library(data.table)
library(ggplot2)
library(dplyr)
library(jiebaR)
library(tidytext)
library(stringr)
library(tm)
library(topicmodels)
library(purrr)
require(RColorBrewer)
mycolors <- colorRampPalette(brewer.pal(8, "Set3"))(20)
透過文字分析平台,載入聯合新聞網、蘋果新聞網、東森新聞網的新聞,搜尋關鍵字為「藻礁、三接、陳昭倫、潘忠政」,時間從2020-11-01到2021-05-15。
metadata <- fread("./data/news_reef_articleMetaData.csv", encoding = "UTF-8")
從下圖可以看到藻礁公投討論有幾波討論高點
1)在228連假時連署呼聲的新聞報導數量增加
2)3/13藻礁公投連署書收69萬餘件,準備送進中選會進行公投成案
3)3/31農委會主委陳吉仲代表政府拜訪發起來潘忠政
4)4/22世界地球日蔡英文總統接見環團組織,含潘忠政對藻礁議題無交集
5)5/3行政院提三接外推方案
metadata %>%
mutate(artDate = as.Date(artDate)) %>%
group_by(artDate) %>%
summarise(count = n())%>%
ggplot(aes(artDate,count))+
geom_line(color="gray")+
geom_point(aes(colour = artDate))
jieba_tokenizer = worker(user="reef_dict.txt", stop_word = "./data/reef_stop_words.txt")
news_tokenizer <- function(t) {
lapply(t, function(x) {
if(nchar(x)>1){
tokens <- segment(x, jieba_tokenizer)
# 去掉字串長度爲1的詞彙
tokens <- tokens[nchar(tokens)>1]
return(tokens)
}
})
}
tokens <- metadata %>%
unnest_tokens(word, sentence, token=news_tokenizer) %>%
filter(!str_detect(word, regex("[0-9a-zA-Z]"))) %>%
count(artUrl, word) %>%
rename(count=n)
tokens
dtm <-tokens %>% cast_dtm(artUrl, word, count)
dtm
## <<DocumentTermMatrix (documents: 573, terms: 12129)>>
## Non-/sparse entries: 69591/6880326
## Sparsity : 99%
## Maximal term length: 7
## Weighting : term frequency (tf)
inspect(dtm[1:10,1:10])
## <<DocumentTermMatrix (documents: 10, terms: 10)>>
## Non-/sparse entries: 11/89
## Sparsity : 89%
## Maximal term length: 4
## Weighting : term frequency (tf)
## Sample :
## Terms
## Docs 一年 人士 人事 人事安排 人選 三方
## https://news.ebc.net.tw/news/article/250089 1 1 2 2 1 1
## https://news.ebc.net.tw/news/article/250897 0 2 0 0 0 0
## https://news.ebc.net.tw/news/article/250926 0 0 0 0 0 0
## https://news.ebc.net.tw/news/article/251058 0 0 0 0 0 0
## https://news.ebc.net.tw/news/article/251166 0 0 0 0 0 0
## https://news.ebc.net.tw/news/article/251281 0 0 0 0 0 0
## https://news.ebc.net.tw/news/article/251438 0 0 0 0 0 0
## https://news.ebc.net.tw/news/article/251477 0 0 0 0 0 0
## https://news.ebc.net.tw/news/article/251725 0 0 0 0 0 0
## https://news.ebc.net.tw/news/article/251792 0 0 0 0 0 0
## Terms
## Docs 上是 上海 大陸 不論是
## https://news.ebc.net.tw/news/article/250089 1 1 3 1
## https://news.ebc.net.tw/news/article/250897 0 0 0 0
## https://news.ebc.net.tw/news/article/250926 0 0 0 0
## https://news.ebc.net.tw/news/article/251058 0 0 0 0
## https://news.ebc.net.tw/news/article/251166 0 0 0 0
## https://news.ebc.net.tw/news/article/251281 0 0 0 0
## https://news.ebc.net.tw/news/article/251438 0 0 0 0
## https://news.ebc.net.tw/news/article/251477 0 0 0 0
## https://news.ebc.net.tw/news/article/251725 0 0 0 0
## https://news.ebc.net.tw/news/article/251792 0 0 0 0
# lda <- LDA(dtm, k = 3, control = list(seed = 2021))
# lda <- LDA(dtm, k = 5, control = list(seed = 2021,alpha = 2,delta=0.1),method = "Gibbs")
# alpha=50/k delta在TMWS平台測試為0.2有較好的效果(各主題的中心較遠)
lda <- LDA(dtm, k = 5, control = list(seed = 2021,alpha = 10,delta=0.2),method = "Gibbs")
#調整alpha即delta
lda
## A LDA_Gibbs topic model with 5 topics.
topics_words <- tidy(lda, matrix = "beta") # 注意,在tidy function裡面要使用"beta"來取出Phi矩陣。
colnames(topics_words) <- c("topic", "term", "phi")
topics_words
terms依照各主題的phi值由大到小排序,列出前10大
topics_words %>%
group_by(topic) %>%
top_n(10, phi) %>%
ungroup() %>%
mutate(top_words = reorder_within(term,phi,topic)) %>%
ggplot(aes(x = top_words, y = phi, fill = as.factor(topic))) +
geom_col(show.legend = FALSE) +
facet_wrap(~ topic, scales = "free") +
coord_flip() +
scale_x_reordered()
我們嘗試3,4,5,7,8個主題數,將結果存起來,再做進一步分析。 此部分需要跑一段時間,已經將跑完的檔案存成ldas_result.rdata,可以直接載入
ldas = c()
topics = c(3,4,5,7,8)
for(topic in topics){
start_time <- Sys.time()
lda <- LDA(dtm, k = topic, control = list(seed = 2021))
ldas =c(ldas,lda)
print(paste(topic ,paste("topic(s) and use time is ", Sys.time() -start_time)))
save(ldas,file = "ldas_result.rdata") # 將模型輸出成檔案
}
載入每個主題的LDA結果
load("ldas_result.rdata")
topics = c(3,4,5,7,9)
data_frame(k = topics, perplex = map_dbl(ldas, topicmodels::perplexity)) %>%
ggplot(aes(k, perplex)) +
geom_point() +
geom_line() +
labs(title = "Evaluating LDA topic models",
subtitle = "Optimal number of topics (smaller is better)",
x = "Number of topics",
y = "Perplexity")
## Warning: `data_frame()` was deprecated in tibble 1.1.0.
## Please use `tibble()` instead.
create LDAvis所需的json function
此function是將前面使用 “LDA function”所建立的model,轉換為“LDAVis”套件的input格式。
topicmodels_json_ldavis <- function(fitted, doc_term){
require(LDAvis)
require(slam)
###以下function 用來解決,主題數多會出現NA的問題
### 參考 https://github.com/cpsievert/LDAvis/commit/c7234d71168b1e946a361bc00593bc5c4bf8e57e
ls_LDA = function (phi){
jensenShannon <- function(x, y) {
m <- 0.5 * (x + y)
lhs <- ifelse(x == 0, 0, x * (log(x) - log(m+1e-16)))
rhs <- ifelse(y == 0, 0, y * (log(y) - log(m+1e-16)))
0.5 * sum(lhs) + 0.5 * sum(rhs)
}
dist.mat <- proxy::dist(x = phi, method = jensenShannon)
pca.fit <- stats::cmdscale(dist.mat, k = 2)
data.frame(x = pca.fit[, 1], y = pca.fit[, 2])
}
# Find required quantities
phi <- as.matrix(posterior(fitted)$terms)
theta <- as.matrix(posterior(fitted)$topics)
vocab <- colnames(phi)
term_freq <- slam::col_sums(doc_term)
# Convert to json
json_lda <- LDAvis::createJSON(phi = phi, theta = theta,
vocab = vocab,
doc.length = as.vector(table(doc_term$i)),
term.frequency = term_freq, mds.method = ls_LDA)
return(json_lda)
}
for(lda in ldas){
k = lda@k ## lda 主題數
if(k==2){next}
json_res <- topicmodels_json_ldavis(lda,dtm)
# serVis(json_res,open.browser = T)
lda_dir = paste0(k,"_ldavis")
if(!dir.exists(lda_dir)){ dir.create("./",lda_dir)}
serVis(json_res, out.dir =lda_dir, open.browser = F)
writeLines(iconv(readLines(paste0(lda_dir,"/lda.json")), to = "UTF8"))
}
the_lda = ldas[[3]]
json_res <- topicmodels_json_ldavis(the_lda,dtm)
#這一行在windows並未開啟LdaVis網頁??
serVis(json_res,open.browser = T)
serVis(json_res, out.dir = "vis", open.browser = T)
writeLines(iconv(readLines("./vis/lda.json"), to = "UTF8"))
# the_lda = ldas[[3]] ## 選定topic 為 5 的結果
the_lda_5 <- LDA(dtm, k = 5, control = list(seed = 2021,alpha = 10,delta=0.2),method = "Gibbs") #主題數分為5個
topics_words <- tidy(the_lda_5, matrix = "beta") # 注意,在tidy function裡面要使用"beta"來取出Phi矩陣。
colnames(topics_words) <- c("topic", "term", "phi")
topics_words %>% arrange(desc(phi)) %>% head(50)
terms依照各主題的phi值由大到小排序
topics_words %>%
group_by(topic) %>%
top_n(15, phi) %>%
ungroup() %>%
ggplot(aes(x = reorder_within(term,phi,topic), y = phi, fill = as.factor(topic))) +
geom_col(show.legend = FALSE) +
facet_wrap(~ topic, scales = "free") +
coord_flip() +
scale_x_reordered()
去除共通詞彙,
removed_word = c("藻礁","表示","可以","公投","潘忠政")
topics_words %>%
filter(!term %in% removed_word) %>%
group_by(topic) %>%
top_n(10, phi) %>%
ungroup() %>%
ggplot(aes(x = reorder_within(term,phi,topic), y = phi, fill = as.factor(topic))) +
geom_col(show.legend = FALSE) +
facet_wrap(~ topic, scales = "free") +
coord_flip() +
scale_x_reordered()
生態保護-討論主題為保育藻礁及海岸生態
topics_name = c("政院三接外推方案","珍愛藻礁公投連署","府方試圖找環團溝通","藍綠政黨攻防與抹黑","海岸開發議題")
# for every document we have a probability distribution of its contained topics
tmResult <- posterior(the_lda_5)
doc_pro <- tmResult$topics #每篇文章的機率分佈
document_topics <- doc_pro[metadata$artUrl,]
document_topics_df =data.frame(document_topics) #將document_topics轉成dataframe
colnames(document_topics_df) = topics_name
rownames(document_topics_df) = NULL
news_topic = cbind(metadata,document_topics_df)
現在我們看每一篇的文章分佈了!
news_topic %>%
arrange(desc(`政院三接外推方案`)) %>% select(artTitle,artDate,`政院三接外推方案`) %>% head(30)
“政院三接外推方案” 主題多為在確定進行公投後,5/3 政院所提的三接外推方案,以影響民眾投下不同意的動向
news_topic %>%
arrange(desc(`珍愛藻礁公投連署`)) %>% select(artTitle,artDate,`珍愛藻礁公投連署`) %>% head(30)
“珍愛藻礁公投連署” 主題多為3月中旬前藻礁公投連署訴求及連署活動
news_topic %>%
arrange(desc(`府方試圖找環團溝通`)) %>% select(artTitle,artDate,`府方試圖找環團溝通`) %>% head(30)
政府在3月下旬確定連署人數達70萬,開始找陳吉仲與環團溝通,與1月前的態度截然不同
news_topic %>%
arrange(desc(`藍綠政黨攻防與抹黑`)) %>% select(artTitle,artDate,`藍綠政黨攻防與抹黑`) %>% head(30)
“藍綠政黨攻防與抹黑”,這個主題多環保議題轉為政治議題,藍綠政治人物發表評論,相互抨擊。
news_topic %>%
arrange(desc(`海岸開發議題`)) %>% select(artTitle,artDate,`海岸開發議題`) %>% head(30)
「海岸開發議題」,此主題主要在探討海洋排砂量及海洋保育等等議題
news_topic %>%
mutate(artDate = as.Date(artDate)) %>%
group_by(artDate = format(artDate,'%Y%m')) %>% #每月統計
summarise_if(is.numeric, sum, na.rm = TRUE) %>% #每月發表在各主題的篇數
melt(id.vars = "artDate")%>%
ggplot( aes(x=artDate, y=value, fill=variable)) +
geom_bar(stat = "identity") + ylab("value") +
scale_fill_manual(values=mycolors[c(1,5,8,12,15)])+
theme(axis.text.x = element_text(angle = 90, hjust = 1))
3月份為連署階段, 國民黨江啟臣表態支持後,就有更多的政治人員表態。
5月最主要的議題王美花召開記者會,提出政院三接外推案
news_topic %>%
mutate(artDate = as.Date(artDate)) %>%
filter( !format(artDate,'%Y%m') %in% c(202011,202105))%>% #只找202011~202105
group_by(artDate = format(artDate,'%Y%m')) %>%
summarise_if(is.numeric, sum, na.rm = TRUE) %>%
melt(id.vars = "artDate")%>%
ggplot( aes(x=artDate, y=value, fill=variable)) +
geom_bar(stat = "identity") + ylab("value") + #bar圖
scale_fill_manual(values=mycolors[c(1,5,8,12,15)])+
theme(axis.text.x = element_text(angle = 90, hjust = 1))
news_topic %>%
mutate(artDate = as.Date(artDate)) %>%
filter( !format(artDate,'%Y%m') %in% c(202011,202105))%>%
group_by(artDate = format(artDate,'%Y%m')) %>%
summarise_if(is.numeric, sum, na.rm = TRUE) %>%
melt(id.vars = "artDate")%>%
group_by(artDate)%>%
mutate(total_value =sum(value))%>%
ggplot( aes(x=artDate, y=value/total_value, fill=variable)) +
geom_bar(stat = "identity") + ylab("proportion") +
scale_fill_manual(values=mycolors[c(1,5,8,12,18)])+
theme(axis.text.x = element_text(angle = 90, hjust = 1))
參考 http://text2vec.org/topic_modeling.html#latent_dirichlet_allocation
library(text2vec)
## Warning: package 'text2vec' was built under R version 4.0.5
##
## Attaching package: 'text2vec'
## The following object is masked from 'package:topicmodels':
##
## perplexity
library(udpipe)
## Warning: package 'udpipe' was built under R version 4.0.4
tokens <- metadata %>%
unnest_tokens(word, sentence, token=news_tokenizer) %>%
filter(!str_detect(word, regex("[0-9a-zA-Z]")))
dtf <- document_term_frequencies(tokens, document = "artUrl", term = "word")
dtm <- document_term_matrix(x = dtf)
dim(dtm)
## [1] 573 12129
dtm_clean <- dtm_remove_lowfreq(dtm, minfreq = 20)#少於30的matrix
dim(dtm_clean)
## [1] 573 870
set.seed(20190)
topic_n = 5
#lda_model =text2vec::LDA$new(n_topics = topic_n,doc_topic_prior = 0.1, topic_word_prior = 0.004) #效果不錯
#以alpha 0.15 Beta=0.004 可得到獨立的主題
lda_model =text2vec::LDA$new(n_topics = topic_n,doc_topic_prior = 0.15, topic_word_prior = 0.004)
doc_topic_distr =lda_model$fit_transform(dtm_clean, n_iter = 1000, convergence_tol = 1e-5,check_convergence_every_n = 100)
## INFO [18:06:20.228] early stopping at 140 iteration
## INFO [18:06:20.807] early stopping at 50 iteration
這個比topicmodels的package快很多
lda_model$get_top_words(n = 30, lambda = 0.5) ## 查看 前30主題字
## [,1] [,2] [,3] [,4] [,5]
## [1,] "天然氣" "連署" "藻礁" "溝通" "國民黨"
## [2,] "接收站" "公投" "桃園" "環團" "民進黨"
## [3,] "三接" "珍愛" "生態" "吉仲" "英文"
## [4,] "公頃" "萬份" "保護" "方案" "立委"
## [5,] "經濟部" "小組" "保育" "政府" "臉書"
## [6,] "電廠" "中選會" "環境" "農委會" "台灣"
## [7,] "影響" "藻礁" "海岸" "總統" "藻礁"
## [8,] "供電" "門檻" "鄭文燦" "對話" "核四"
## [9,] "方案" "領銜" "大潭" "聯盟" "公投"
## [10,] "燃煤" "總部" "環保" "公投" "馬英九"
## [11,] "能源" "民眾" "市長" "提出" "支持"
## [12,] "王美花" "潘忠政說" "市府" "主委" "執政黨"
## [13,] "公里" "收到" "保護區" "潘忠政" "重啟"
## [14,] "穩定" "工作" "國人" "會議" "政治"
## [15,] "行政院" "參與" "開發" "見面" "政府"
## [16,] "興建" "成案" "桃園市" "說明" "議題"
## [17,] "第三" "公民" "時代" "討論" "反對"
## [18,] "蘇貞昌" "進入" "中南部" "意見" "總統"
## [19,] "發電" "志工" "議題" "總統府" "抹黑"
## [20,] "增加" "搶救" "關注" "雙方" "政黨"
## [21,] "面積" "何宗勳" "加入" "朋友" "處理"
## [22,] "電力" "份數" "自然" "共識" "主席"
## [23,] "孫大千" "規定" "當地" "雙贏" "江啟"
## [24,] "減少" "協會" "生物" "程序" "過去"
## [25,] "機組" "全台" "觀新藻" "問題" "王浩宇"
## [26,] "中油" "投案" "市政府" "代表" "限制"
## [27,] "燃氣" "珊瑚" "成立" "會面" "執政"
## [28,] "大潭" "整理" "狀況" "議題" "網路"
## [29,] "工業港" "學生" "受到" "同意" "批評"
## [30,] "轉型" "發起" "重視" "團體" "委員會"
lda_model$plot()
# lda_model$plot(out.dir ="lda_result", open.browser = TRUE)
這個LDA模型套件(text2vec),所找出的五個主題,LDAVis呈現主題有
1.府院方案-三接外推,供電能源轉型評估
2.政府(陳吉仲,蔡總統)與環團代表溝通
3.大潭藻礁位於桃園,桃園市長鄭文燦對藻礁議題的發言
4.綠政黨對藻礁議題連結就是支時重啟核四,但又是前總統馬英九封存核四的,藍營則反駁抹黑造謠等。
5.珍愛藻礁公投連署活動
1.府院方案-三接外推,供電能源轉型評估
2.政府(陳吉仲,蔡總統)與環團代表溝通
3.大潭藻礁位於桃園,桃園市長鄭文燦對藻礁議題的發言
4.綠政黨對藻礁議題連結就是支時重啟核四,但又是前總統馬英九封存核四的,藍營則反駁抹黑造謠等。
5.珍愛藻礁公投連署活動