Female Avoidance behaviour vs Aggressive males
Single mating with different male morph and female egg-laying checked over a lifetime
Question: Are fighter males more harmful to females, than scrambler males?
Fighters present a higher sexual conflict scenario for females post-copulatory by boosting fecundity earlier, higher in total fecundity, and decreasing longevity
Scramblers present a higher sexual conflict scenario for females post-copulatory by boosting fecundity earlier, higher in total fecundity, and decreasing longevity
All opposite is true
No changes between morphs
Note: day 0 is mating day
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ (day^2) * mate_type + (1 | indv)
## Data: fecund_egg
##
## REML criterion at convergence: 5952.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.8497 -0.7262 -0.2215 0.5769 3.7265
##
## Random effects:
## Groups Name Variance Std.Dev.
## indv (Intercept) 90.02 9.488
## Residual 800.91 28.300
## Number of obs: 621, groups: indv, 70
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 44.88173 2.99194 179.83340 15.001 < 2e-16 ***
## day -0.79676 0.15172 498.33108 -5.251 2.24e-07 ***
## mate_typeS -0.91143 4.35154 178.23775 -0.209 0.834
## day:mate_typeS -0.01416 0.20946 516.13158 -0.068 0.946
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) day mt_tyS
## day -0.642
## mate_typeS -0.688 0.441
## day:mt_typS 0.465 -0.724 -0.639
## $emtrends
## mate_type day^2.trend SE df lower.CL upper.CL
## F -0.0258 0.00496 491 -0.0355 -0.016
## S -0.0262 0.00471 529 -0.0355 -0.017
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 0.000458 0.00684 509 0.067 0.9466
##
## Degrees-of-freedom method: kenward-roger
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ mate_type + day + (1 | trial)
## Data: first.fecund
##
## REML criterion at convergence: 527.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.1914 -0.6517 -0.2490 0.4268 4.0540
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 0.00 0.000
## Residual 86.78 9.315
## Number of obs: 73, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 14.8866 1.8187 70.0000 8.185 8.32e-12 ***
## mate_typeS -0.3123 2.2476 70.0000 -0.139 0.88989
## day -0.2751 0.1026 70.0000 -2.682 0.00912 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_tyS
## mate_typeS -0.399
## day -0.587 -0.224
## convergence code: 0
## boundary (singular) fit: see ?isSingular
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 11.4 1.50 3.21 6.80 16.0
## S 11.1 1.72 4.34 6.47 15.7
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 0.312 2.27 69.5 0.138 0.8909
##
## Degrees-of-freedom method: kenward-roger
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: day ~ mate_type + egg_count + (1 | trial)
## Data: first.fecund
##
## REML criterion at convergence: 541.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4956 -0.8135 -0.2049 0.5082 3.0517
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 0.0 0.00
## Residual 106.8 10.34
## Number of obs: 73, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 14.4733 2.2309 70.0000 6.488 1.06e-08 ***
## mate_typeS 4.3403 2.4397 70.0000 1.779 0.07957 .
## egg_count -0.3387 0.1263 70.0000 -2.682 0.00912 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_tyS
## mate_typeS -0.549
## egg_count -0.681 0.086
## convergence code: 0
## boundary (singular) fit: see ?isSingular
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 10.7 1.65 3.05 5.45 15.9
## S 15.0 1.88 4.13 9.83 20.2
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S -4.34 2.46 69.5 -1.764 0.0821
##
## Degrees-of-freedom method: kenward-roger
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ mate_type + day + (1 | trial)
## Data: peak.fecund.single
##
## REML criterion at convergence: 675.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.54961 -0.51241 0.00699 0.70239 1.99080
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 156.3 12.5
## Residual 1095.7 33.1
## Number of obs: 70, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 82.82853 11.73342 2.12851 7.059 0.0165 *
## mate_typeS -5.10166 7.99101 66.08017 -0.638 0.5254
## day 0.03635 0.65784 66.05110 0.055 0.9561
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_tyS
## mate_typeS -0.262
## day -0.466 -0.113
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 83.2 10.4 1.31 6.54 160
## S 78.1 10.6 1.41 8.35 148
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 5.1 8 66.1 0.638 0.5259
##
## Degrees-of-freedom method: kenward-roger
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: day ~ mate_type + egg_count + (1 | trial)
## Data: peak.fecund.single
##
## REML criterion at convergence: 452
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2415 -0.5862 -0.1316 0.4825 6.0908
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 0.00 0.000
## Residual 37.85 6.152
## Number of obs: 70, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 8.055507 2.096774 67.000000 3.842 0.000274 ***
## mate_typeS 1.415769 1.475644 67.000000 0.959 0.340794
## egg_count 0.003208 0.021922 67.000000 0.146 0.884079
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) mt_tyS
## mate_typeS -0.383
## egg_count -0.876 0.059
## convergence code: 0
## boundary (singular) fit: see ?isSingular
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 8.32 1.02 2.84 4.97 11.7
## S 9.73 1.13 3.24 6.28 13.2
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S -1.42 1.5 66.8 -0.945 0.3480
##
## Degrees-of-freedom method: kenward-roger
The rate of reaching peak fecundity significantly differs between fighters and scramblers
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ day * mate_type + (1 | indv)
## Data: to_peak_egg
##
## REML criterion at convergence: 2594.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0833 -0.6832 -0.0154 0.5479 3.2024
##
## Random effects:
## Groups Name Variance Std.Dev.
## indv (Intercept) 245.4 15.67
## Residual 693.9 26.34
## Number of obs: 272, groups: indv, 69
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 7.9107 5.2953 229.6742 1.494 0.137
## day 7.5955 0.7357 250.0918 10.324 < 2e-16 ***
## mate_typeS 33.9600 6.8550 185.6286 4.954 1.63e-06 ***
## day:mate_typeS -6.7435 0.8086 255.4912 -8.340 4.66e-15 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) day mt_tyS
## day -0.749
## mate_typeS -0.772 0.579
## day:mt_typS 0.682 -0.910 -0.662
## $emtrends
## mate_type day.trend SE df lower.CL upper.CL
## F 7.595 0.739 245 6.141 9.05
## S 0.852 0.339 268 0.184 1.52
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 6.74 0.813 252 8.297 <.0001
##
## Degrees-of-freedom method: kenward-roger
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ day * mate_type + (1 | indv)
## Data: from_peak_egg
##
## REML criterion at convergence: 4011.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6347 -0.7406 -0.1791 0.5406 3.2703
##
## Random effects:
## Groups Name Variance Std.Dev.
## indv (Intercept) 113.5 10.65
## Residual 841.0 29.00
## Number of obs: 416, groups: indv, 68
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 54.7265 4.1497 192.6586 13.188 < 2e-16 ***
## day -1.2149 0.1898 301.7284 -6.402 5.86e-10 ***
## mate_typeS 8.6013 6.4082 141.8983 1.342 0.182
## day:mate_typeS -0.4122 0.2801 180.1311 -1.472 0.143
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) day mt_tyS
## day -0.748
## mate_typeS -0.648 0.484
## day:mt_typS 0.507 -0.678 -0.774
## $emtrends
## mate_type day.trend SE df lower.CL upper.CL
## F -1.21 0.192 315 -1.59 -0.836
## S -1.63 0.209 132 -2.04 -1.214
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 0.412 0.284 198 1.451 0.1482
##
## Degrees-of-freedom method: kenward-roger
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: total ~ mate_type + (1 | trial)
## Data: total.fecund
##
## REML criterion at convergence: 876.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.98237 -0.71989 -0.07264 0.85126 2.55591
##
## Random effects:
## Groups Name Variance Std.Dev.
## trial (Intercept) 5628 75.02
## Residual 24349 156.04
## Number of obs: 69, groups: trial, 2
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 273.092 59.113 1.209 4.620 0.103
## mate_typeS -10.682 37.650 66.039 -0.284 0.778
##
## Correlation of Fixed Effects:
## (Intr)
## mate_typeS -0.302
## $emmeans
## mate_type emmean SE df lower.CL upper.CL
## F 273 59.1 1.21 -231 777
## S 262 59.8 1.26 -212 737
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## F - S 10.7 37.7 66 0.284 0.7776
##
## Degrees-of-freedom method: kenward-roger
While survival probability does not significantly differ between mate types (fighter or scrambler) the boost in fecundity does significantly decrease survivorship for females.
## Cox mixed-effects model fit by maximum likelihood
## Data: longevity
## events, n = 70, 70
## Iterations= 2 16
## NULL Integrated Fitted
## Log-likelihood -230.439 -221.8047 -221.7796
##
## Chisq df p AIC BIC
## Integrated loglik 17.27 4.00 0.0017139 9.27 0.27
## Penalized loglik 17.32 3.02 0.0006239 11.27 4.47
##
## Model: Surv(day) ~ mate_type * egg_count + (1 | indv)
## Fixed coefficients
## coef exp(coef) se(coef) z p
## mate_typeS -0.22215139 0.8007941 0.26734576 -0.83 0.4100
## egg_count 0.05239071 1.0537874 0.01782293 2.94 0.0033
## mate_typeS:egg_count 0.00699503 1.0070196 0.02120873 0.33 0.7400
##
## Random effects
## Group Variable Std Dev Variance
## indv Intercept 0.0199928009 0.0003997121
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
## mate_type emmean SE df asymp.LCL asymp.UCL
## F 0.0863 0.115 Inf -0.139 0.312
## S -0.0990 0.129 Inf -0.352 0.154
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
##
## $contrasts
## contrast estimate SE df z.ratio p.value
## F - S 0.185 0.244 Inf 0.760 0.4475
##
## Results are given on the log (not the response) scale.
## chisq df p
## mate_type 0.101 4.00 1.00
## egg_count 3.202 3.02 0.37
## mate_type:egg_count 4.502 NA NA
## GLOBAL 5.339 7.02 0.62