set.seed(1234)
n <- 100
mu0 <- 1 # mean for chisq(1)
m <- 100000 #number of replicates
p <- numeric(m) #storage for p-values
for (j in 1:m) {
x <- rchisq(n,1) #generate from chisq with 1 degree of freedom
ttest <- t.test(x, mu = mu0) #conduct a t-test for each number generated
p[j] <- ttest$p.value #store p-values in a vector p
}
p.hat <- mean(p<.05) #calculates the proportion of p values that are less than .05
se.hat <- sqrt(p.hat * (1 - p.hat) / m) #calculates the standard error
chisq <- c("p.hat","se.hat")
pander(cbind(chisq, c(round(p.hat,3),round(se.hat,3))))
| chisq | |
|---|---|
| p.hat | 0.065 |
| se.hat | 0.001 |
n2 <- 100
mu0 <- 1 #mean for U(0,2)
m2 <- 100000 #number of replicates
p2 <- numeric(m2) #storage for p-values
for (j2 in 1:m2) {
x2 <- runif(n2, 0, 2) #generates random numbers from U(0,2)
ttest2 <- t.test(x2, mu = mu0) #conducts a t-test for each number generated
p2[j2] <- ttest2$p.value #stores p-values in a vector p2
}
p.hat2 <- mean(p2<.05) #calculates the proportion of p values that are less than .05
se.hat2 <- sqrt(p.hat2 * (1 - p.hat2) / m2) #calculates the standard error
Uniform <- c("p.hat","se.hat")
pander(cbind(Uniform, c(round(p.hat2,3),round(se.hat2,3))))
| Uniform | |
|---|---|
| p.hat | 0.05 |
| se.hat | 0.001 |
The simulated type 1 error rate for the Uniform(0,2) distribution is still 0.05. The error rate for the Chisq(1) distribution has risen to 0.065, which is more than 1 standard error from 0.05.
set.seed(1234)
n <- 100 # random sample
m <- 100000 # iterations
mu <- numeric(m)
d <- numeric(m)
for (i in 1:m) { # for loop to generate values of mu
x <- rlnorm(n)
mu[i] <- log(median(x))
}
mu1 <- sort(mu)
L <- mu1[5000] # finding a lower limit
U <- mu1[95000] # finding a upper limit
for (i in 1:m){ # for loop to determine whether the mu estimates are contained in the confidence interval
if (L>mu[i]) {
d[i] <- 0
}
else if (U < mu[i]) {
d[i] <- 0
}
else {
d[i] <- 1
}
}
pander(cbind(c("estimate of mu","Lower Limit","Upper Limit","Confidence Level"), round(c(mean(mu),L,U,mean(d)),3)))
| estimate of mu | 0 |
| Lower Limit | -0.203 |
| Upper Limit | 0.205 |
| Confidence Level | 0.9 |
We can be approximately 90% confident that the true value of mu is contained in (-0.203,0.205).