## per_etnia  0.8257167 0.0005130581 4.737200e-02 0.0191217736 2.199092e-04
## leng_etnia 0.7248248 0.0136870819 1.645767e-01 0.0000163658 1.259303e-02
## viv_etnia  0.9103760 0.0389877950 6.752310e-03 0.0005944594 1.416420e-02
## 
## $contrib
##               Dim.1       Dim.2        Dim.3        Dim.4        Dim.5
## embar_a    1.118221 29.24489535  0.347541641 23.262711169 1.424450e-01
## analfa     5.744854  1.99653919  3.505553407  0.725918318 3.932787e+00
## ninis      3.488433  4.23193103 16.610153875  4.439187533 1.254454e+01
## piso_in    6.635297  0.62353644  0.353421234  0.595388735 9.989623e-01
## pared_in   6.219903  0.56473881  0.745967860  0.256808429 2.000159e-01
## sin_elec   6.474889  1.79960230  0.368967437  0.049301585 2.095684e-02
## sin_gas    6.270847  0.17189982  0.260799104  2.821800077 4.047742e-01
## sin_alc    6.550589  0.61839549  0.002135859  0.105597089 6.926240e-01
## sin_basu   4.802501  2.63555831  1.306884332  0.677981309 9.308210e+00
## sin_acu    6.683170  0.37428648  0.310882192  0.237328166 3.142553e-04
## v_rural    5.134048  3.35774470  1.957884218  0.316639427 1.302140e+01
## T_hog      3.281641 10.90751156  0.099129278 18.896735696 1.208522e+00
## no_estu    2.619444 17.21396085  4.690536025 16.651423979 2.779822e-01
## sin_educm  3.648651  2.54077116  5.183177699  6.790394197 2.661041e+01
## sin_int    4.248654  1.65006854  5.421091087  5.977533730 4.221648e+00
## aten_salud 2.667223 14.74380464  0.576108625 11.648998599 8.045030e+00
## disc       2.441472  0.94207560 38.513607980  2.222675783 1.252068e-01
## fall_men   4.907343  3.21464411  3.138043630  2.469678086 1.497490e+01
## per_etnia  5.725123  0.03055931  3.597421447  1.796510436 2.665012e-02
## leng_etnia 5.025587  0.81524434 12.497923816  0.001537584 1.526111e+00
## viv_etnia  6.312110  2.32223197  0.512769255  0.055850072 1.716517e+00
## contribution of variables
res.pca$var$contrib
##               Dim.1       Dim.2        Dim.3        Dim.4        Dim.5
## embar_a    1.118221 29.24489535  0.347541641 23.262711169 1.424450e-01
## analfa     5.744854  1.99653919  3.505553407  0.725918318 3.932787e+00
## ninis      3.488433  4.23193103 16.610153875  4.439187533 1.254454e+01
## piso_in    6.635297  0.62353644  0.353421234  0.595388735 9.989623e-01
## pared_in   6.219903  0.56473881  0.745967860  0.256808429 2.000159e-01
## sin_elec   6.474889  1.79960230  0.368967437  0.049301585 2.095684e-02
## sin_gas    6.270847  0.17189982  0.260799104  2.821800077 4.047742e-01
## sin_alc    6.550589  0.61839549  0.002135859  0.105597089 6.926240e-01
## sin_basu   4.802501  2.63555831  1.306884332  0.677981309 9.308210e+00
## sin_acu    6.683170  0.37428648  0.310882192  0.237328166 3.142553e-04
## v_rural    5.134048  3.35774470  1.957884218  0.316639427 1.302140e+01
## T_hog      3.281641 10.90751156  0.099129278 18.896735696 1.208522e+00
## no_estu    2.619444 17.21396085  4.690536025 16.651423979 2.779822e-01
## sin_educm  3.648651  2.54077116  5.183177699  6.790394197 2.661041e+01
## sin_int    4.248654  1.65006854  5.421091087  5.977533730 4.221648e+00
## aten_salud 2.667223 14.74380464  0.576108625 11.648998599 8.045030e+00
## disc       2.441472  0.94207560 38.513607980  2.222675783 1.252068e-01
## fall_men   4.907343  3.21464411  3.138043630  2.469678086 1.497490e+01
## per_etnia  5.725123  0.03055931  3.597421447  1.796510436 2.665012e-02
## leng_etnia 5.025587  0.81524434 12.497923816  0.001537584 1.526111e+00
## viv_etnia  6.312110  2.32223197  0.512769255  0.055850072 1.716517e+00

Sedimentación

## screeplot
myscree(x, colline = cols[1], ylab = '', xlab = 'NĆŗmero de componentes', main = '')
mtext(expression(lambda), 2, las = 1, side = 2.8)

AnƔlisis Paralelo

Realizado a travƩs de 2 comandos diferentes, ambos sugieren utilizar una sola componente.

#MƩtodo 1
corr<-cor(bdf)
fa.parallel(corr,n.obs=15,fa="fa",fm="minres")
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used
## In smc, smcs < 0 were set to .0
## In smc, smcs < 0 were set to .0
## In factor.scores, the correlation matrix is singular, an approximation is used

## Parallel analysis suggests that the number of factors =  1  and the number of components =  NA
#MƩtodo 2
library(paran)
paran(x, cfa=F, graph = T)
## 
## Using eigendecomposition of correlation matrix.
## Computing: 10%  20%  30%  40%  50%  60%  70%  80%  90%  100%
## 
## 
## Results of Horn's Parallel Analysis for component retention
## 630 iterations, using the mean estimate
## 
## -------------------------------------------------- 
## Component   Adjusted    Unadjusted    Estimated 
##             Eigenvalue  Eigenvalue    Bias 
## -------------------------------------------------- 
## 1          11.420582   14.422688      3.002106
## -------------------------------------------------- 
## 
## Adjusted eigenvalues > 1 indicate dimensions to retain.
## (1 components retained)

Varianza acumulada

## cummulative variance
lambdas <- pca1$sdev^2
perc.lambdas <- lambdas/sum(lambdas)
cvar <- 100*cumsum(perc.lambdas)
plot(cvar, type = 'l', col = cols[1], las = 1, ylab = 'Varianza acumulada (%)')
points(cvar, type = 'p', pch = 16)

Municipios

fviz_pca_ind(res.pca,
             label = "all", # show individual labels
             habillage = "none", # color by groups?
             #groups = mygroup, # is there any groups?
             palette = c("#00AFBB", "#E7B800", "#FC4E07"),
             addEllipses = TRUE # concentration ellipses?
) + ggtitle("PCA- Municipios La Guajira") #+  theme(legend.position = "none")

Variables

## visualize variables
fviz_pca_var(res.pca, col.var = cols[1])

## visualize biplot
fviz_pca_biplot(res.pca, label = c("ind", "var"),
                addEllipses = TRUE, 
                col.ind = 'gray60',
                col.var = cols[1],
                ellipse.level = 0.95,
                ggtheme = theme_minimal())

Rotación

rot<-varimax(pca1$rotation)
rot
## $loadings
## 
## Loadings:
##            PC1    PC2    PC3    PC4    PC5    PC6    PC7    PC8    PC9   
## embar_a           -0.965                                                 
## analfa                                                              0.135
## ninis                                                                    
## piso_in     0.337 -0.157                      -0.147 -0.125 -0.145 -0.161
## pared_in                 -0.105 -0.209         0.121         0.119       
## sin_elec                                                            0.173
## sin_gas                                -0.178                      -0.221
## sin_alc    -0.137         0.174         0.114                            
## sin_basu    0.919                                                        
## sin_acu                          0.119 -0.100                            
## v_rural                                                                  
## T_hog                                                        0.932       
## no_estu                          0.959                                   
## sin_educm                              -0.945                            
## sin_int                                               0.976              
## aten_salud                                     0.947                     
## disc                      0.952                                          
## fall_men           0.109               -0.124         0.112  0.186 -0.334
## per_etnia                                                                
## leng_etnia                                                         -0.850
## viv_etnia                -0.127         0.111 -0.144        -0.192       
##            PC10   PC11   PC12   PC13   PC14   PC15  
## embar_a                                             
## analfa      0.168        -0.144                0.817
## ninis             -0.918                            
## piso_in           -0.164 -0.158  0.174 -0.123  0.132
## pared_in                         0.588 -0.160       
## sin_elec          -0.152  0.117         0.674       
## sin_gas                  -0.136 -0.153  0.608       
## sin_alc            0.163         0.366  0.335       
## sin_basu                                            
## sin_acu            0.128  0.142  0.518              
## v_rural    -0.114        -0.842 -0.127         0.104
## T_hog                                               
## no_estu                                             
## sin_educm                                           
## sin_int                                             
## aten_salud                                          
## disc                                                
## fall_men   -0.386         0.393 -0.277         0.503
## per_etnia  -0.829                             -0.114
## leng_etnia  0.100                0.102              
## viv_etnia  -0.303 -0.163 -0.100  0.238              
## 
##                  PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8   PC9  PC10
## SS loadings    1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
## Proportion Var 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048
## Cumulative Var 0.048 0.095 0.143 0.190 0.238 0.286 0.333 0.381 0.429 0.476
##                 PC11  PC12  PC13  PC14  PC15
## SS loadings    1.000 1.000 1.000 1.000 1.000
## Proportion Var 0.048 0.048 0.048 0.048 0.048
## Cumulative Var 0.524 0.571 0.619 0.667 0.714
## 
## $rotmat
##              [,1]        [,2]        [,3]        [,4]        [,5]        [,6]
##  [1,]  0.27370324  0.09547072 -0.16181671  0.17547216 -0.19383191  0.14058067
##  [2,]  0.19536329  0.51576512 -0.12831289 -0.41427366 -0.14040311 -0.40996712
##  [3,]  0.09598557  0.05678809  0.62150918  0.22109912 -0.20204345  0.07929606
##  [4,] -0.11250637  0.50409955 -0.14451871  0.40558522  0.26650972 -0.32325161
##  [5,]  0.33889845 -0.07681143  0.01758315 -0.02916530  0.56061585 -0.32096896
##  [6,]  0.47640283  0.33605488 -0.09949013  0.08571702  0.29022734  0.62301382
##  [7,] -0.02702007 -0.26956464 -0.36085389  0.15637661  0.08492053 -0.15218124
##  [8,]  0.09241062 -0.16560999 -0.33900049 -0.29860318 -0.09433459  0.14979663
##  [9,] -0.18157412 -0.07870995 -0.35205742  0.43340274 -0.01953829  0.04439972
## [10,] -0.24305690  0.14752897  0.07768436 -0.44941425  0.10969599  0.14010255
## [11,]  0.02671669  0.35898087 -0.08627652  0.17366240 -0.47307098  0.04031372
## [12,]  0.37465090 -0.22971265  0.09702799  0.15440866 -0.20445713 -0.21740951
## [13,] -0.35431888  0.15106650  0.23243547  0.11403399  0.09023901 -0.07110524
## [14,] -0.34361479  0.11307465 -0.26262308 -0.04818971 -0.07302238  0.19758249
## [15,]  0.19295413 -0.05834052 -0.15815508 -0.05700330 -0.35319320 -0.22367872
##              [,7]         [,8]         [,9]        [,10]       [,11]
##  [1,]  0.20201117  0.153934241 -0.283050899 -0.347683322 -0.20533409
##  [2,]  0.10852484 -0.372244674  0.144288411 -0.006114547 -0.24849936
##  [3,]  0.22339614  0.017849080  0.416412693  0.253539774 -0.41011338
##  [4,] -0.23419788  0.458447085 -0.009822075  0.092737837 -0.21276304
##  [5,]  0.17231720  0.028346572  0.216014680  0.089742158  0.32735331
##  [6,]  0.06919440 -0.145909319  0.069207935  0.118683590  0.11018113
##  [7,]  0.63801321 -0.098402051 -0.244114525  0.330130591 -0.28642422
##  [8,]  0.09517924  0.498188725  0.463179731  0.082352427 -0.13146231
##  [9,] -0.25041412 -0.540520392  0.338851193  0.154923702 -0.03728616
## [10,] -0.09445018 -0.036541308 -0.254503071  0.531255854 -0.01498029
## [11,]  0.19004615  0.065123590 -0.181296041  0.236842440  0.41757522
## [12,] -0.23748065  0.130818573 -0.130088155  0.499244011  0.17485515
## [13,]  0.47345577  0.005671214  0.150449161 -0.118699204  0.40902673
## [14,]  0.05661185  0.179548590  0.271688050  0.179650687  0.10304853
## [15,] -0.02346079 -0.012482199  0.272314376 -0.101743244  0.28199952
##             [,12]        [,13]        [,14]       [,15]
##  [1,] -0.21253957  0.436881518  0.386382289  0.32964429
##  [2,]  0.12359524  0.125848960  0.110829050 -0.20880031
##  [3,] -0.17735789 -0.070497308  0.027664714  0.10956095
##  [4,]  0.11801788 -0.091609977 -0.093893429  0.14899010
##  [5,] -0.49875382  0.093234059  0.098018668  0.03671929
##  [6,]  0.29552704 -0.157612316 -0.024512715  0.02474029
##  [7,]  0.12168532 -0.234013708 -0.061008237  0.03020801
##  [8,]  0.07514623  0.335746002 -0.334794124 -0.04795946
##  [9,] -0.10606666  0.343349478 -0.068443071  0.13339950
## [10,] -0.11044880  0.186887073  0.004644235  0.52426729
## [11,] -0.38211367  0.003847001 -0.345980699 -0.19487626
## [12,]  0.36378525  0.255413966  0.303104288 -0.15761382
## [13,]  0.44490308  0.362025528  0.041462624  0.11165920
## [14,] -0.14114260 -0.231789759  0.695758102 -0.20880933
## [15,]  0.13402092 -0.419590974  0.027337357  0.62993873