#df

df <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vT3zsqDQ1yg7nOjup8UC3_L6yv5ipsRaHF4unCi2DOG2f39Il4i2Gs2zptaV77Tcika5aEeyZNtqWcN/pub?gid=362346395&single=true&output=csv")

#packages

#analisis para transporte

df %>% 
 group_by(Grupo, mm) %>% 
  summarise(n=n(),  promedio = mean(`valor absoluto`), sd = sd(`valor absoluto`))
`summarise()` regrouping output by 'Grupo' (override with `.groups` argument)

#grafica para valores totales abosolutos

#diferencias para transporte 1 mm

df1 <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vT3zsqDQ1yg7nOjup8UC3_L6yv5ipsRaHF4unCi2DOG2f39Il4i2Gs2zptaV77Tcika5aEeyZNtqWcN/pub?gid=215250196&single=true&output=csv")

#t.test para diferencias en el transporte 1mm

t.test(df1$`valor absoluto`~df1$Grupo)

    Welch Two Sample t-test

data:  df1$`valor absoluto` by df1$Grupo
t = -1, df = 23, p-value = 0.2
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.0649  0.0153
sample estimates:
mean in group Especialista   mean in group Estudiante 
                    0.0420                     0.0668 

#diferencias para transporte 2mm

df2 <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vT3zsqDQ1yg7nOjup8UC3_L6yv5ipsRaHF4unCi2DOG2f39Il4i2Gs2zptaV77Tcika5aEeyZNtqWcN/pub?gid=1084304635&single=true&output=csv")

#t.test para diferencias en el transporte 2mm

t.test(df2$`valor absoluto`~df2$Grupo)

    Welch Two Sample t-test

data:  df2$`valor absoluto` by df2$Grupo
t = -0.8, df = 19, p-value = 0.4
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.0681  0.0300
sample estimates:
mean in group Especialista   mean in group Estudiante 
                    0.0545                     0.0736 

#diferencias para transporte 3mm

df3 <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vT3zsqDQ1yg7nOjup8UC3_L6yv5ipsRaHF4unCi2DOG2f39Il4i2Gs2zptaV77Tcika5aEeyZNtqWcN/pub?gid=46491293&single=true&output=csv")

#t.test para el transporte 3mm

t.test(df3$`valor absoluto`~df3$Grupo) #no existen 

    Welch Two Sample t-test

data:  df3$`valor absoluto` by df3$Grupo
t = -0.6, df = 26, p-value = 0.5
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.0393  0.0206
sample estimates:
mean in group Especialista   mean in group Estudiante 
                    0.0487                     0.0581 

#analisis para centrado

df4 <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vT3zsqDQ1yg7nOjup8UC3_L6yv5ipsRaHF4unCi2DOG2f39Il4i2Gs2zptaV77Tcika5aEeyZNtqWcN/pub?gid=1117097778&single=true&output=csv")

#grafica para todos los valores de centrado

#analisis para centrado

df4 %>% 
 group_by(Grupo, mm) %>% 
  summarise(n=n(),  promedio = mean(Centrado), sd = sd(Centrado))
`summarise()` regrouping output by 'Grupo' (override with `.groups` argument)

#diferencias para centrado 2mm

df5 <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vT3zsqDQ1yg7nOjup8UC3_L6yv5ipsRaHF4unCi2DOG2f39Il4i2Gs2zptaV77Tcika5aEeyZNtqWcN/pub?gid=492004400&single=true&output=csv")

#t.test para centrado en 2mm

t.test(df5$Centrado~df5$Grupo) #no existen 

    Welch Two Sample t-test

data:  df5$Centrado by df5$Grupo
t = -0.3, df = 26, p-value = 0.7
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.1109  0.0801
sample estimates:
mean in group Especialista   mean in group Estudiante 
                    0.0699                     0.0853 

#diferencias para centrado 4mm

df6 <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vT3zsqDQ1yg7nOjup8UC3_L6yv5ipsRaHF4unCi2DOG2f39Il4i2Gs2zptaV77Tcika5aEeyZNtqWcN/pub?gid=1952228251&single=true&output=csv")

#t.test para centrado 4mm

t.test(df6$Centrado~df6$Grupo) #no existen 

    Welch Two Sample t-test

data:  df6$Centrado by df6$Grupo
t = -1, df = 29, p-value = 0.2
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.1762  0.0321
sample estimates:
mean in group Especialista   mean in group Estudiante 
                   -0.1589                    -0.0868 

#diferencias para centrado 6mm

df7 <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vT3zsqDQ1yg7nOjup8UC3_L6yv5ipsRaHF4unCi2DOG2f39Il4i2Gs2zptaV77Tcika5aEeyZNtqWcN/pub?gid=2094139434&single=true&output=csv")

#t.test para centrado 6mm

t.test(df7$Centrado~df7$Grupo) #no existen 

    Welch Two Sample t-test

data:  df7$Centrado by df7$Grupo
t = -1, df = 29, p-value = 0.2
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.1762  0.0321
sample estimates:
mean in group Especialista   mean in group Estudiante 
                   -0.1589                    -0.0868 
LS0tCnRpdGxlOiAiMjAyMV90ZXNpc19JbmZsdWVuY2lhIG9wZXJhZG9yIGVuIGNvbmZvcm1hY2lvbiBjYW5hbGVzIHJhZGljdWxhcmVzIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCiNkZgpgYGB7cn0KZGYgPC0gcmVhZF9jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZUM3pzcURRMXlnN25PanVwOFVDM19MNnl2NWlwc1JhSEY0dW5DaTJET0cyZjM5SWw0aTJHczJ6cHRhVjc3VGNpa2E1YUVleVpOdHFXY04vcHViP2dpZD0zNjIzNDYzOTUmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojcGFja2FnZXMKYGBge3J9CmxpYnJhcnkoInRpZHl2ZXJzZSIpCmBgYAojYW5hbGlzaXMgcGFyYSB0cmFuc3BvcnRlCmBgYHtyfQpvcHRpb25zKGRpZ2l0cyA9IDMpCmRmICU+JSAKIGdyb3VwX2J5KEdydXBvLCBtbSkgJT4lIAogIHN1bW1hcmlzZShuPW4oKSwgIHByb21lZGlvID0gbWVhbihgdmFsb3IgYWJzb2x1dG9gKSwgc2QgPSBzZChgdmFsb3IgYWJzb2x1dG9gKSkKYGBgCiNncmFmaWNhIHBhcmEgdmFsb3JlcyB0b3RhbGVzIGFib3NvbHV0b3MgCmBgYHtyfQpkZiAlPiUgCiAgZ2dwbG90KGFlcyh4PUdydXBvLCB5PWB2YWxvciBhYnNvbHV0b2ApKSsKICBnZW9tX2JveHBsb3QoKSsKICB0aGVtZV9jbGFzc2ljKCkKYGBgCiNkaWZlcmVuY2lhcyBwYXJhIHRyYW5zcG9ydGUgMSBtbQpgYGB7cn0KZGYxIDwtIHJlYWRfY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2VDN6c3FEUTF5ZzduT2p1cDhVQzNfTDZ5djVpcHNSYUhGNHVuQ2kyRE9HMmYzOUlsNGkyR3MyenB0YVY3N1RjaWthNWFFZXlaTnRxV2NOL3B1Yj9naWQ9MjE1MjUwMTk2JnNpbmdsZT10cnVlJm91dHB1dD1jc3YiKQpgYGAKI3QudGVzdCBwYXJhIGRpZmVyZW5jaWFzIGVuIGVsIHRyYW5zcG9ydGUgMW1tCmBgYHtyfQp0LnRlc3QoZGYxJGB2YWxvciBhYnNvbHV0b2B+ZGYxJEdydXBvKSAjbm8gZXhpc3RlbiAKYGBgCiNkaWZlcmVuY2lhcyBwYXJhIHRyYW5zcG9ydGUgMm1tCmBgYHtyfQpkZjIgPC0gcmVhZF9jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZUM3pzcURRMXlnN25PanVwOFVDM19MNnl2NWlwc1JhSEY0dW5DaTJET0cyZjM5SWw0aTJHczJ6cHRhVjc3VGNpa2E1YUVleVpOdHFXY04vcHViP2dpZD0xMDg0MzA0NjM1JnNpbmdsZT10cnVlJm91dHB1dD1jc3YiKQpgYGAKI3QudGVzdCBwYXJhIGRpZmVyZW5jaWFzIGVuIGVsIHRyYW5zcG9ydGUgMm1tCmBgYHtyfQp0LnRlc3QoZGYyJGB2YWxvciBhYnNvbHV0b2B+ZGYyJEdydXBvKSAjbm8gZXhpc3RlbiAKYGBgCiNkaWZlcmVuY2lhcyBwYXJhIHRyYW5zcG9ydGUgM21tCmBgYHtyfQpkZjMgPC0gcmVhZF9jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZUM3pzcURRMXlnN25PanVwOFVDM19MNnl2NWlwc1JhSEY0dW5DaTJET0cyZjM5SWw0aTJHczJ6cHRhVjc3VGNpa2E1YUVleVpOdHFXY04vcHViP2dpZD00NjQ5MTI5MyZzaW5nbGU9dHJ1ZSZvdXRwdXQ9Y3N2IikKYGBgCiN0LnRlc3QgcGFyYSBlbCB0cmFuc3BvcnRlIDNtbQpgYGB7cn0KdC50ZXN0KGRmMyRgdmFsb3IgYWJzb2x1dG9gfmRmMyRHcnVwbykgI25vIGV4aXN0ZW4gCmBgYAojYW5hbGlzaXMgcGFyYSBjZW50cmFkbwpgYGB7cn0KZGY0IDwtIHJlYWRfY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2VDN6c3FEUTF5ZzduT2p1cDhVQzNfTDZ5djVpcHNSYUhGNHVuQ2kyRE9HMmYzOUlsNGkyR3MyenB0YVY3N1RjaWthNWFFZXlaTnRxV2NOL3B1Yj9naWQ9MTExNzA5Nzc3OCZzaW5nbGU9dHJ1ZSZvdXRwdXQ9Y3N2IikKYGBgCiNncmFmaWNhIHBhcmEgdG9kb3MgbG9zIHZhbG9yZXMgZGUgY2VudHJhZG8gCmBgYHtyfQpkZjQgJT4lIAogIGdncGxvdChhZXMoeD1HcnVwbywgeT1DZW50cmFkbykpKwogIGdlb21fYm94cGxvdCgpKwogIHRoZW1lX2NsYXNzaWMoKQpgYGAKI2FuYWxpc2lzIHBhcmEgY2VudHJhZG8KYGBge3J9Cm9wdGlvbnMoZGlnaXRzID0gMykKZGY0ICU+JSAKIGdyb3VwX2J5KEdydXBvLCBtbSkgJT4lIAogIHN1bW1hcmlzZShuPW4oKSwgIHByb21lZGlvID0gbWVhbihDZW50cmFkbyksIHNkID0gc2QoQ2VudHJhZG8pKQpgYGAKI2RpZmVyZW5jaWFzIHBhcmEgY2VudHJhZG8gMm1tCmBgYHtyfQpkZjUgPC0gcmVhZF9jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZUM3pzcURRMXlnN25PanVwOFVDM19MNnl2NWlwc1JhSEY0dW5DaTJET0cyZjM5SWw0aTJHczJ6cHRhVjc3VGNpa2E1YUVleVpOdHFXY04vcHViP2dpZD00OTIwMDQ0MDAmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojdC50ZXN0IHBhcmEgY2VudHJhZG8gZW4gMm1tCmBgYHtyfQp0LnRlc3QoZGY1JENlbnRyYWRvfmRmNSRHcnVwbykgI25vIGV4aXN0ZW4gCmBgYAojZGlmZXJlbmNpYXMgcGFyYSBjZW50cmFkbyA0bW0KYGBge3J9CmRmNiA8LSByZWFkX2NzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlQzenNxRFExeWc3bk9qdXA4VUMzX0w2eXY1aXBzUmFIRjR1bkNpMkRPRzJmMzlJbDRpMkdzMnpwdGFWNzdUY2lrYTVhRWV5Wk50cVdjTi9wdWI/Z2lkPTE5NTIyMjgyNTEmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojdC50ZXN0IHBhcmEgY2VudHJhZG8gNG1tCmBgYHtyfQp0LnRlc3QoZGY2JENlbnRyYWRvfmRmNiRHcnVwbykgI25vIGV4aXN0ZW4gCmBgYAojZGlmZXJlbmNpYXMgcGFyYSBjZW50cmFkbyA2bW0KYGBge3J9CmRmNyA8LSByZWFkX2NzdigiaHR0cHM6Ly9kb2NzLmdvb2dsZS5jb20vc3ByZWFkc2hlZXRzL2QvZS8yUEFDWC0xdlQzenNxRFExeWc3bk9qdXA4VUMzX0w2eXY1aXBzUmFIRjR1bkNpMkRPRzJmMzlJbDRpMkdzMnpwdGFWNzdUY2lrYTVhRWV5Wk50cVdjTi9wdWI/Z2lkPTIwOTQxMzk0MzQmc2luZ2xlPXRydWUmb3V0cHV0PWNzdiIpCmBgYAojdC50ZXN0IHBhcmEgY2VudHJhZG8gNm1tCmBgYHtyfQp0LnRlc3QoZGY3JENlbnRyYWRvfmRmNyRHcnVwbykgI25vIGV4aXN0ZW4gCmBgYAoKCgo=