Working Title

Female Avoidance behaviour vs Aggressive males

Authors

Anastasia J. Shavrova, Bruno A. Buzatto, & Michael M. Kasumovic

Description

Single mating with different male morph and female egg-laying checked over a lifetime

Hypothesis - Life History Trade-offs

Question: Are fighter males more harmful to females, than scrambler males?

  1. Fighters present a higher sexual conflict scenario for females post-copulatory by boosting fecundity earlier, higher in total fecundity, and decreasing longevity

  2. Scramblers present a higher sexual conflict scenario for females post-copulatory by boosting fecundity earlier, higher in total fecundity, and decreasing longevity

  3. All opposite is true

  4. No changes between morphs

Data

  • trial = experimental trial (1 or 2)
  • mate_type = male morph as fighter (F) or scrambler (S)
  • day = first day of egg counting, starts at day 2 as this is 2 days from mating
  • status = dead (1) or alive (2)
  • egg_count = number of eggs laid by female
  • rep = replicate vial
  • indv = unique individual number

Fecundity Over Time - Overall

Graph - Overall

Note: day 0 is mating day

Model - Quadratic regression

Does fecundity over time for females differ on whether they mated with a fighter or a scrambler?

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ (day^2) * mate_type + (1 | indv)
##    Data: fecund_egg
## 
## REML criterion at convergence: 5952.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8497 -0.7262 -0.2215  0.5769  3.7265 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  indv     (Intercept)  90.02    9.488  
##  Residual             800.91   28.300  
## Number of obs: 621, groups:  indv, 70
## 
## Fixed effects:
##                 Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     44.88173    2.99194 179.83340  15.001  < 2e-16 ***
## day             -0.79676    0.15172 498.33108  -5.251 2.24e-07 ***
## mate_typeS      -0.91143    4.35154 178.23775  -0.209    0.834    
## day:mate_typeS  -0.01416    0.20946 516.13158  -0.068    0.946    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) day    mt_tyS
## day         -0.642              
## mate_typeS  -0.688  0.441       
## day:mt_typS  0.465 -0.724 -0.639

## $emtrends
##  mate_type day^2.trend      SE  df lower.CL upper.CL
##  F             -0.0258 0.00496 491  -0.0355   -0.016
##  S             -0.0262 0.00471 529  -0.0355   -0.017
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate      SE  df t.ratio p.value
##  F - S    0.000458 0.00684 509 0.067   0.9466 
## 
## Degrees-of-freedom method: kenward-roger

First Fecund

Graph

Model

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ mate_type + day + (1 | trial)
##    Data: first.fecund
## 
## REML criterion at convergence: 527.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.1914 -0.6517 -0.2490  0.4268  4.0540 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  trial    (Intercept)  0.00    0.000   
##  Residual             86.78    9.315   
## Number of obs: 73, groups:  trial, 2
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)  14.8866     1.8187 70.0000   8.185 8.32e-12 ***
## mate_typeS   -0.3123     2.2476 70.0000  -0.139  0.88989    
## day          -0.2751     0.1026 70.0000  -2.682  0.00912 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) mt_tyS
## mate_typeS -0.399       
## day        -0.587 -0.224
## convergence code: 0
## boundary (singular) fit: see ?isSingular

## $emmeans
##  mate_type emmean   SE   df lower.CL upper.CL
##  F           11.4 1.50 3.21     6.80     16.0
##  S           11.1 1.72 4.34     6.47     15.7
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate   SE   df t.ratio p.value
##  F - S       0.312 2.27 69.5 0.138   0.8909 
## 
## Degrees-of-freedom method: kenward-roger
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: day ~ mate_type + egg_count + (1 | trial)
##    Data: first.fecund
## 
## REML criterion at convergence: 541.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4956 -0.8135 -0.2049  0.5082  3.0517 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  trial    (Intercept)   0.0     0.00   
##  Residual             106.8    10.34   
## Number of obs: 73, groups:  trial, 2
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)  14.4733     2.2309 70.0000   6.488 1.06e-08 ***
## mate_typeS    4.3403     2.4397 70.0000   1.779  0.07957 .  
## egg_count    -0.3387     0.1263 70.0000  -2.682  0.00912 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) mt_tyS
## mate_typeS -0.549       
## egg_count  -0.681  0.086
## convergence code: 0
## boundary (singular) fit: see ?isSingular

## $emmeans
##  mate_type emmean   SE   df lower.CL upper.CL
##  F           10.7 1.65 3.05     5.45     15.9
##  S           15.0 1.88 4.13     9.83     20.2
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate   SE   df t.ratio p.value
##  F - S       -4.34 2.46 69.5 -1.764  0.0821 
## 
## Degrees-of-freedom method: kenward-roger

Peak Fecundity

Graph

Model

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ mate_type + day + (1 | trial)
##    Data: peak.fecund.single
## 
## REML criterion at convergence: 675.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.54961 -0.51241  0.00699  0.70239  1.99080 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  trial    (Intercept)  156.3   12.5    
##  Residual             1095.7   33.1    
## Number of obs: 70, groups:  trial, 2
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)  
## (Intercept) 82.82853   11.73342  2.12851   7.059   0.0165 *
## mate_typeS  -5.10166    7.99101 66.08017  -0.638   0.5254  
## day          0.03635    0.65784 66.05110   0.055   0.9561  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) mt_tyS
## mate_typeS -0.262       
## day        -0.466 -0.113

## $emmeans
##  mate_type emmean   SE   df lower.CL upper.CL
##  F           83.2 10.4 1.31     6.54      160
##  S           78.1 10.6 1.41     8.35      148
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate SE   df t.ratio p.value
##  F - S         5.1  8 66.1 0.638   0.5259 
## 
## Degrees-of-freedom method: kenward-roger
## boundary (singular) fit: see ?isSingular
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: day ~ mate_type + egg_count + (1 | trial)
##    Data: peak.fecund.single
## 
## REML criterion at convergence: 452
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2415 -0.5862 -0.1316  0.4825  6.0908 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  trial    (Intercept)  0.00    0.000   
##  Residual             37.85    6.152   
## Number of obs: 70, groups:  trial, 2
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)  8.055507   2.096774 67.000000   3.842 0.000274 ***
## mate_typeS   1.415769   1.475644 67.000000   0.959 0.340794    
## egg_count    0.003208   0.021922 67.000000   0.146 0.884079    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##            (Intr) mt_tyS
## mate_typeS -0.383       
## egg_count  -0.876  0.059
## convergence code: 0
## boundary (singular) fit: see ?isSingular

## $emmeans
##  mate_type emmean   SE   df lower.CL upper.CL
##  F           8.32 1.02 2.84     4.97     11.7
##  S           9.73 1.13 3.24     6.28     13.2
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate  SE   df t.ratio p.value
##  F - S       -1.42 1.5 66.8 -0.945  0.3480 
## 
## Degrees-of-freedom method: kenward-roger

To Peak

Graph

Model

Does the rate at which fighters reach peak fecundity differ from the rate of scramblers?

The rate of reaching peak fecundity significantly differs between fighters and scramblers

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ day * mate_type + (1 | indv)
##    Data: to_peak_egg
## 
## REML criterion at convergence: 2594.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0833 -0.6832 -0.0154  0.5479  3.2024 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  indv     (Intercept) 245.4    15.67   
##  Residual             693.9    26.34   
## Number of obs: 272, groups:  indv, 69
## 
## Fixed effects:
##                Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)      7.9107     5.2953 229.6742   1.494    0.137    
## day              7.5955     0.7357 250.0918  10.324  < 2e-16 ***
## mate_typeS      33.9600     6.8550 185.6286   4.954 1.63e-06 ***
## day:mate_typeS  -6.7435     0.8086 255.4912  -8.340 4.66e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) day    mt_tyS
## day         -0.749              
## mate_typeS  -0.772  0.579       
## day:mt_typS  0.682 -0.910 -0.662

## $emtrends
##  mate_type day.trend    SE  df lower.CL upper.CL
##  F             7.595 0.739 245    6.141     9.05
##  S             0.852 0.339 268    0.184     1.52
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate    SE  df t.ratio p.value
##  F - S        6.74 0.813 252 8.297   <.0001 
## 
## Degrees-of-freedom method: kenward-roger

From Peak

Graph

Model

Does the rate at which fighters die from peak fecundity differ from the rate of scramblers?

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: egg_count ~ day * mate_type + (1 | indv)
##    Data: from_peak_egg
## 
## REML criterion at convergence: 4011.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6347 -0.7406 -0.1791  0.5406  3.2703 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  indv     (Intercept) 113.5    10.65   
##  Residual             841.0    29.00   
## Number of obs: 416, groups:  indv, 68
## 
## Fixed effects:
##                Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)     54.7265     4.1497 192.6586  13.188  < 2e-16 ***
## day             -1.2149     0.1898 301.7284  -6.402 5.86e-10 ***
## mate_typeS       8.6013     6.4082 141.8983   1.342    0.182    
## day:mate_typeS  -0.4122     0.2801 180.1311  -1.472    0.143    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) day    mt_tyS
## day         -0.748              
## mate_typeS  -0.648  0.484       
## day:mt_typS  0.507 -0.678 -0.774

## $emtrends
##  mate_type day.trend    SE  df lower.CL upper.CL
##  F             -1.21 0.192 315    -1.59   -0.836
##  S             -1.63 0.209 132    -2.04   -1.214
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate    SE  df t.ratio p.value
##  F - S       0.412 0.284 198 1.451   0.1482 
## 
## Degrees-of-freedom method: kenward-roger

Total Fecundity

Graph

Model

Does total fecundity differ between females mated with scramblers or fighters?

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: total ~ mate_type + (1 | trial)
##    Data: total.fecund
## 
## REML criterion at convergence: 876.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.98237 -0.71989 -0.07264  0.85126  2.55591 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  trial    (Intercept)  5628     75.02  
##  Residual             24349    156.04  
## Number of obs: 69, groups:  trial, 2
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)  273.092     59.113   1.209   4.620    0.103
## mate_typeS   -10.682     37.650  66.039  -0.284    0.778
## 
## Correlation of Fixed Effects:
##            (Intr)
## mate_typeS -0.302

## $emmeans
##  mate_type emmean   SE   df lower.CL upper.CL
##  F            273 59.1 1.21     -231      777
##  S            262 59.8 1.26     -212      737
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate   SE df t.ratio p.value
##  F - S        10.7 37.7 66 0.284   0.7776 
## 
## Degrees-of-freedom method: kenward-roger

Survival Graph

Model - Cox Model (egg count as covariate)

Is survival predicted by fecundity over time and does it differ between mate types?

While survival probability does not significantly differ between mate types (fighter or scrambler) the boost in fecundity does significantly decrease survivorship for females.

## Cox mixed-effects model fit by maximum likelihood
##   Data: longevity
##   events, n = 70, 70
##   Iterations= 2 16 
##                    NULL Integrated    Fitted
## Log-likelihood -230.439  -221.8047 -221.7796
## 
##                   Chisq   df         p   AIC  BIC
## Integrated loglik 17.27 4.00 0.0017139  9.27 0.27
##  Penalized loglik 17.32 3.02 0.0006239 11.27 4.47
## 
## Model:  Surv(day) ~ mate_type * egg_count + (1 | indv) 
## Fixed coefficients
##                             coef exp(coef)   se(coef)     z      p
## mate_typeS           -0.22215139 0.8007941 0.26734576 -0.83 0.4100
## egg_count             0.05239071 1.0537874 0.01782293  2.94 0.0033
## mate_typeS:egg_count  0.00699503 1.0070196 0.02120873  0.33 0.7400
## 
## Random effects
##  Group Variable  Std Dev      Variance    
##  indv  Intercept 0.0199928009 0.0003997121
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  mate_type  emmean    SE  df asymp.LCL asymp.UCL
##  F          0.0863 0.115 Inf    -0.139     0.312
##  S         -0.0990 0.129 Inf    -0.352     0.154
## 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate    SE  df z.ratio p.value
##  F - S       0.185 0.244 Inf 0.760   0.4475 
## 
## Results are given on the log (not the response) scale.
##                     chisq   df    p
## mate_type           0.101 4.00 1.00
## egg_count           3.202 3.02 0.37
## mate_type:egg_count 4.502   NA   NA
## GLOBAL              5.339 7.02 0.62