In this file we’re creating 2 graphs
Graph 1. Provides a trend of GDP on Central American Nations
Graph 2. Provides a trend on aggregated GDP by World Regions.
Read in CSV file & take a look at the data
Nations <- read.csv("/Users/cruz-diazgroup/Desktop/1. William/1. School/DATA SCIENCE/2. DATA 110 Vis. & Com./1. HW/nations.csv", check.names = FALSE, header = TRUE, sep = ",")
# Look at the data
#head(Nations)
I now create the variable “GDP” for the entire data before filtering out my nations for the first graph.
# I load the library I'll be using
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.3 ✓ purrr 0.3.4
## ✓ tibble 3.1.0 ✓ dplyr 1.0.2
## ✓ tidyr 1.1.2 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.5.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
Nations <-Nations %>%
mutate(GDP = (gdp_percap * population) / 10^12 )
#tail(Nations)
And..now I graph the data subset
p1 <-ggplot(Nations1, aes(year, GDP, colour = country)) +
geom_point() +
geom_line() +
scale_color_brewer(palette = "Set1") +
labs(title = "GDP: Central American Nations") +
xlab("year") +
ylab("GDP ($ trillions)") +
theme_minimal(base_size = 10)
p1 <-ggplotly(p1)
p1
For the second graph I need to group and summarize the data to obtain aggregated values for my area graph
Nations2 <-Nations %>%
group_by(region, year)%>%
summarise(GDP = sum(GDP, na.rm = TRUE))
## `summarise()` regrouping output by 'region' (override with `.groups` argument)
p2 <-ggplot(Nations2, aes(year, GDP, fill = region)) +
geom_area(color = "white", size = .30) +
scale_fill_brewer(palette = "Set2") +
labs(title = "World GDP by Region") +
xlab("year") +
ylab("GDP ($ trillions)") +
theme_minimal(base_size = 10)
p2 <-ggplotly(p2)
p2