Problem 1.

Using R, generate a random variable X that has 10,000 random uniform numbers from 1 to N, where N can be any number of your choosing greater than or equal to 6. Then generate a random variable Y that has 10,000 random normal numbers with a mean of \(\mu=\sigma=(N+1)/2\)

set.seed(605)
N <- 10
n <- 10000
mu <- (N + 1)/2
sigma <- (N + 1)/2

X <- runif(n, 1, N)
Y <- rnorm(n, mu, sigma)

Probability. Calculate as a minimum the below probabilities a through c. Assume the small letter “x” is estimated as the median of the X variable, and the small letter “y” is estimated as the 1st quartile of the Y variable. Interpret the meaning of all probabilities.

x <- median(X, 0.5)
y <- quantile(Y, 0.25)
  1. \(P(X>x|X>y)\) \(P(X>x|X>y) = P(X>x\;\;and\;\;X>y)/P(X>y)\)
    Given X > y, the probability that X>y and X>x is
sum(X>y & X>x)/sum(X>y)
## [1] 0.5521201
  1. \(P(X>x,Y>y)\)
    The probability that X>x and Y>y is
sum(X>x & Y>y)/length(X)
## [1] 0.3738

c \(P(X<x|X>y)\)
Given X > y, the probability that X>y and X<x is

sum(X>y & X<x)/sum(X>y)
## [1] 0.4478799

Investigate whether \(P(X>x\;and\;Y>y)=\) P(X>x)*P(Y>y) by building a table and evaluating the marginal and joint probabilities

table_num <- matrix(
    c(
    sum(X>x & Y>y),
    sum(X<=x & Y>y),
    sum(Y > y),
    sum(X>x & Y<=y),
    sum(X<=x & Y<=y),
    sum(Y <= y),
    sum(X > x),
    sum(X <= x),
    length(X)
    ), nrow = 3, ncol = 3, byrow = TRUE,
    dimnames = list(c('Y > y','not Y > y', 'Total'), c('X > x','not X > x', 'Total'))
)
table_num
##           X > x not X > x Total
## Y > y      3738      3762  7500
## not Y > y  1262      1238  2500
## Total      5000      5000 10000
table_prob  <- table_num/length(X)
table_prob
##            X > x not X > x Total
## Y > y     0.3738    0.3762  0.75
## not Y > y 0.1262    0.1238  0.25
## Total     0.5000    0.5000  1.00

So \(P(X > x)*P(Y > y) =\)

0.75*0.5
## [1] 0.375

Which is very close to \(P(X>x\;and\;Y>y)\). It seems that they are theoretically equal.


Check to see if independence holds by using Fisher’s Exact Test and the Chi Square Test. What is the difference between the two? Which is most appropriate?

fisher.test(table_num[1:2,1:2])
## 
##  Fisher's Exact Test for Count Data
## 
## data:  table_num[1:2, 1:2]
## p-value = 0.5953
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
##  0.8894241 1.0682094
## sample estimates:
## odds ratio 
##  0.9747199
chisq.test(table_num[1:2,1:2])
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  table_num[1:2, 1:2]
## X-squared = 0.28213, df = 1, p-value = 0.5953

Both Fisher’s Exact Test and the Chi Square Test give about the same small p-value. We reject the null hypothesis that the two events are dependent. Chi Square Test requires a large sample size while Fisher’s Exact Test works for small sample size. The accuracy for Chi Square Test is an approximate and the accuracy for Fisher’s Exact Test is exact. Therefor, Fisher’s Exact Test is more appropriate in this case. However, the test results are nearly the same.


Problem 2

Descriptive and Inferential Statistics. Provide univariate descriptive statistics and appropriate plots for the training data set. Provide a scatterplot matrix for at least two of the independent variables and the dependent variable. Derive a correlation matrix for any three quantitative variables in the dataset. Test the hypotheses that the correlations between each pairwise set of variables is 0 and provide an 80% confidence interval. Discuss the meaning of your analysis. Would you be worried about familywise error? Why or why not?

train <- read.csv("https://raw.githubusercontent.com/ezaccountz/datasets/main/train.csv")
test <- read.csv("https://raw.githubusercontent.com/ezaccountz/datasets/main/test.csv")

Variable descriptions:

Variable summary:

summary(train)
##        Id           MSSubClass       MSZoning     LotFrontage    
##  Min.   :   1.0   Min.   : 20.0   C (all):  10   Min.   : 21.00  
##  1st Qu.: 365.8   1st Qu.: 20.0   FV     :  65   1st Qu.: 59.00  
##  Median : 730.5   Median : 50.0   RH     :  16   Median : 69.00  
##  Mean   : 730.5   Mean   : 56.9   RL     :1151   Mean   : 70.05  
##  3rd Qu.:1095.2   3rd Qu.: 70.0   RM     : 218   3rd Qu.: 80.00  
##  Max.   :1460.0   Max.   :190.0                  Max.   :313.00  
##                                                  NA's   :259     
##     LotArea        Street      Alley      LotShape  LandContour  Utilities   
##  Min.   :  1300   Grvl:   6   Grvl:  50   IR1:484   Bnk:  63    AllPub:1459  
##  1st Qu.:  7554   Pave:1454   Pave:  41   IR2: 41   HLS:  50    NoSeWa:   1  
##  Median :  9478               NA's:1369   IR3: 10   Low:  36                 
##  Mean   : 10517                           Reg:925   Lvl:1311                 
##  3rd Qu.: 11602                                                              
##  Max.   :215245                                                              
##                                                                              
##    LotConfig    LandSlope   Neighborhood   Condition1     Condition2  
##  Corner : 263   Gtl:1382   NAmes  :225   Norm   :1260   Norm   :1445  
##  CulDSac:  94   Mod:  65   CollgCr:150   Feedr  :  81   Feedr  :   6  
##  FR2    :  47   Sev:  13   OldTown:113   Artery :  48   Artery :   2  
##  FR3    :   4              Edwards:100   RRAn   :  26   PosN   :   2  
##  Inside :1052              Somerst: 86   PosN   :  19   RRNn   :   2  
##                            Gilbert: 79   RRAe   :  11   PosA   :   1  
##                            (Other):707   (Other):  15   (Other):   2  
##    BldgType      HouseStyle   OverallQual      OverallCond      YearBuilt   
##  1Fam  :1220   1Story :726   Min.   : 1.000   Min.   :1.000   Min.   :1872  
##  2fmCon:  31   2Story :445   1st Qu.: 5.000   1st Qu.:5.000   1st Qu.:1954  
##  Duplex:  52   1.5Fin :154   Median : 6.000   Median :5.000   Median :1973  
##  Twnhs :  43   SLvl   : 65   Mean   : 6.099   Mean   :5.575   Mean   :1971  
##  TwnhsE: 114   SFoyer : 37   3rd Qu.: 7.000   3rd Qu.:6.000   3rd Qu.:2000  
##                1.5Unf : 14   Max.   :10.000   Max.   :9.000   Max.   :2010  
##                (Other): 19                                                  
##   YearRemodAdd    RoofStyle       RoofMatl     Exterior1st   Exterior2nd 
##  Min.   :1950   Flat   :  13   CompShg:1434   VinylSd:515   VinylSd:504  
##  1st Qu.:1967   Gable  :1141   Tar&Grv:  11   HdBoard:222   MetalSd:214  
##  Median :1994   Gambrel:  11   WdShngl:   6   MetalSd:220   HdBoard:207  
##  Mean   :1985   Hip    : 286   WdShake:   5   Wd Sdng:206   Wd Sdng:197  
##  3rd Qu.:2004   Mansard:   7   ClyTile:   1   Plywood:108   Plywood:142  
##  Max.   :2010   Shed   :   2   Membran:   1   CemntBd: 61   CmentBd: 60  
##                                (Other):   2   (Other):128   (Other):136  
##    MasVnrType    MasVnrArea     ExterQual ExterCond  Foundation  BsmtQual  
##  BrkCmn : 15   Min.   :   0.0   Ex: 52    Ex:   3   BrkTil:146   Ex  :121  
##  BrkFace:445   1st Qu.:   0.0   Fa: 14    Fa:  28   CBlock:634   Fa  : 35  
##  None   :864   Median :   0.0   Gd:488    Gd: 146   PConc :647   Gd  :618  
##  Stone  :128   Mean   : 103.7   TA:906    Po:   1   Slab  : 24   TA  :649  
##  NA's   :  8   3rd Qu.: 166.0             TA:1282   Stone :  6   NA's: 37  
##                Max.   :1600.0                       Wood  :  3             
##                NA's   :8                                                   
##  BsmtCond    BsmtExposure BsmtFinType1   BsmtFinSF1     BsmtFinType2
##  Fa  :  45   Av  :221     ALQ :220     Min.   :   0.0   ALQ :  19   
##  Gd  :  65   Gd  :134     BLQ :148     1st Qu.:   0.0   BLQ :  33   
##  Po  :   2   Mn  :114     GLQ :418     Median : 383.5   GLQ :  14   
##  TA  :1311   No  :953     LwQ : 74     Mean   : 443.6   LwQ :  46   
##  NA's:  37   NA's: 38     Rec :133     3rd Qu.: 712.2   Rec :  54   
##                           Unf :430     Max.   :5644.0   Unf :1256   
##                           NA's: 37                      NA's:  38   
##    BsmtFinSF2        BsmtUnfSF       TotalBsmtSF      Heating     HeatingQC
##  Min.   :   0.00   Min.   :   0.0   Min.   :   0.0   Floor:   1   Ex:741   
##  1st Qu.:   0.00   1st Qu.: 223.0   1st Qu.: 795.8   GasA :1428   Fa: 49   
##  Median :   0.00   Median : 477.5   Median : 991.5   GasW :  18   Gd:241   
##  Mean   :  46.55   Mean   : 567.2   Mean   :1057.4   Grav :   7   Po:  1   
##  3rd Qu.:   0.00   3rd Qu.: 808.0   3rd Qu.:1298.2   OthW :   2   TA:428   
##  Max.   :1474.00   Max.   :2336.0   Max.   :6110.0   Wall :   4            
##                                                                            
##  CentralAir Electrical     X1stFlrSF      X2ndFlrSF     LowQualFinSF    
##  N:  95     FuseA:  94   Min.   : 334   Min.   :   0   Min.   :  0.000  
##  Y:1365     FuseF:  27   1st Qu.: 882   1st Qu.:   0   1st Qu.:  0.000  
##             FuseP:   3   Median :1087   Median :   0   Median :  0.000  
##             Mix  :   1   Mean   :1163   Mean   : 347   Mean   :  5.845  
##             SBrkr:1334   3rd Qu.:1391   3rd Qu.: 728   3rd Qu.:  0.000  
##             NA's :   1   Max.   :4692   Max.   :2065   Max.   :572.000  
##                                                                         
##    GrLivArea     BsmtFullBath     BsmtHalfBath        FullBath    
##  Min.   : 334   Min.   :0.0000   Min.   :0.00000   Min.   :0.000  
##  1st Qu.:1130   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:1.000  
##  Median :1464   Median :0.0000   Median :0.00000   Median :2.000  
##  Mean   :1515   Mean   :0.4253   Mean   :0.05753   Mean   :1.565  
##  3rd Qu.:1777   3rd Qu.:1.0000   3rd Qu.:0.00000   3rd Qu.:2.000  
##  Max.   :5642   Max.   :3.0000   Max.   :2.00000   Max.   :3.000  
##                                                                   
##     HalfBath       BedroomAbvGr    KitchenAbvGr   KitchenQual  TotRmsAbvGrd   
##  Min.   :0.0000   Min.   :0.000   Min.   :0.000   Ex:100      Min.   : 2.000  
##  1st Qu.:0.0000   1st Qu.:2.000   1st Qu.:1.000   Fa: 39      1st Qu.: 5.000  
##  Median :0.0000   Median :3.000   Median :1.000   Gd:586      Median : 6.000  
##  Mean   :0.3829   Mean   :2.866   Mean   :1.047   TA:735      Mean   : 6.518  
##  3rd Qu.:1.0000   3rd Qu.:3.000   3rd Qu.:1.000               3rd Qu.: 7.000  
##  Max.   :2.0000   Max.   :8.000   Max.   :3.000               Max.   :14.000  
##                                                                               
##  Functional    Fireplaces    FireplaceQu   GarageType   GarageYrBlt  
##  Maj1:  14   Min.   :0.000   Ex  : 24    2Types :  6   Min.   :1900  
##  Maj2:   5   1st Qu.:0.000   Fa  : 33    Attchd :870   1st Qu.:1961  
##  Min1:  31   Median :1.000   Gd  :380    Basment: 19   Median :1980  
##  Min2:  34   Mean   :0.613   Po  : 20    BuiltIn: 88   Mean   :1979  
##  Mod :  15   3rd Qu.:1.000   TA  :313    CarPort:  9   3rd Qu.:2002  
##  Sev :   1   Max.   :3.000   NA's:690    Detchd :387   Max.   :2010  
##  Typ :1360                               NA's   : 81   NA's   :81    
##  GarageFinish   GarageCars      GarageArea     GarageQual  GarageCond 
##  Fin :352     Min.   :0.000   Min.   :   0.0   Ex  :   3   Ex  :   2  
##  RFn :422     1st Qu.:1.000   1st Qu.: 334.5   Fa  :  48   Fa  :  35  
##  Unf :605     Median :2.000   Median : 480.0   Gd  :  14   Gd  :   9  
##  NA's: 81     Mean   :1.767   Mean   : 473.0   Po  :   3   Po  :   7  
##               3rd Qu.:2.000   3rd Qu.: 576.0   TA  :1311   TA  :1326  
##               Max.   :4.000   Max.   :1418.0   NA's:  81   NA's:  81  
##                                                                       
##  PavedDrive   WoodDeckSF      OpenPorchSF     EnclosedPorch      X3SsnPorch    
##  N:  90     Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  P:  30     1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00   1st Qu.:  0.00  
##  Y:1340     Median :  0.00   Median : 25.00   Median :  0.00   Median :  0.00  
##             Mean   : 94.24   Mean   : 46.66   Mean   : 21.95   Mean   :  3.41  
##             3rd Qu.:168.00   3rd Qu.: 68.00   3rd Qu.:  0.00   3rd Qu.:  0.00  
##             Max.   :857.00   Max.   :547.00   Max.   :552.00   Max.   :508.00  
##                                                                                
##   ScreenPorch        PoolArea        PoolQC       Fence      MiscFeature
##  Min.   :  0.00   Min.   :  0.000   Ex  :   2   GdPrv:  59   Gar2:   2  
##  1st Qu.:  0.00   1st Qu.:  0.000   Fa  :   2   GdWo :  54   Othr:   2  
##  Median :  0.00   Median :  0.000   Gd  :   3   MnPrv: 157   Shed:  49  
##  Mean   : 15.06   Mean   :  2.759   NA's:1453   MnWw :  11   TenC:   1  
##  3rd Qu.:  0.00   3rd Qu.:  0.000               NA's :1179   NA's:1406  
##  Max.   :480.00   Max.   :738.000                                       
##                                                                         
##     MiscVal             MoSold           YrSold        SaleType   
##  Min.   :    0.00   Min.   : 1.000   Min.   :2006   WD     :1267  
##  1st Qu.:    0.00   1st Qu.: 5.000   1st Qu.:2007   New    : 122  
##  Median :    0.00   Median : 6.000   Median :2008   COD    :  43  
##  Mean   :   43.49   Mean   : 6.322   Mean   :2008   ConLD  :   9  
##  3rd Qu.:    0.00   3rd Qu.: 8.000   3rd Qu.:2009   ConLI  :   5  
##  Max.   :15500.00   Max.   :12.000   Max.   :2010   ConLw  :   5  
##                                                     (Other):   9  
##  SaleCondition    SalePrice     
##  Abnorml: 101   Min.   : 34900  
##  AdjLand:   4   1st Qu.:129975  
##  Alloca :  12   Median :163000  
##  Family :  20   Mean   :180921  
##  Normal :1198   3rd Qu.:214000  
##  Partial: 125   Max.   :755000  
## 

plot of some key variables

par(mfrow=c(3,2))
hist(train$GrLivArea)
hist(train$GarageArea)
hist(train$SalePrice)
hist(train$BedroomAbvGr)
plot(train$Neighborhood)
plot(train$SaleType)

par(mfrow=c(1,1))

scatterplot matrix

train_select <- train[,c("GrLivArea","GarageArea","SalePrice")]
pairs(train_select)

correlation matrix

cor_matrix <- cor(train_select)
cor_matrix
##            GrLivArea GarageArea SalePrice
## GrLivArea  1.0000000  0.4689975 0.7086245
## GarageArea 0.4689975  1.0000000 0.6234314
## SalePrice  0.7086245  0.6234314 1.0000000
cor.test(train_select$GrLivArea, train_select$GarageArea, conf.level = 0.8)
## 
##  Pearson's product-moment correlation
## 
## data:  train_select$GrLivArea and train_select$GarageArea
## t = 20.276, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.4423993 0.4947713
## sample estimates:
##       cor 
## 0.4689975
cor.test(train_select$GrLivArea, train_select$SalePrice, conf.level = 0.8)
## 
##  Pearson's product-moment correlation
## 
## data:  train_select$GrLivArea and train_select$SalePrice
## t = 38.348, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.6915087 0.7249450
## sample estimates:
##       cor 
## 0.7086245
cor.test(train_select$GarageArea, train_select$SalePrice, conf.level = 0.8)
## 
##  Pearson's product-moment correlation
## 
## data:  train_select$GarageArea and train_select$SalePrice
## t = 30.446, df = 1458, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 80 percent confidence interval:
##  0.6024756 0.6435283
## sample estimates:
##       cor 
## 0.6234314

The result of the tests show that there is a strong correlation between GrLivArea/GarageArea and SalePrice. The p-values are nearly 0. It means we can compare the price of different houses using the their GrLivArea and GarageArea. By doing so, when comparing two houses with similar condition, quality and features, the probability of making familywise error is extremely low.


Linear Algebra and Correlation. Invert your correlation matrix from above. (This is known as the precision matrix and contains variance inflation factors on the diagonal.) Multiply the correlation matrix by the precision matrix, and then multiply the precision matrix by the correlation matrix. Conduct LU decomposition on the matrix.

inv_matrix = solve(cor_matrix)
inv_matrix
##              GrLivArea  GarageArea  SalePrice
## GrLivArea   2.01353305 -0.08964955 -1.3709485
## GarageArea -0.08964955  1.63976057 -0.9587504
## SalePrice  -1.37094845 -0.95875043  2.5692028
round(cor_matrix %*% inv_matrix,6)
##            GrLivArea GarageArea SalePrice
## GrLivArea          1          0         0
## GarageArea         0          1         0
## SalePrice          0          0         1
round(inv_matrix %*% cor_matrix,6)
##            GrLivArea GarageArea SalePrice
## GrLivArea          1          0         0
## GarageArea         0          1         0
## SalePrice          0          0         1
if(!require(matrixcalc)){
    install.packages("matrixcalc")
}
library(matrixcalc)


lu.decomposition(inv_matrix)
## $L
##             [,1]       [,2] [,3]
## [1,]  1.00000000  0.0000000    0
## [2,] -0.04452351  1.0000000    0
## [3,] -0.68086712 -0.6234314    1
## 
## $U
##          [,1]        [,2]      [,3]
## [1,] 2.013533 -0.08964955 -1.370948
## [2,] 0.000000  1.63576906 -1.019790
## [3,] 0.000000  0.00000000  1.000000

Calculus-Based Probability & Statistics. Many times, it makes sense to fit a closed form distribution to data. Select a variable in the Kaggle.com training dataset that is skewed to the right, shift it so that the minimum value is absolutely above zero if necessary. Then load the MASS package and run fitdistr to fit an exponential probability density function. (See https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/fitdistr.html ). Find the optimal value of \(\lambda\) for this distribution, and then take 1000 samples from this exponential distribution using this value (e.g., rexp(1000, \(\lambda\))). Plot a histogram and compare it with a histogram of your original variable. Using the exponential pdf, find the 5th and 95th percentiles using the cumulative distribution function (CDF). Also generate a 95% confidence interval from the empirical data, assuming normality. Finally, provide the empirical 5th percentile and 95th percentile of the data. Discuss.

if(!require(MASS)){
    install.packages("MASS")
}
if(!require(MASS)){
    install.packages("Rmisc")
}
library(MASS)
library("Rmisc")

Select variable GrLivArea

hist(train_select$GrLivArea)

optimal value of \(\lambda\)

mlh <- fitdistr(train_select$GrLivArea, densfun="exponential")
lambda = mlh$estimate
lambda
##        rate 
## 0.000659864
par(mfrow=c(1,2)) 
hist(rexp(1000, lambda), main="optimal")
hist(train_select$GrLivArea,main="Original")

5th percentile using the CDF of an exponential distribution

qexp(0.05, rate = lambda)
## [1] 77.73313

95th percentile using the CDF of an exponential distribution

qexp(0.95, rate = lambda)
## [1] 4539.924

95% confidence interval from the empirical data

if(!require(Rmisc)){
    install.packages("Rmisc")
}
library(Rmisc)

CI(train_select$GrLivArea, ci = 0.95)
##    upper     mean    lower 
## 1542.440 1515.464 1488.487

empirical 5th percentile and 95th percentile of the data

quantile(train_select$GrLivArea, 0.05)
##  5% 
## 848
quantile(train_select$GrLivArea, 0.95)
##    95% 
## 2466.1

The result shows that the empirical data doesn’t fit to an exponential distribution. The exponential distribution pdf is a monotonic decreasing function and the data is increasing and then decreasing. We should select a different distribution that fits the data.


Modeling. Build some type of multiple regression model and submit your model to the competition board. Provide your complete model summary and results with analysis. Report your Kaggle.com user name and score.

Feature Selection:

First, let’s check the missing values of our data

colSums(is.na(train))[apply(train, 2, function(x) any(is.na(x)))]
##  LotFrontage        Alley   MasVnrType   MasVnrArea     BsmtQual     BsmtCond 
##          259         1369            8            8           37           37 
## BsmtExposure BsmtFinType1 BsmtFinType2   Electrical  FireplaceQu   GarageType 
##           38           37           38            1          690           81 
##  GarageYrBlt GarageFinish   GarageQual   GarageCond       PoolQC        Fence 
##           81           81           81           81         1453         1179 
##  MiscFeature 
##         1406
colSums(is.na(test))[apply(test, 2, function(x) any(is.na(x)))]
##     MSZoning  LotFrontage        Alley    Utilities  Exterior1st  Exterior2nd 
##            4          227         1352            2            1            1 
##   MasVnrType   MasVnrArea     BsmtQual     BsmtCond BsmtExposure BsmtFinType1 
##           16           15           44           45           44           42 
##   BsmtFinSF1 BsmtFinType2   BsmtFinSF2    BsmtUnfSF  TotalBsmtSF BsmtFullBath 
##            1           42            1            1            1            2 
## BsmtHalfBath  KitchenQual   Functional  FireplaceQu   GarageType  GarageYrBlt 
##            2            1            2          730           76           78 
## GarageFinish   GarageCars   GarageArea   GarageQual   GarageCond       PoolQC 
##           78            1            1           78           78         1456 
##        Fence  MiscFeature     SaleType 
##         1169         1408            1

Variables with considerable number of NA values are LotFrontage, Alley, MasVnrType, MasVnrArea, BsmtQual, BsmtCond, BsmtExposure, BsmtFinType1, BsmtFinType2, FireplaceQu, GarageType, GarageYrBlt, GarageFinish, GarageQual, GarageCond, PoolQC, Fence, MiscFeature As they can not be applied generally to every house, we would exclude these variables in our analysis. In fact, some of the variables are correlated with some other variables that may be included in our model.

In order to reduce the complexity of our model, we would exclude from our analysis the following types of variables:

we would focus on the following variables:

We start building our model with all selected variables:

reg = lm(SalePrice ~ GrLivArea + GarageArea + TotalBsmtSF + LotArea + FullBath 
         + HalfBath + BedroomAbvGr + MSZoning + Neighborhood + OverallQual 
         + OverallCond + SaleType + SaleCondition + Heating + CentralAir 
         + Electrical + MiscVal,  data = train)
summary(reg)
## 
## Call:
## lm(formula = SalePrice ~ GrLivArea + GarageArea + TotalBsmtSF + 
##     LotArea + FullBath + HalfBath + BedroomAbvGr + MSZoning + 
##     Neighborhood + OverallQual + OverallCond + SaleType + SaleCondition + 
##     Heating + CentralAir + Electrical + MiscVal, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -457031  -14233    -889   12384  263733 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          -9.338e+04  3.872e+04  -2.412  0.01599 *  
## GrLivArea             4.957e+01  3.644e+00  13.606  < 2e-16 ***
## GarageArea            3.460e+01  5.822e+00   5.944 3.51e-09 ***
## TotalBsmtSF           2.163e+01  2.995e+00   7.223 8.30e-13 ***
## LotArea               4.858e-01  1.035e-01   4.691 2.98e-06 ***
## FullBath              3.949e+03  2.709e+03   1.458  0.14510    
## HalfBath              3.151e+03  2.424e+03   1.300  0.19373    
## BedroomAbvGr         -6.452e+03  1.487e+03  -4.338 1.54e-05 ***
## MSZoningFV            1.078e+04  1.616e+04   0.667  0.50459    
## MSZoningRH            1.764e+04  1.611e+04   1.094  0.27396    
## MSZoningRL            2.456e+04  1.348e+04   1.822  0.06872 .  
## MSZoningRM            1.547e+04  1.275e+04   1.213  0.22517    
## NeighborhoodBlueste  -3.734e+03  2.602e+04  -0.144  0.88590    
## NeighborhoodBrDale   -9.654e+03  1.309e+04  -0.738  0.46081    
## NeighborhoodBrkSide   3.792e+03  1.032e+04   0.367  0.71340    
## NeighborhoodClearCr   2.057e+04  1.109e+04   1.855  0.06383 .  
## NeighborhoodCollgCr   1.612e+04  8.858e+03   1.819  0.06906 .  
## NeighborhoodCrawfor   2.253e+04  1.002e+04   2.248  0.02476 *  
## NeighborhoodEdwards  -5.850e+03  9.478e+03  -0.617  0.53720    
## NeighborhoodGilbert   1.227e+04  9.363e+03   1.310  0.19034    
## NeighborhoodIDOTRR   -7.724e+01  1.206e+04  -0.006  0.99489    
## NeighborhoodMeadowV   4.746e+03  1.298e+04   0.366  0.71462    
## NeighborhoodMitchel   6.006e+03  9.907e+03   0.606  0.54445    
## NeighborhoodNAmes     1.947e+03  9.120e+03   0.214  0.83095    
## NeighborhoodNoRidge   7.186e+04  1.023e+04   7.024 3.35e-12 ***
## NeighborhoodNPkVill  -7.771e+03  1.415e+04  -0.549  0.58293    
## NeighborhoodNridgHt   6.347e+04  9.254e+03   6.859 1.04e-11 ***
## NeighborhoodNWAmes    4.981e+02  9.534e+03   0.052  0.95834    
## NeighborhoodOldTown  -1.177e+04  1.032e+04  -1.141  0.25421    
## NeighborhoodSawyer    4.403e+03  9.714e+03   0.453  0.65039    
## NeighborhoodSawyerW   1.179e+04  9.612e+03   1.227  0.22012    
## NeighborhoodSomerst   2.867e+04  1.130e+04   2.536  0.01131 *  
## NeighborhoodStoneBr   6.754e+04  1.072e+04   6.299 4.00e-10 ***
## NeighborhoodSWISU    -1.195e+04  1.145e+04  -1.043  0.29706    
## NeighborhoodTimber    2.505e+04  1.023e+04   2.448  0.01449 *  
## NeighborhoodVeenker   3.495e+04  1.354e+04   2.580  0.00998 ** 
## OverallQual           1.539e+04  1.174e+03  13.107  < 2e-16 ***
## OverallCond           5.995e+03  9.522e+02   6.296 4.09e-10 ***
## SaleTypeCon           4.686e+04  2.527e+04   1.854  0.06390 .  
## SaleTypeConLD         1.521e+04  1.300e+04   1.170  0.24222    
## SaleTypeConLI         2.161e+04  1.623e+04   1.331  0.18325    
## SaleTypeConLw         6.304e+03  1.651e+04   0.382  0.70260    
## SaleTypeCWD           2.451e+04  1.814e+04   1.351  0.17698    
## SaleTypeNew           4.791e+04  2.125e+04   2.255  0.02428 *  
## SaleTypeOth           3.834e+04  2.053e+04   1.868  0.06196 .  
## SaleTypeWD            9.278e+03  5.724e+03   1.621  0.10528    
## SaleConditionAdjLand  2.442e+04  1.858e+04   1.314  0.18897    
## SaleConditionAlloca   1.040e+04  1.068e+04   0.974  0.33037    
## SaleConditionFamily  -2.812e+03  8.602e+03  -0.327  0.74377    
## SaleConditionNormal   6.128e+03  3.909e+03   1.568  0.11712    
## SaleConditionPartial -1.143e+04  2.055e+04  -0.556  0.57798    
## HeatingGasA          -1.665e+04  3.453e+04  -0.482  0.62967    
## HeatingGasW          -1.906e+04  3.530e+04  -0.540  0.58931    
## HeatingGrav          -1.687e+04  3.667e+04  -0.460  0.64557    
## HeatingOthW          -5.797e+04  4.214e+04  -1.376  0.16917    
## HeatingWall           1.810e+03  3.853e+04   0.047  0.96253    
## CentralAirY           4.224e+03  4.836e+03   0.873  0.38261    
## ElectricalFuseF      -2.532e+02  7.780e+03  -0.033  0.97404    
## ElectricalFuseP      -1.512e+04  2.121e+04  -0.713  0.47618    
## ElectricalMix        -2.209e+04  3.495e+04  -0.632  0.52754    
## ElectricalSBrkr       9.412e+01  3.973e+03   0.024  0.98110    
## MiscVal              -6.809e-01  1.799e+00  -0.378  0.70518    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 33800 on 1397 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.8267, Adjusted R-squared:  0.8191 
## F-statistic: 109.2 on 61 and 1397 DF,  p-value: < 2.2e-16

We then improve our model using backward elimination. Then final result is following:

reg = lm(SalePrice ~ GrLivArea + GarageArea + TotalBsmtSF + LotArea + BedroomAbvGr 
         + Neighborhood + OverallQual + OverallCond + SaleType,  data = train)
summary(reg)
## 
## Call:
## lm(formula = SalePrice ~ GrLivArea + GarageArea + TotalBsmtSF + 
##     LotArea + BedroomAbvGr + Neighborhood + OverallQual + OverallCond + 
##     SaleType, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -460124  -14042    -497   12815  263196 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         -7.863e+04  1.242e+04  -6.329 3.30e-10 ***
## GrLivArea            5.234e+01  2.978e+00  17.577  < 2e-16 ***
## GarageArea           3.611e+01  5.703e+00   6.333 3.23e-10 ***
## TotalBsmtSF          2.050e+01  2.752e+00   7.447 1.65e-13 ***
## LotArea              4.949e-01  1.022e-01   4.843 1.42e-06 ***
## BedroomAbvGr        -5.732e+03  1.437e+03  -3.990 6.94e-05 ***
## NeighborhoodBlueste -1.041e+04  2.554e+04  -0.407  0.68379    
## NeighborhoodBrDale  -1.945e+04  1.204e+04  -1.616  0.10641    
## NeighborhoodBrkSide -4.986e+03  9.764e+03  -0.511  0.60972    
## NeighborhoodClearCr  1.749e+04  1.099e+04   1.591  0.11181    
## NeighborhoodCollgCr  1.520e+04  8.830e+03   1.721  0.08548 .  
## NeighborhoodCrawfor  1.837e+04  9.863e+03   1.863  0.06267 .  
## NeighborhoodEdwards -8.775e+03  9.314e+03  -0.942  0.34628    
## NeighborhoodGilbert  1.311e+04  9.298e+03   1.410  0.15886    
## NeighborhoodIDOTRR  -1.852e+04  1.035e+04  -1.790  0.07368 .  
## NeighborhoodMeadowV -5.623e+03  1.199e+04  -0.469  0.63925    
## NeighborhoodMitchel  3.038e+03  9.832e+03   0.309  0.75738    
## NeighborhoodNAmes   -9.146e+02  8.949e+03  -0.102  0.91861    
## NeighborhoodNoRidge  7.078e+04  1.015e+04   6.974 4.70e-12 ***
## NeighborhoodNPkVill -5.966e+03  1.409e+04  -0.423  0.67213    
## NeighborhoodNridgHt  6.322e+04  9.234e+03   6.847 1.12e-11 ***
## NeighborhoodNWAmes  -3.527e+02  9.482e+03  -0.037  0.97033    
## NeighborhoodOldTown -2.553e+04  9.271e+03  -2.754  0.00596 ** 
## NeighborhoodSawyer   1.502e+03  9.578e+03   0.157  0.87539    
## NeighborhoodSawyerW  1.081e+04  9.536e+03   1.134  0.25712    
## NeighborhoodSomerst  1.869e+04  9.112e+03   2.052  0.04038 *  
## NeighborhoodStoneBr  6.727e+04  1.071e+04   6.283 4.42e-10 ***
## NeighborhoodSWISU   -1.787e+04  1.120e+04  -1.596  0.11073    
## NeighborhoodTimber   2.443e+04  1.017e+04   2.402  0.01642 *  
## NeighborhoodVeenker  3.442e+04  1.345e+04   2.559  0.01061 *  
## OverallQual          1.547e+04  1.142e+03  13.549  < 2e-16 ***
## OverallCond          6.392e+03  8.992e+02   7.108 1.86e-12 ***
## SaleTypeCon          4.985e+04  2.517e+04   1.980  0.04784 *  
## SaleTypeConLD        1.344e+04  1.254e+04   1.072  0.28381    
## SaleTypeConLI        2.175e+04  1.615e+04   1.347  0.17818    
## SaleTypeConLw        8.427e+03  1.614e+04   0.522  0.60178    
## SaleTypeCWD          2.265e+04  1.787e+04   1.267  0.20527    
## SaleTypeNew          3.467e+04  6.444e+03   5.380 8.69e-08 ***
## SaleTypeOth          3.752e+04  2.043e+04   1.836  0.06656 .  
## SaleTypeWD           1.280e+04  5.382e+03   2.378  0.01753 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 33830 on 1420 degrees of freedom
## Multiple R-squared:  0.8235, Adjusted R-squared:  0.8187 
## F-statistic: 169.9 on 39 and 1420 DF,  p-value: < 2.2e-16

Let’s check the normality of the residuals of the final model

hist(reg$residuals, breaks = 50)

plot(fitted(reg),resid(reg))

qqnorm(resid(reg))
qqline(resid(reg))

The distribution of the residuals is approximately normal. It’s appropriate to predit the sale price using our model.

Now let’s do our prediction using the test data. As we found above, there are some missing data in MSZoning, SaleType, GarageArea and TotalBsmtSF. We are going to replace the NA of the categorical variables by their modes and replace the NA of the numeric variables by 0.

Mode <- function(x, na.rm = FALSE) {
  if(na.rm){
    x = x[!is.na(x)]
  }

  ux <- unique(x)
  return(ux[which.max(tabulate(match(x, ux)))])
}
test_modified <- test
test_modified$MSZoning[is.na(test_modified$MSZoning)] <- Mode(test_modified$MSZoning)
test_modified$SaleType[is.na(test_modified$SaleType)] <- Mode(test_modified$SaleType)
test_modified$GarageArea[is.na(test_modified$GarageArea)] <- 0
test_modified$TotalBsmtSF[is.na(test_modified$TotalBsmtSF)] <- 0

Predict the sale price

pred <- predict(reg, test_modified)

Save the result in a csv file for submission

result <- data.frame(Id = test$Id, SalePrice = pred)
write.csv(result,"result.csv", row.names = FALSE)

Final result of the submission

user name: euclidzhang
score: 0.20894