1 Objetivo

Encontrar probabilidades de acuerdo a la distribución binomial.

2 Descripción

Identificar dos casos de la literatura de distribuciones de probabilidad binomial y realizar cálculos de probabilidades utilizando la fórmula y las funciones dbinom() y pbinom(), identificar el valor medio, la varianza y la desviación.

3 Fundamento teórico

El experimento de lanzar al aire una moneda es un ejemplo sencillo de una importante variable aleatoria discreta llamada variable aleatoria binomial. Muchos experimentos prácticos resultan en datos similares a que salgan cara o cruz al tirar la moneda (Mendenhall, Beaver, and Beaver 2006)

Un experimento binomial es el que tiene estas cinco características:

  • El experimento consiste en nn intentos idénticos.

  • Cada intento resulta en uno de dos resultados, el resultado uno se llama éxito, ‘S,’ y el otro se llama fracaso, ‘F.’

  • La probabilidad de éxito en un solo intento es igual a pp y es igual de un intento a otro. La probabilidad de fracaso es igual a q=(1−p)q=(1−p).

  • Los intentos son independientes.

  • El interés es el valor de xx, o sea, el número de éxitos observado durante los nn intentos, para x=0,1,2,…,n.x=0,1,2,…,n. (Mendenhall, Beaver, and Beaver 2006).

Un experimiento de Bernoulli puede tener como resultado un éxito con probabilidad pp y un fracaso con probabilidad q=1−pq=1−p. Entonces, la distribución de probabilidad de la variable aleatoria binomial xx, el número de éxito kk en nn ensayos independientes (Walpole, Myers, and Myers 2012):

Fórmula:

\(prob(x=k)=(nk)⋅pk⋅q(n−k)\)

Para

\(x=0,1,2,3...n\)

y recordando las combinaciones cuantos éxitos kk en nn ensayos.

\((nk)=n!k!⋅(n−k)!\)

El valor esperado está dado por:

El valor esperado está dado por:

\(μ=n⋅p\)

La varianza y la desviación estándard se determinan mediante:

\(σ2=n⋅p⋅(1−p)\)

y

\(σ=σ2−−√\)

En programación R, para calcular la función de probabilidad binomial para un conjunto de valores discretos, xx, un número de ensayos nn y una probabilidad de éxito pp se puede hacer uso de la función dbinom().

De semejante forma, para calcular la probabilidad acumulada de una distribución binomial se puede utilizar la función pbinom() o para calcular la probabilidad de que una variable aleatoria xx que sigue una distribución binomial tome valores menores o iguales a xx puedes hacer uso de la función pbinom() (R CODER Binom, n.d.).

4 Desarrollo

4.1 Cargar librerías

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(mosaic) # Gráficos de distribuciones
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
options(scipen=999) # Notación normal

# options(scipen=1) # Notación científica

4.2 Cargar funciones

#source("../funciones/funciones.distribuciones.r")

# o

source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")
## 
## Attaching package: 'gtools'
## The following object is masked from 'package:mosaic':
## 
##     logit

4.3 EJERCICIOS

4.3.1 Tienda de ropa MartinClothingStore

Tienda de ropa MartinClothingStore (Anderson, Sweeney, and Williams 2008)

De acuerdo con la experiencia, el gerente de la tienda estima que la probabilidad de que un cliente realice una compra es 0.30.

  • Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad acumulada

  • Encontrar la probabilidad de que compren dos clientes

  • Encontrar la probabilidad de que compren los tres próximos clientes.

  • Encontrar la probabilidad de que sean menor o igual que dos.

  • Calcular la probabilidad de que sean mayor que dos

  • Determinar el valor esperado y su significado

  • Determinar la varianza y la desviación estándar y si significado

  • Interpretar

4.3.1.1 Probabilidad para 0,1,2,3 y tabla de distribución

Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad cumulada

  • Inicializar valores
x <- c(0,1,2,3)
n <- 3
exito <- 0.30
  • Determinar tabla de probabilidad usando la función creada y conforme a la fórmula

    tabla1 <- data.frame(x=x, f.prob.x = f.prob.binom(x,n,exito), f.acum.x = cumsum(f.prob.binom(x,n,exito)))
    tabla1
    ##   x f.prob.x f.acum.x
    ## 1 0    0.343    0.343
    ## 2 1    0.441    0.784
    ## 3 2    0.189    0.973
    ## 4 3    0.027    1.000
  • Determinar tabla de probabilidad usando función propia de los paquetes base de R dbinom()

    tabla2 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = cumsum(dbinom(x = x, size = n, prob = exito)))
    tabla2
    ##   x f.prob.x f.acum.x
    ## 1 0    0.343    0.343
    ## 2 1    0.441    0.784
    ## 3 2    0.189    0.973
    ## 4 3    0.027    1.000

con pbinom() en lugar de cumsum()

tabla3 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla3
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000

4.3.1.2 Vizualizar tabla de distribución

plotDist(dist = "binom", size=3, prob=0.30,xlab = paste("Variables ",min(tabla1$x),"-",max(tabla1$x) )) 

plotDist(dist = "binom", size=3, prob=0.30,xlab = paste("Variables ",min(tabla1$x),"-",max(tabla1$x) ), kind = "histogram") 

4.3.1.3 Probabilidad de que compren dos clientes

Encontrar la probabilidad de que compren dos clientes

  • Identificar la probabilidad cuando P(x=2)P(x=2) de la tabla.

  • Se puede usar tabla1, tabla2 o tabla3 es la misma.

valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 2    0.189    0.973
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  2  es igual a :  0.189"

Usando dbinom()

dbinom(x = 2, size = 3, prob = exito)
## [1] 0.189

4.3.1.4 Probabilidad de que compren los tres próximos clientes

Encontrar la probabilidad de que compren los tres próximos clientes

  • Identificar la probabilidad cuando P(x=3)P(x=3) de la tabla.

  • Se puede usar tabla1, tabla2 o tabla3 es la misma.

valor.x <- 3
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 3    0.027        1
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  3  es igual a :  0.027"
dbinom(x = 3, size = 3, prob = exito)
## [1] 0.027

4.3.1.5 Probabilidad de que sean menor o igual que dos

Encontrar la probabilidad de que sean menor o igual que dos

  • Ahora usar la función acumulada por la pregunta

  • P(x=0)+P(x=1)+P(x=2)

valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 2    0.189    0.973
paste("La probabilidad de que sea menor o igual a ", valor.x, " es igual a : ", la.probabilidad$f.acum.x )
## [1] "La probabilidad de que sea menor o igual a  2  es igual a :  0.973"
pbinom(q = 2, size = 3, prob = exito)
## [1] 0.973

4.3.1.6 Probabilidad de que sean mayor que dos

La expresión lower.tail = FALSE como atributo de la función pbinom() significa encontrar en la tabla de distribución la sumatoria de las probabilidades a partir de el valor de xx, o lo que es lo mismo, 1−prob.acum(x)1−prob.acum(x), 1−0.97=0.271−0.97=0.27.

pbinom(q = 2, size = 3, prob = exito, lower.tail = FALSE)
## [1] 0.027

4.3.1.7 Valor esperado

Determinar el valor esperado y su significado

  • El valor esperado de la distribución binomial

μ=n⋅pμ=n⋅p

Siendo pp el éxito de la probabilidad y nn el número de experimentos

VE <- n * exito
paste ("El valor esperado es: ", VE)
## [1] "El valor esperado es:  0.9"

El valor esperado VEVE significa el valor medio o el valor promedio de todos valores de la distribución de probabilidad.

4.3.1.8 Varianza y desviación estándar

Determinar la varianza y la desviación estándar y su significado.

  • La varianza en la distribución binomialσ2=n⋅p⋅(1−p)
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  0.63"
  • La desviaciónσ=σ2−−√σ=σ2
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  0.79"

4.3.1.9

4.3.1.10 Interpretar el ejercicio

Mediante la realización de este ejercicio se calculo la probabilidad con las funciones pbinom() en lugar de cumsum() y con dbinom(); tambien usamos la expresión lower.tail = FALSE como atributo de la función pbinom() para encontrar en la tabla de distribución la sumatoria de las probabilidades a partir de el valor de xx.

Asimismo aprendí el significado del valor esperado, el cual es el valor medio que esta en la distribución de la probabilidad. Tambien aprendi que la varianza mide qué tan dispersos están los datos alrededor de su media, y la desviación estandar es la raíz cuadrada de la varianza.

4.3.2 Jugador de basquetbol

Un jugador encesta con probabilidad 0.55. (“La Distribución Binomial o de Bernoulli,” n.d.):

  • Determinar las probabilidad de los tiros del 1 al 6 con la tabla de probabilidad

  • Determinar la probabilidad de encestar cuatro tiros P(x=4)P(x=4)

  • Determinar la probabilidad de encestar todos tiros o sea seis P(x=6)P(x=6)

  • Determinar la probabilidad de encestar al menos tres P(x≤3)P(x≤3) o, P.acum(x=3)P.acum(x=3)

  • Determinar el valor esperado VE

  • Determinar la varianza y su desviación estándard

  • Interpretar el ejercicio

4.3.2.1 Tabla de probabilidad (0-6)

Se construye la tabla de probabilidades tal y como se construye usando el código de tabla3

Se inicializan valores:

x <- 0:6
n <- 6
exito <- 0.55
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##   x    f.prob.x    f.acum.x
## 1 0 0.008303766 0.008303766
## 2 1 0.060894281 0.069198047
## 3 2 0.186065859 0.255263906
## 4 3 0.303218437 0.558482344
## 5 4 0.277950234 0.836432578
## 6 5 0.135886781 0.972319359
## 7 6 0.027680641 1.000000000

4.3.2.2 Visualización de probabilidades

Dos formas de visualizar las probabilidades

plotDist(dist = "binom", size=n, prob=exito,xlab = paste("Variables ",min(tabla$x),"-",max(tabla$x) )) 

plot(x = tabla$x, y=tabla$f.prob.x, type = "h", xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab= "f(x)")

4.3.2.3 Probabilidad de encestar cuatro tiros

Calcular la probabilidad de encestar cuatro tiros P(x=4)

dbinom(x = 4, size = n, prob = exito)
## [1] 0.2779502


Probabilidad de encestar todos los tiros

Determinar la probabilidad de encestar todos tiros o sea seis P(x=6)P(x=6)

dbinom(x = 6, size = n, prob = exito)
## [1] 0.02768064

4.3.2.4 Probabilidad de encestar al menos tres

Usando la función pbinom()

pbinom(q = 3, size = n, prob = exito)
## [1] 0.5584823

o utilizando el renglón de la tabla de distribución en la columna de probabilidad acumulada f.acum.x.

valor.x <- 3
la.probabilidad <- filter(tabla, x == valor.x) 
la.probabilidad
##   x  f.prob.x  f.acum.x
## 1 3 0.3032184 0.5584823

4.3.2.5

Valor esperado

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  3.3"

El valor esperado de 3.3 significa que es lo que se espera encestar en promedio de los n=n= 6 tiros.

4.3.2.6 Varianza y desviación

Varianza

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  1.48"

Desviación

desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  1.22"

De el valor esperado 3.3 hay una desviación aproximada de 1.2186058 hacia arriba o hacia abajo.

4.3.3 Recuperación de un paciente

La probabilidad de que un paciente se recupere de una rara enfermedad sanguínea es 0.40.4. Si se sabe que 1515 personas contraen tal enfermedad,

  • Determine tabla de probabilidad de 1 al 15
x <- 1:15
n <- 15
recupe <- 0.40
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = recupe), f.acum.x = pbinom(q = x, size = n, prob = recupe))
tabla
##     x       f.prob.x    f.acum.x
## 1   1 0.004701849846 0.005172035
## 2   2 0.021941965947 0.027114001
## 3   3 0.063387901624 0.090501902
## 4   4 0.126775803249 0.217277706
## 5   5 0.185937844765 0.403215550
## 6   6 0.206597605294 0.609813156
## 7   7 0.177083661681 0.786896817
## 8   8 0.118055774454 0.904952592
## 9   9 0.061214105272 0.966166697
## 10 10 0.024485642109 0.990652339
## 11 11 0.007419891548 0.998072231
## 12 12 0.001648864788 0.999721096
## 13 13 0.000253671506 0.999974767
## 14 14 0.000024159191 0.999998926
## 15 15 0.000001073742 1.000000000
plotDist(dist = "binom", size=n, prob=recupe,xlab = paste("Variables ",min(tabla$x),"-",max(tabla$x) )) 

  • ¿Cuál es la probabilidad de que sobrevivan al menos diez?
dbinom(x = 10, size = n, prob = recupe)
## [1] 0.02448564
  • ¿Cuál es la probabilidad de que sobrevivan de tres a ocho?, y
dbinom(x = 3, size = n, prob = recupe)
## [1] 0.0633879
dbinom(x = 4, size = n, prob = recupe)
## [1] 0.1267758
dbinom(x = 5, size = n, prob = recupe)
## [1] 0.1859378
dbinom(x = 6, size = n, prob = recupe)
## [1] 0.2065976
dbinom(x = 7, size = n, prob = recupe)
## [1] 0.1770837
dbinom(x = 8, size = n, prob = recupe)
## [1] 0.1180558
  • ¿Cuál es la probabilidad de que sobrevivan exactamente cinco?
dbinom(x = 5, size = n, prob = recupe)
## [1] 0.1859378
  • ¿Cuál es el valor esperado ‘VE’ o la esperanza media?
VE <- n * recupe
paste ("El valor esperado es: ", VE)
## [1] "El valor esperado es:  6"
  • ¿Cual es la varianza y la desviación estándar?
varianza <- n * recupe *( 1 - recupe)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  3.6"
  • Interpretación del ejercicio (Walpole, Myers, and Myers 2012).

En este ejercicio se calculo la probabilidad de varias operaciones, más sin embargo el valor destacable de este ejercicio es que el valor promedio de que un paciente se se recupere es de 6.

4.3.4 Aprobar un examen

Un estudio refleja que al aplicar un examen de estadística la probabilidad de aprobar (éxito) es del 60%. Se pide lo siguiente:

  • Encuentre la tabla de distribución binomial para 30 estudiantes que presentan el examen

  • ¿Cuál es la probabilidad de que aprueben 5 alumnos?

  • ¿Cuál es la probabilidad de que aprueben 10 alumnos?

  • ¿Cuál es la probabilidad de que aprueben 15 o menos alumnos?

  • ¿Cuál es la probabilidad de que aprueben entre 10 y 20 alumnos?

  • ¿Cuál es la probabilidad de que aprueben mas de 25 alumnos?

  • Determinar el valor esperado VE y su significado.

  • Determinar la varianza y su desviación estándard y su significado.

4.3.4.1 Tabla de distribución binomial

Se incializan valores

x <- 0:30
n <- 30
exito <- 0.60
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##     x             f.prob.x             f.acum.x
## 1   0 0.000000000001152922 0.000000000001152922
## 2   1 0.000000000051881468 0.000000000053034389
## 3   2 0.000000001128421923 0.000000001181456312
## 4   3 0.000000015797906917 0.000000016979363229
## 5   4 0.000000159953807533 0.000000176933170762
## 6   5 0.000001247639698760 0.000001424572869522
## 7   6 0.000007797748117251 0.000009222320986774
## 8   7 0.000040102704603007 0.000049325025589781
## 9   8 0.000172942913600469 0.000222267939190250
## 10  9 0.000634124016535054 0.000856391955725303
## 11 10 0.001997490652085418 0.002853882607810724
## 12 11 0.005447701778414773 0.008301584386225485
## 13 12 0.012938291723735080 0.021239876109960601
## 14 13 0.026871836656988245 0.048111712766948846
## 15 14 0.048945131053800175 0.097056843820749084
## 16 15 0.078312209686080117 0.175369053506829159
## 17 16 0.110126544871050142 0.285495598377879189
## 18 17 0.136038673076003175 0.421534271453882614
## 19 18 0.147375229165670141 0.568909500619552144
## 20 19 0.139618638156950664 0.708528138776503003
## 21 20 0.115185376479484264 0.823713515255987683
## 22 21 0.082275268913917302 0.905988784169904804
## 23 22 0.050487096833540038 0.956475881003445050
## 24 23 0.026341094000107985 0.982816975003552917
## 25 24 0.011524228625047248 0.994341203628600123
## 26 25 0.004148722305017007 0.998489925933617184
## 27 26 0.001196746818754908 0.999686672752372107
## 28 27 0.000265943737501089 0.999952616489873214
## 29 28 0.000042740957812675 0.999995357447685862
## 30 29 0.000004421478394415 0.999999778926080274
## 31 30 0.000000221073919721 1.000000000000000000

4.3.4.2 Vizualizar la tabla de distribución

plot(x=tabla$x, y=tabla$f.prob.x, 
     type='h', las=1, lwd=6, xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab = "f(x)")

4.3.4.3 Probabilidad de que aprueben 15 o menos alumnos

Se calcula la probabilidad de P(x=0)+P(x=1)+P(x=2)…+P(15)P(x=0)+P(x=1)+P(x=2)…+P(15) o la probabilidad acumulada cuando F(x=15)


prob <- pbinom(q = 15, size = n, prob = exito)
paste("La probabilida de que aprueben 15 o menos es de ", prob)
## [1] "La probabilida de que aprueben 15 o menos es de  0.175369053506829"

4.3.4.4 Probabilidad de que aprueben entre 10 y 20 alumnos

Se calcula la probabilidad acumulada de F(x=20)−F(x=10)F(x=20)−F(x=10)

prob <- pbinom(q = 20, size = n, prob = exito) - pbinom(q = 10, size = n, prob = exito)
paste ("La probabilidad de que aprueben entre 10 y 20 estudiantes es de: ", prob)
## [1] "La probabilidad de que aprueben entre 10 y 20 estudiantes es de:  0.820859632648177"
# Se comprueba sumando los valores
sum(tabla$f.prob.x[11:21])
## [1] 0.8228571

4.3.4.5 Probabilidad de que aprueben mas de 25 alumnos

Se debe calcular P(x≥26)P(x≥26) o restar del el valor acumulado de 25 a 1. 1−F(x=26)1−F(x=26)

Con pbinom() y con lower.tail() = TRUE se encuentra la probabilidad.

prob <- pbinom(q = 25, size = n, prob = exito, lower.tail = FALSE)
paste ("La probabilidad de que aprueben mas de 25 alumnos es de ", prob)
## [1] "La probabilidad de que aprueben mas de 25 alumnos es de  0.00151007406638281"
# Se puede comprobar sumando los renglones 27 al 31 de la tabla
sum(tabla$f.prob.x[27:31])
## [1] 0.001510074

4.3.4.6 Valor esperado

El valor esperado es la cantidad de alumnos que aprueben el examen.

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  18"

4.3.4.7

4.3.4.8 Varianza y desviación

Varianza

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  7.2"

Desviación

desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  2.68"

La desviación como parte de la varianza significa la cantidad de alumnos que puede variar con respecto al valor medio VEVE previamente calculado.

4.3.4.9 INTERPRETACIÓN

La parte interesante de este ejercicio es que de 30 alumnos se espera que el 8.25% aprueben el examen.

4.3.5 Autobuses contaminantes

Suponga que un grupo de agentes de tránsito sale a una vía principal para revisar el estado de los autobuses de transporte intermunicipal. De datos históricos se sabe que un 10% de los camiones generan una mayor cantidad de humo de la permitida. En cada jornada los agentes revisan siempre 18 unidades (autobuses), asuma que el estado de un autobus es independiente del estado de los otros buses. (Hernández 2021).

  • Construir la tabla de distribución

  • Visualizar la densidad o las probabilidades para cada variable discreta

  • Calcular la probabilidad de que se encuentren exactamente 2 buses que generan una mayor cantidad de humo de la permitida.

  • Calcular la probabilidad de que el número de autobuses que sobrepasan el límite de generación de gases sea al menos 4.

  • Calcular la probabilidad de que existan MAS DE TRES (a partir de CUATRO) autobuses que emitan gases por encima de lo permitido en la norma

  • Calcular el valor esperado.

  • Calcular la varianza y la desviación.

  • Generar una muestra aleatoria de 100 valores y comparar las frecuencias relativas con las probabilidad originales.

  • Interpretar el caso.

4.3.5.1 Construir la tabla de distribución

Se inicializan variables

x <- 0:18
n <- 18
exito <- 0.10
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##     x             f.prob.x  f.acum.x
## 1   0 0.150094635296999152 0.1500946
## 2   1 0.300189270593998137 0.4502839
## 3   2 0.283512088894331660 0.7337960
## 4   3 0.168007163789233555 0.9018032
## 5   4 0.070002984912180641 0.9718061
## 6   5 0.021778706417122911 0.9935848
## 7   6 0.005243021915233281 0.9988279
## 8   7 0.000998670840996817 0.9998265
## 9   8 0.000152574711818958 0.9999791
## 10  9 0.000018836384175180 0.9999980
## 11 10 0.000001883638417518 0.9999998
## 12 11 0.000000152213205456 1.0000000
## 13 12 0.000000009865670724 1.0000000
## 14 13 0.000000000505931832 1.0000000
## 15 14 0.000000000020076660 1.0000000
## 16 15 0.000000000000594864 1.0000000
## 17 16 0.000000000000012393 1.0000000
## 18 17 0.000000000000000162 1.0000000
## 19 18 0.000000000000000001 1.0000000

4.3.5.2 Visualizar probabilidades

Se muestran las probabilidades de cada variable discreta usando directamente la función plot()

plot(x=tabla$x, y=tabla$f.prob.x, 
     type='h', las=1, lwd=6, xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab = "f(x)")

4.3.5.3 Probabilidades de que se encuentren 2 buses

x <- 2
prob <- dbinom(x = x, size = n, prob = exito)
paste ("La probabilidad de encontrar dos camiones contaminantes es de : ", prob)
## [1] "La probabilidad de encontrar dos camiones contaminantes es de :  0.283512088894332"

4.3.5.4 Probabilidad de menos de cuatro autobuses

Se requiere encontrar la probabilidad de cuando la variables tenga valores entre cero y cuatro. P(x=0)+P(x=1)+P(x=2)+P(x=3)+P(x=4)P(x=0)+P(x=1)+P(x=2)+P(x=3)+P(x=4) o lo que es lo mismo P(x≤4)P(x≤4) o en términos de probabilidad acumulada F(x=4)F(x=4).

x <- 4
prob <- pbinom(q = x, size = n, prob = exito)
paste ("La probabilidad de encontrar menos de cuatro camiones es de: ", prob)
## [1] "La probabilidad de encontrar menos de cuatro camiones es de:  0.971806143486743"

4.3.5.5 Probabilidad de MAS de tres autobuses

Se requiere encontrar la probabilidad de cuando la variables tenga valores entre cuatro y dieciocho. P(x=4)+P(x=5)+P(x=6)+P(x=7)…+…P(x=18)P(x=4)+P(x=5)+P(x=6)+P(x=7)…+…P(x=18) o lo que es lo mismo P(x≥3)P(x≥3) o en términos de probabilidad acumulada F(x=18)−F(x=4)F(x=18)−F(x=4).

x1 <- 4
x2 <- 18
prob <- pbinom(q = x2, size = n, prob = exito) - pbinom(q = x1, size = n, prob = exito)  
paste ("La probabilidad de encontrar menos de cuatro camiones es de: ", prob)
## [1] "La probabilidad de encontrar menos de cuatro camiones es de:  0.0281938565132567"

Se puede encontrar usando la expresión lower.tail = FALSE

pbinom(q = 4, size = n, prob = exito, lower.tail = FALSE)
## [1] 0.02819386

4.3.5.6 Valor esperado

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  1.8"

El valor esperado de 1.8 significa el valor medio de camiones que se pueden encontrar que contaminan

4.3.5.7 Varianza y desviación

Varianza

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  1.62"

Desviación

desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  1.27"

La varianza y de manera más específica la desviación significa que tanto varía (se aleja o se acerca) con respeto al valor medio o valor esperado VEVE el número de autobuses con probabilidad de encontrarse con partículas contaminantes.

4.3.5.8 Valores aleatorios

Se utiliza la función rbinom() para simular un estudio y generar valores aleatorios conforme a la distribución binomial.

El estudio o la simulación se hace con un experimento de 100 camiones, a partir del estudio previo de 18 camiones.

n.muestra <- 100
muestra <- rbinom(n = n.muestra, size = n, prob = exito)
muestra
##   [1] 0 3 1 2 2 1 0 0 5 3 3 2 0 2 2 1 1 2 1 1 3 1 2 0 4 2 2 3 2 2 2 0 2 1 1 2 0
##  [38] 2 3 3 1 1 2 2 2 1 3 2 0 2 4 1 2 4 2 2 0 0 0 0 1 0 0 1 4 5 1 0 3 0 2 1 3 3
##  [75] 7 1 0 1 0 3 1 3 0 2 0 2 2 1 2 1 2 3 3 2 3 2 1 2 1 1

Calculando frecuencias relativas

Con la función table() se determina la frecuencia y con prop.table() se encuentra la frecuencia relativa.

table(muestra)
## muestra
##  0  1  2  3  4  5  7 
## 20 25 32 16  4  2  1
data.frame(prob = prop.table(table(muestra)))
##   prob.muestra prob.Freq
## 1            0      0.20
## 2            1      0.25
## 3            2      0.32
## 4            3      0.16
## 5            4      0.04
## 6            5      0.02
## 7            7      0.01

Se observa que los mayores valores probabilísticos está entre 1 y 3, entonces la muestra se relaciona con los valores probabilísticos del origen de los datos.

4.3.5.9 INTERPRETACIÓN

Mediante la realización de este ejercicio se obtuvo la probabilidad de 18 autobuses que contaminen el aire, de los cuales se obtuvo un resultado de que aproximadamente de los 18 un 1.8 contaminan.

5 Referencias bibliográficas

Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia • Brasil • Corea • España • Estados Unidos • Japón • México • Reino Unido • Singapur: Cengage Learning,.

Hernández, Freddy. 2021. “Manual de r. Distribuciones Discretas.” https://fhernanb.github.io/Manual-de-R/.

“La Distribución Binomial o de Bernoulli.” n.d. https://www.profesor10demates.com/2014/04/la-distribucion-binomial-o-de-bernoulli_3.html.

Mendenhall, William, Robert J. Beaver, and Barbara M. Beaver. 2006. Introducción a La Probabilidad y Estadística. 13a Edición.

R CODER Binom. n.d. “La Función Dbinom.” https://r-coder.com/distribucion-binomial-r/.

Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.