Sys.setlocale(category = "LC_ALL", locale = "zh_TW.UTF-8")
## Warning in Sys.setlocale(category = "LC_ALL", locale = "zh_TW.UTF-8"): 作業系統
## 回報無法實現設定語區為 "zh_TW.UTF-8" 的要求
## [1] ""
library(data.table)
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
##
## between, first, last
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(jiebaR)
## Loading required package: jiebaRD
library(tidytext)
library(stringr)
library(tm)
## Loading required package: NLP
##
## Attaching package: 'NLP'
## The following object is masked from 'package:ggplot2':
##
## annotate
library(topicmodels)
library(purrr)
##
## Attaching package: 'purrr'
## The following object is masked from 'package:data.table':
##
## transpose
library(slam)
##
## Attaching package: 'slam'
## The following object is masked from 'package:data.table':
##
## rollup
library(LDAvis)
library(magrittr)
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
## set_names
require(RColorBrewer)
## Loading required package: RColorBrewer
require(plotly)
## Loading required package: plotly
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
mycolors <- colorRampPalette(brewer.pal(8, "Set3"))(20)
透過中山管院文字分析平台,載入聯合新聞網、蘋果新聞網、東森新聞網的新聞,搜尋關鍵字為「防疫」「防疫措施」時間從2020/01/01到2021/05/13。
metadata <- fread("quarantine metadata.csv", encoding = "UTF-8")
可以看有關防疫措施的討論在四月過後新聞報導大幅下降,直到今年一月和五月才又上升。
metadata%>%
mutate(artDate = as.Date(artDate))%>%
group_by(artDate)%>%
summarise(count = n())%>%
ggplot(aes(artDate,count))+
geom_line(color="red")+
geom_point()+
geom_line(aes(x=artDate,y=count))->plot
ggplotly(plot)
#Ch1. Document Term Matrix (DTM)
使用默認參數初始化一個斷詞引擎
jieba_tokenizer = worker()
news_tokenizer <- function(t) {
lapply(t, function(x) {
if(nchar(x)>1){
tokens <- segment(x, jieba_tokenizer)
# 去掉字串長度爲1的詞彙
tokens <- tokens[nchar(tokens)>1]
return(tokens)
}
})
}
計算每篇文章各token出現次數
tokens <- metadata %>%
unnest_tokens(word, sentence, token=news_tokenizer) %>%
filter(!grepl('[[:punct:]]',word)) %>% # 去標點符號
filter(!grepl("['^0-9a-z']",word)) %>% # 去英文、數字
count(artUrl, word) %>%
rename(count=n)
tokens %>% head(20)
dtm <-tokens %>% cast_dtm(artUrl, word, count)
dtm
## <<DocumentTermMatrix (documents: 1455, terms: 33608)>>
## Non-/sparse entries: 206580/48693060
## Sparsity : 100%
## Maximal term length: 9
## Weighting : term frequency (tf)
inspect(dtm[1:10,1:10])
## <<DocumentTermMatrix (documents: 10, terms: 10)>>
## Non-/sparse entries: 34/66
## Sparsity : 66%
## Maximal term length: 2
## Weighting : term frequency (tf)
## Sample :
## Terms
## Docs 一名 一定 人員 入境 口罩 大家
## https://news.ebc.net.tw/news/article/195006 1 1 1 1 4 1
## https://news.ebc.net.tw/news/article/195218 0 1 0 1 3 0
## https://news.ebc.net.tw/news/article/195291 0 0 0 0 6 0
## https://news.ebc.net.tw/news/article/195308 0 1 0 0 6 0
## https://news.ebc.net.tw/news/article/195324 2 0 1 1 1 0
## https://news.ebc.net.tw/news/article/195409 0 0 1 0 0 0
## https://news.ebc.net.tw/news/article/195418 2 0 0 1 5 0
## https://news.ebc.net.tw/news/article/195424 0 0 0 0 0 0
## https://news.ebc.net.tw/news/article/195479 0 0 1 0 0 0
## https://news.ebc.net.tw/news/article/195605 0 0 0 0 0 0
## Terms
## Docs 大陸 女性 已經 不必
## https://news.ebc.net.tw/news/article/195006 2 1 1 1
## https://news.ebc.net.tw/news/article/195218 2 0 1 0
## https://news.ebc.net.tw/news/article/195291 1 0 0 0
## https://news.ebc.net.tw/news/article/195308 3 0 1 1
## https://news.ebc.net.tw/news/article/195324 0 0 1 0
## https://news.ebc.net.tw/news/article/195409 0 0 0 0
## https://news.ebc.net.tw/news/article/195418 1 0 0 0
## https://news.ebc.net.tw/news/article/195424 0 0 0 0
## https://news.ebc.net.tw/news/article/195479 0 0 0 0
## https://news.ebc.net.tw/news/article/195605 1 0 0 0
#lda <- LDA(dtm, k = 2, control = list(seed = 2021))
# lda <- LDA(dtm, k = 2, control = list(seed = 2021,alpha = 2,delta=0.1),method = "Gibbs") #調整alpha即delta
load("ldas_result.rdata")
lda = ldas[[1]]
lda
## A LDA_VEM topic model with 6 topics.
topics_words <- tidy(lda, matrix = "beta") # 注意,在tidy function裡面要使用"beta"來取出Phi矩陣。
colnames(topics_words) <- c("topic", "term", "phi")
topics_words
terms依照各主題的phi值由大到小排序,列出前10大
topics_words %>%
group_by(topic) %>%
top_n(10, phi) %>%
ungroup() %>%
mutate(top_words = reorder_within(term,phi,topic)) %>%
ggplot(aes(x = top_words, y = phi, fill = as.factor(topic))) +
geom_col(show.legend = FALSE) +
facet_wrap(~ topic, scales = "free") +
coord_flip() +
scale_x_reordered()
嘗試6個主題數,將結果存起來,再做進一步分析。
ldas = c()
topics = c(6)
for(topic in topics){
start_time <- Sys.time()
lda <- LDA(dtm, k = topic, control = list(seed = 2021))
ldas =c(ldas,lda)
print(paste(topic ,paste("topic(s) and use time is ", Sys.time() -start_time)))
save(ldas,file = "ldas_result.rdata") # 將模型輸出成檔案
}
載入每個主題的LDA結果
load("ldas_result.rdata")
topicmodels_json_ldavis <- function(fitted, doc_term){
require(LDAvis)
require(slam)
###以下function 用來解決,主題數多會出現NA的問題
### 參考 https://github.com/cpsievert/LDAvis/commit/c7234d71168b1e946a361bc00593bc5c4bf8e57e
ls_LDA = function (phi){
jensenShannon <- function(x, y) {
m <- 0.5 * (x + y)
lhs <- ifelse(x == 0, 0, x * (log(x) - log(m+1e-16)))
rhs <- ifelse(y == 0, 0, y * (log(y) - log(m+1e-16)))
0.5 * sum(lhs) + 0.5 * sum(rhs)
}
dist.mat <- proxy::dist(x = phi, method = jensenShannon)
pca.fit <- stats::cmdscale(dist.mat, k = 2)
data.frame(x = pca.fit[, 1], y = pca.fit[, 2])
}
# Find required quantities
phi <- as.matrix(posterior(fitted)$terms)
theta <- as.matrix(posterior(fitted)$topics)
vocab <- colnames(phi)
term_freq <- slam::col_sums(doc_term)
# Convert to json
json_lda <- LDAvis::createJSON(phi = phi, theta = theta,
vocab = vocab,
doc.length = as.vector(table(doc_term$i)),
term.frequency = term_freq, mds.method = ls_LDA)
return(json_lda)
}
the_lda = ldas[[1]]
json_res <- topicmodels_json_ldavis(the_lda,dtm)
serVis(json_res,open.browser = T)
serVis(json_res, out.dir = "vis", open.browser = T)
writeLines(iconv(readLines("./vis/lda.json"), to = "UTF8"))
the_lda = ldas[[1]] ## 選定topic 為 4 的結果
topics_words <- tidy(the_lda, matrix = "beta") # 注意,在tidy function裡面要使用"beta"來取出Phi矩陣。
colnames(topics_words) <- c("topic", "term", "phi")
topics_words %>% arrange(desc(phi)) %>% head(10)
terms依照各主題的phi值由大到小排序
topics_words %>%
group_by(topic) %>%
top_n(10, phi) %>%
ungroup() %>%
ggplot(aes(x = reorder_within(term,phi,topic), y = phi, fill = as.factor(topic))) +
geom_col(show.legend = FALSE) +
facet_wrap(~ topic, scales = "free") +
coord_flip() +
scale_x_reordered()
去除共通詞彙,
removed_word = c("表示","可以","沒有","口罩","疫情","我們","防疫","台灣","民眾","大家","他們","就是","還是","現在")
topics_words %>%
filter(!term %in% removed_word) %>%
group_by(topic) %>%
top_n(10, phi) %>%
ungroup() %>%
ggplot(aes(x = reorder_within(term,phi,topic), y = phi, fill = as.factor(topic))) +
geom_col(show.legend = FALSE) +
facet_wrap(~ topic, scales = "free") +
coord_flip() +
scale_x_reordered()
### 主題命名
topics_name = c("工作","醫院和數據","疫苗進度","公共活動及業者","執法單位","境外移入")
# for every document we have a probability distribution of its contained topics
tmResult <- posterior(the_lda)
doc_pro <- tmResult$topics
document_topics <- doc_pro[metadata$artUrl,]
document_topics_df =data.frame(document_topics)
colnames(document_topics_df) = topics_name
rownames(document_topics_df) = NULL
news_topic = cbind(metadata,document_topics_df)
看每一篇的文章分佈了!
news_topic %>%
arrange(desc(`境外移入`)) %>%head(10)
news_topic %>%
mutate(artDate = as.Date(artDate)) %>%
group_by(artDate = format(artDate,'%Y%m')) %>%
summarise_if(is.numeric, sum, na.rm = TRUE) %>%
melt(id.vars = "artDate")%>%
ggplot( aes(x=artDate, y=value, fill=variable)) +
geom_bar(stat = "identity") + ylab("value") +
scale_fill_manual(values=mycolors[c(1,2,3,5,8,12)])+
theme(axis.text.x = element_text(angle = 90, hjust = 1))
news_topic %>%
mutate(artDate = as.Date(artDate)) %>%
filter( !format(artDate,'%Y%m') %in% c(202011,202105))%>%
group_by(artDate = format(artDate,'%Y%m')) %>%
summarise_if(is.numeric, sum, na.rm = TRUE) %>%
melt(id.vars = "artDate")%>%
group_by(artDate)%>%
mutate(total_value =sum(value))%>%
ggplot( aes(x=artDate, y=value/total_value, fill=variable)) +
geom_bar(stat = "identity") + ylab("proportion") +
scale_fill_manual(values=mycolors[c(1,2,3,5,8,12)])+
theme(axis.text.x = element_text(angle = 90, hjust = 1))