U2A6 Introduccion a la probabilidad frecuentista.


Interpretacion frecuntista a la probabilidad


  • Veamos el ejemplo del lanzamiento de una moneda
Lanzamientos_10 <-sample(c("A", "S")   ,10, replace = TRUE )
Lanzamientos_10
##  [1] "S" "S" "A" "S" "A" "A" "A" "A" "S" "S"

Ahora calcularemos la seciencia de frecuencias relativas del aguila

cumsum(Lanzamientos_10 == "A")
##  [1] 0 0 1 1 2 3 4 5 5 5

Dividiendo

round(cumsum(Lanzamientos_10 == "A")/1:10, 2)
##  [1] 0.00 0.00 0.33 0.25 0.40 0.50 0.57 0.62 0.56 0.50
  • Funciones de #

Distribucion normal

Si x es una variable alertoria con distribucion normal de media 3, y su desviacion estandar es de 0.5

  • La probabilidad de que x sea menor de 3.5 se calcula de la siguiente forma:
pnorm(3.5, mean = 3, sd=0.5)
## [1] 0.8413447
  • Ahora generemos numeros alertorios con distribucion normal Vamos a generar 100 nueros con media 10 y desviacion estandar de 1
x <- rnorm(100, mean =10, sd=1)
x
##   [1]  8.091489  8.771203  9.503781 10.121784  9.982801  9.953070  9.442160
##   [8] 10.148671  9.370480 10.765881  9.148562 11.246485  9.497014 10.484135
##  [15] 10.773744  8.529666  8.186518  9.349004  9.100886 10.724972  9.729650
##  [22] 10.133220 11.839416  9.787668 10.457823  9.526529  9.390244  9.260358
##  [29]  9.158464  9.344678  9.278009 11.082810 10.934880 10.472940  9.130336
##  [36]  8.314051 10.583565  9.280034  8.941975  8.703059 10.503686 12.036867
##  [43] 10.447422  8.297895 10.201410 10.356025  8.778816  9.585895 11.043409
##  [50]  8.668621  8.517240 12.524504 11.517344  9.808466  9.396607  9.640591
##  [57] 10.057088 10.086321 10.456577 10.526752  8.077326  9.578387  9.963051
##  [64] 10.579040 11.060030 10.203068 10.779884 10.024696  9.826049  9.804742
##  [71] 10.920272 12.278870  9.586146 11.854899 10.142741  9.075645  7.965633
##  [78]  7.871611  9.568005 10.101146  9.908047  8.181278 11.399700 12.065958
##  [85] 10.722922 10.928465  8.997187  9.456160  9.072977 10.146165  7.205129
##  [92]  9.361789 10.055742 11.595194  8.509943  8.838014  9.117298  8.478679
##  [99] 11.278066 11.031561

Ahora calculamos el promedio de estos numeros

promedio <- mean(x)
promedio
## [1] 9.866051
hist(x)

boxplot(x)

Histograma de frecuencia con la curva normalizada

hist(x, freq = FALSE)
curve(dnorm(x, mean = 10, sd=1),from = 7, to = 13, add=TRUE)

## Distribucion binomal

Generado 20 valores de extios (1) versus fracasos (0) con una probabilidad de 0.5

x <- rbinom(20,1,0.5)
x
##  [1] 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1

Contemos exitos versus fracasos

table(x)
## x
##  0  1 
## 13  7

Probabilidad binomal de obtener un 1

P <- 13/20
P
## [1] 0.65

Ejercicio distribucion binomial Hoy 12 preguntas de seleccion multiple en un examen

Cada pregunta tiene 5 alternativas y solo 1 es correcta

  • calcule la probabilidad de obtener al menos 4 respuestas correctas si contestamos enteramente al azar.
dbinom(0,size = 12, prob = 0.2) + dbinom(1,size = 12, prob = 0.2) +
dbinom(2,size = 12, prob = 0.2) +
dbinom(3,size = 12, prob = 0.2) +
dbinom(4,size = 12, prob = 0.2) 
## [1] 0.9274445

Tarea :

1- Calcular la probabilidad de obtener unn valor menor a 9 si tenemos media de 8 y desviacion estandar de 2, usando la distribucion normal

pnorm(9, mean = 8, sd=2)
## [1] 0.6914625

2- Generar 150 numeros alertorios de media 5 y desviacion de 0.5 usando la distribucion normal

x <- rnorm(150, mean =5, sd=0.5)
x
##   [1] 4.718762 4.550818 5.197500 5.194996 5.357916 5.564499 4.847459 5.400481
##   [9] 5.029514 4.325216 4.763021 4.851740 4.824983 4.441766 4.871353 5.743269
##  [17] 5.036042 5.359821 4.800466 5.559450 4.487127 4.002037 4.935519 5.806808
##  [25] 4.680308 4.507313 4.430342 5.402804 5.275418 5.058193 4.809358 4.956804
##  [33] 4.761777 5.195851 5.767652 4.965905 4.569738 5.857131 5.137060 4.333248
##  [41] 5.184409 5.186012 4.473652 5.386613 4.873230 5.034156 4.958277 4.656874
##  [49] 4.921057 4.888300 4.743584 4.870393 4.491047 6.530680 5.579160 5.502931
##  [57] 5.070619 4.626568 4.811678 4.700951 5.324637 4.781787 4.602252 4.812218
##  [65] 4.408912 4.270978 5.146302 4.833642 5.072355 4.521698 5.364250 4.913395
##  [73] 4.416199 5.035608 4.953920 5.612128 4.356683 5.915956 4.381844 4.600751
##  [81] 4.885396 5.475305 4.661024 5.561768 4.806680 4.350545 4.780608 5.842600
##  [89] 5.595953 4.638173 5.021432 5.550011 4.770930 5.363658 4.858490 5.269415
##  [97] 5.718981 4.897810 5.252546 3.895291 4.397448 4.875865 3.995955 5.157935
## [105] 5.434956 5.420995 5.379956 5.498651 4.204143 5.086698 5.067900 4.753782
## [113] 4.401485 4.970190 5.552025 5.642207 4.526110 4.267315 5.404732 4.512691
## [121] 5.038963 4.919725 5.658641 6.333509 5.172755 5.011431 4.089777 5.570563
## [129] 5.082828 4.276819 4.760519 5.520737 5.718145 4.983795 5.447953 4.282002
## [137] 5.587231 5.170313 5.379146 3.892532 5.147085 5.574713 4.595288 4.609293
## [145] 4.749075 4.647105 5.766835 5.464001 5.437931 5.031190

3- Obtener media, mediana, moda de los datos generados 150 y grafico de caja y bigote

Media

media <- mean(x)
media
## [1] 4.999085

Mediana

mediana <- median(x)
mediana
## [1] 4.962091

La moda

library(modeest)
mlv(x, method = "mfv")
##   [1] 3.892532 3.895291 3.995955 4.002037 4.089777 4.204143 4.267315 4.270978
##   [9] 4.276819 4.282002 4.325216 4.333248 4.350545 4.356683 4.381844 4.397448
##  [17] 4.401485 4.408912 4.416199 4.430342 4.441766 4.473652 4.487127 4.491047
##  [25] 4.507313 4.512691 4.521698 4.526110 4.550818 4.569738 4.595288 4.600751
##  [33] 4.602252 4.609293 4.626568 4.638173 4.647105 4.656874 4.661024 4.680308
##  [41] 4.700951 4.718762 4.743584 4.749075 4.753782 4.760519 4.761777 4.763021
##  [49] 4.770930 4.780608 4.781787 4.800466 4.806680 4.809358 4.811678 4.812218
##  [57] 4.824983 4.833642 4.847459 4.851740 4.858490 4.870393 4.871353 4.873230
##  [65] 4.875865 4.885396 4.888300 4.897810 4.913395 4.919725 4.921057 4.935519
##  [73] 4.953920 4.956804 4.958277 4.965905 4.970190 4.983795 5.011431 5.021432
##  [81] 5.029514 5.031190 5.034156 5.035608 5.036042 5.038963 5.058193 5.067900
##  [89] 5.070619 5.072355 5.082828 5.086698 5.137060 5.146302 5.147085 5.157935
##  [97] 5.170313 5.172755 5.184409 5.186012 5.194996 5.195851 5.197500 5.252546
## [105] 5.269415 5.275418 5.324637 5.357916 5.359821 5.363658 5.364250 5.379146
## [113] 5.379956 5.386613 5.400481 5.402804 5.404732 5.420995 5.434956 5.437931
## [121] 5.447953 5.464001 5.475305 5.498651 5.502931 5.520737 5.550011 5.552025
## [129] 5.559450 5.561768 5.564499 5.570563 5.574713 5.579160 5.587231 5.595953
## [137] 5.612128 5.642207 5.658641 5.718145 5.718981 5.743269 5.766835 5.767652
## [145] 5.806808 5.842600 5.857131 5.915956 6.333509 6.530680

Grafico de caja y bigote

boxplot(x)

histograma de frecuencias absolutas

hist(x)

Histograma de frecuencias con la curva normalizada

hist(x, freq = FALSE)
curve(dnorm(x, mean = 8, sd=0.5), from = 7, to =13, add=TRUE    )

*5- Genere un conteo y calculo de probabilidad de 30 numeros de forma binomial

x <- rbinom(30,5,0.40)
x
##  [1] 1 3 3 3 3 3 3 1 1 2 3 2 2 3 2 1 2 2 2 2 2 2 2 0 3 2 3 3 3 1
table(x)
## x
##  0  1  2  3 
##  1  5 12 12
A <- 1/30
A
## [1] 0.03333333