1.- Objetivo

Encontrar probabilidades de acuerdo a la distribución binomial.

2.- Descripción

Identificar ejercicios casos de la literatura de distribuciones de probabilidad binomial y realizar cálculos de probabilidades, determinar el valor esperado y calcualr la varianza y la desviación.

Los ejercicios que se presenta utilizan funciones relacionadas con la distribución binomial dbinom() pbinom(), rbinom() en algunos ejercicios del caso se utiliza la función f.prob.binom() previamente codificada y que encapsula la fórmula para determinar probabilidad binomiales.

3.- Fundamento Teórico

Pendiente.

4.- Desarrollo

4.1.- Cargar librerías

library(dplyr)
library(ggplot2)
library(mosaic) # Gráficos de distribuciones

options(scipen=999) # Notación normal

# options(scipen=1) # Notación científica

4.2.- Cargar funciones

Se carga función de servicio github o de manera local.

#source("../funciones/funciones.distribuciones.r")

# o

source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")

Se determina una semilla porque algunos ejercicios calculan valores aleatorios.

set.seed(2021)

4.3.- Ejercicios

4.3.1.- Tienda de ropa MartinClothingStore

Tienda de ropa MartinClothingStore (Anderson, Sweeney, and Williams 2008)

De acuerdo con la experiencia, el gerente de la tienda estima que la probabilidad de que un cliente realice una compra es 0.30.

Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad acumulada

  • Encontrar la probabilidad de que compren dos clientes

  • Encontrar la probabilidad de que compren los tres próximos clientes.

  • Encontrar la probabilidad de que sean menor o igual que dos.

  • Calcular la probabilidad de que sean mayor que dos

  • Determinar el valor esperado y su significado

  • Determinar la varianza y la desviación estándar y si significado

  • Interpretar

4.3.1.1.- Probabilidad para 0,1,2,3 y tabla de distribución

Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad cumulada

  • Inicializar valores
x <- c(0,1,2,3)
n <- 3
exito <- 0.30
  • Determinar tabla de probabilidad usando la función creada y conforme a la fórmula
tabla1 <- data.frame(x=x, f.prob.x = f.prob.binom(x,n,exito), f.acum.x = cumsum(f.prob.binom(x,n,exito)))
tabla1
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000
  • Determinar tabla de probabilidad usando función propia de los paquetes base de R dbinom()
tabla2 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = cumsum(dbinom(x = x, size = n, prob = exito)))
tabla2
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000

con pbinom() en lugar de cumsum()

tabla3 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla3
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000

4.3.1.2.- Visualizar tabla de distribución

plotDist(dist = "binom", size=3, prob=0.30,xlab = paste("Variables ",min(tabla1$x),"-",max(tabla1$x) ))

plotDist(dist = "binom", size=3, prob=0.30,xlab = paste("Variables ",min(tabla1$x),"-",max(tabla1$x) ), kind = "histogram")

4.3.1.3.- Probabilidad de que compren dos clientes

Encontrar la probabilidad de que compren dos clientes

  • Identificar la probabilidad cuando \(P(x=2)\) de la tabla.
  • Se puede usar tabla1, tabla2 o tabla3 es la misma.
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 2    0.189    0.973
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  2  es igual a :  0.189"

Usando dbinom()

dbinom(x = 2, size = 3, prob = exito)
## [1] 0.189

4.3.1.4.- Probabilidad de que compren los tres próximos clientes

Encontrar la probabilidad de que compren los tres próximos clientes

  • Identificar la probabilidad cuando \(P(x=3)\) de la tabla.
  • Se puede usar tabla1, tabla2 o tabla3 es la misma.
valor.x <- 3
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 3    0.027        1
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  3  es igual a :  0.027"

Usando dbinom()

dbinom(x = 3, size = 3, prob = exito)
## [1] 0.027

4.3.1.5.- Probabilidad de que sean menor o igual que dos

Encontrar la probabilidad de que sean menor o igual que dos

  • Ahora usar la función acumulada por la pregunta
  • \(P(x=0)+P(x=1)+P(x=2)\)
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 2    0.189    0.973
paste("La probabilidad de que sea menor o igual a ", valor.x, " es igual a : ", la.probabilidad$f.acum.x )
## [1] "La probabilidad de que sea menor o igual a  2  es igual a :  0.973"

Usando pbinom()

pbinom(q = 2, size = 3, prob = exito)
## [1] 0.973

4.3.1.6.- Probabilidad de que sean mayor que dos

La expresión \(lower.tail = FALSE como atributo de la función pbinom()\) significa encontrar en la tabla de distribución la sumatoria de las probabilidades a partir de el valor de \(x\), o lo que es lo mismo, \(1−prob.acum(x), 1−0.97=0.27\).

pbinom(q = 2, size = 3, prob = exito, lower.tail = FALSE)
## [1] 0.027

4.3.1.7.- Valor esperado

Determinar el valor esperado y su significado

  • El valor esperado de la distribución binomial

\[\mu = n \cdot p\]

Siendo \(p\) el éxito de la probabilidad y \(n\) el número de experimentos

VE <- n * exito
paste ("El valor esperado es: ", VE)
## [1] "El valor esperado es:  0.9"

El valor esperado \(VE\) significa el valor medio o el valor promedio de todos valores de la distribución de probabilidad.

4.3.1.8.- Varianza y desviación estándar

Determinar la varianza y la desviación estándar y su significado.

  • La varianza en la distribución binomial

\[\sigma^{2} = n \cdot p \cdot(1-p)\]

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  0.63"
  • La desviación

\[\sigma = \sqrt{\sigma^{2}}\]

desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  0.79"

4.3.1.9.- Interpretar el ejercicio

  • En este ejercicio se observa que en la tienda llamada MartinClothingStore tiene una probabilidad del 30% de que un cliente realice una compra; tambien se estiman las probabilidades de 0 a 3 clientes compraran algo en la tienda, interpretándose como si la tienda tiene éxito o no en vender a un determinado número de clientes.

Mediante la tabla de distribución se puede observar que lo más probable es que 1 cliente compre, siguiendo después a que ningún cliente compre algo, bajando así la probabilidad de que tres clientes compren, aumentando la probabilidad de fracaso del negocio, ya que la suma de probabilidad de éxito y fracaso debe ser igual a uno, siendo que si sube una probabilidad, la otra tiende a bajar. En este ejercicio el valor esperado es de 0.9, mientras que la desviación estándar es de 0.79.

4.3.2.- Jugador de basquetbol

Un jugador encesta con probabilidad 0.55. (“La Distribución Binomial o de Bernoulli,” n.d.):

  • Determinar las probabilidad de los tiros del 1 al 6 con la tabla de probabilidad

  • Determinar la probabilidad de encestar cuatro tiros P(x=4)

  • Determinar la probabilidad de encestar todos tiros o sea seis P(x=6)

  • Determinar la probabilidad de encestar al menos tres P(x≤3) o, P.acum(x=3)

  • Determinar el valor esperado VE

  • Determinar la varianza y su desviación estándard

  • Interpretar el ejercicio

4.3.2.1.- Tabla de probabilidad (0-6)

Se construye la tabla de probabilidades tal y como se construye usando el código de tabla3

Se inicializan valores:

x <- 0:6
n <- 6
exito <- 0.55
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##   x    f.prob.x    f.acum.x
## 1 0 0.008303766 0.008303766
## 2 1 0.060894281 0.069198047
## 3 2 0.186065859 0.255263906
## 4 3 0.303218437 0.558482344
## 5 4 0.277950234 0.836432578
## 6 5 0.135886781 0.972319359
## 7 6 0.027680641 1.000000000

4.3.2.2.- Visualización de probabilidades

Dos formas de visualizar las probabilidades.

plotDist(dist = "binom", size=n, prob=exito,xlab = paste("Variables ",min(tabla$x),"-",max(tabla$x)))

plot(x = tabla$x, y=tabla$f.prob.x, type = "h", xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab= "f(x)")

4.3.2.3.- Probabilidad de encestar cuatro tiros

Calcular la probabilidad de encestar cuatro tiros \(P(x=4)\).

dbinom(x = 4, size = n, prob = exito)
## [1] 0.2779502

4.3.2.4.- Probabilidad de encestar todos los tiros

Determinar la probabilidad de encestar todos tiros o sea seis \(P(x=6)\).

dbinom(x = 6, size = n, prob = exito)
## [1] 0.02768064

4.3.2.5.- Probabilidad de encestar al menos tres

Usando la función pbinom()

pbinom(q = 3, size = n, prob = exito)
## [1] 0.5584823

o utilizando el renglón de la tabla de distribución en la columna de probabilidad acumulada f.acum.x.

valor.x <- 3
la.probabilidad <- filter(tabla, x == valor.x) 
la.probabilidad
##   x  f.prob.x  f.acum.x
## 1 3 0.3032184 0.5584823

4.3.2.6.- Valor esperado

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  3.3"

El valor esperado de 3.3 significa que es lo que se espera encestar en promedio de los n= 6 tiros.

4.3.2.7.- Varianza y desviación

  • Varianza
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  1.48"
  • Desviación
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  1.22"

De el valor esperado 3.3 hay una desviación aproximada de 1.2186058 hacia arriba o hacia abajo.

4.3.2.8.- Interpretación del ejercicio

  • En este ejercicio se sacó la probabilidad a un jugador de basquetbol de encestar, siendo 55%. Se obtuvieron las probabilidades, también, de éxito para anotar de 0 a 6 canastas; se puede observar que las probabilidades de éxito tienen su pico más alto de probabilidad en encestar tres canastas, bajando después de esta cantidad máxima en la probabilidad de éxito. El valor esperado de este ejercicio es de 3.3 en donde hay una desviación de 1.22 aproximadamente.

4.3.3.- Recuperación de un paciente

Pendiente.

4.3.4.- Aprobar un examen

Un estudio refleja que al aplicar un examen de estadística la probabilidad de aprobar (éxito) es del 60%. Se pide lo siguiente:

Encuentre la tabla de distribución binomial para 30 estudiantes que presentan el examen

  • ¿Cuál es la probabilidad de que aprueben 5 alumnos?

  • ¿Cuál es la probabilidad de que aprueben 10 alumnos?

  • ¿Cuál es la probabilidad de que aprueben 15 o menos alumnos?

  • ¿Cuál es la probabilidad de que aprueben entre 10 y 20 alumnos?

  • ¿Cuál es la probabilidad de que aprueben mas de 25 alumnos?

  • Determinar el valor esperado VE y su significado.

  • Determinar la varianza y su desviación estándard y su significado.

  • Interpretación.

4.3.4.1.- Tabla de distribución binomial

Se incializan valores.

x <- 0:30
n <- 30
exito <- 0.60

Se construye la tabla.

tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##     x             f.prob.x             f.acum.x
## 1   0 0.000000000001152922 0.000000000001152922
## 2   1 0.000000000051881468 0.000000000053034389
## 3   2 0.000000001128421923 0.000000001181456312
## 4   3 0.000000015797906917 0.000000016979363229
## 5   4 0.000000159953807533 0.000000176933170762
## 6   5 0.000001247639698760 0.000001424572869522
## 7   6 0.000007797748117251 0.000009222320986774
## 8   7 0.000040102704603007 0.000049325025589781
## 9   8 0.000172942913600469 0.000222267939190250
## 10  9 0.000634124016535054 0.000856391955725303
## 11 10 0.001997490652085418 0.002853882607810724
## 12 11 0.005447701778414773 0.008301584386225488
## 13 12 0.012938291723735080 0.021239876109960601
## 14 13 0.026871836656988245 0.048111712766948846
## 15 14 0.048945131053800175 0.097056843820749084
## 16 15 0.078312209686080117 0.175369053506829159
## 17 16 0.110126544871050142 0.285495598377879189
## 18 17 0.136038673076003175 0.421534271453882614
## 19 18 0.147375229165670141 0.568909500619552144
## 20 19 0.139618638156950664 0.708528138776503003
## 21 20 0.115185376479484264 0.823713515255987683
## 22 21 0.082275268913917302 0.905988784169904804
## 23 22 0.050487096833540038 0.956475881003445050
## 24 23 0.026341094000107985 0.982816975003552917
## 25 24 0.011524228625047248 0.994341203628600123
## 26 25 0.004148722305017007 0.998489925933617184
## 27 26 0.001196746818754908 0.999686672752372107
## 28 27 0.000265943737501089 0.999952616489873214
## 29 28 0.000042740957812675 0.999995357447685862
## 30 29 0.000004421478394415 0.999999778926080274
## 31 30 0.000000221073919721 1.000000000000000000

4.3.4.2.- Visualizar la tabla de distribución

plot(x=tabla$x, y=tabla$f.prob.x, 
     type='h', las=1, lwd=6, xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab = "f(x)")

4.3.4.3.- Probabilidad de que aprueben 15 o menos alumnos

Se calcula la probabilidad de \(P(x=0)+P(x=1)+P(x=2)...+P(15)\) o la probabilidad acumulada cuando \(F(x=15)\).

prob <- pbinom(q = 15, size = n, prob = exito)
paste("La probabilida de que aprueben 15 o menos es de ", prob)
## [1] "La probabilida de que aprueben 15 o menos es de  0.175369053506829"

4.3.4.4.- Probabilidad de que aprueben entre 10 y 20 alumnos

Se calcula la probabilidad acumulada de \(F(x=20)−F(x=10)\).

prob <- pbinom(q = 20, size = n, prob = exito) - pbinom(q = 10, size = n, prob = exito)
paste ("La probabilidad de que aprueben entre 10 y 20 estudiantes es de: ", prob)
## [1] "La probabilidad de que aprueben entre 10 y 20 estudiantes es de:  0.820859632648177"
# Se comprueba sumando los valores
sum(tabla$f.prob.x[11:21])
## [1] 0.8228571

4.3.4.5.- Probabilidad de que aprueben mas de 25 alumnos

Se debe calcular \(P(x≥26)\) o restar del el valor acumulado de 25 a 1. \(1−F(x=26)\).

Con pbinom() y con lower.tail() = TRUE se encuentra la probabilidad.

prob <- pbinom(q = 25, size = n, prob = exito, lower.tail = FALSE)
paste ("La probabilidad de que aprueben mas de 25 alumnos es de ", prob)
## [1] "La probabilidad de que aprueben mas de 25 alumnos es de  0.00151007406638281"
# Se puede comprobar sumando los renglones 27 al 31 de la tabla
sum(tabla$f.prob.x[27:31])
## [1] 0.001510074

4.3.4.6.- Valor esperado

El valor esperado es la cantidad de alumnos que aprueben el examen.

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  18"

4.3.4.7.- Varianza y desviación

  • Varianza
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  7.2"
  • Desviación
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  2.68"

La desviación como parte de la variánza significa la cantidad de alumnos que puede variar con respecto al valor medio VE previamente calculado.

4.3.4.8.- Interpretación del ejercicio

  • Finalmente, en este ejercicio se obtienen las probabilidades de aprobar un examen de estadística, siendo del 60%. Para realizar este ejercicio se quiere obtener la probabilidad de éxito de un grupo de treinta estudiantes, después de obtener la tabla de distribución se puede observar que la probabilidad de éxito tiene su punto máximo en 18 estudiantes aprobados, comenzando a descender las probabilidades de éxito después de los dieciocho alumnos aprobados, variando dependiendo del rango que se elija. En este ejercicio el valor esperado es igual a 18, destacando que coincide con el pico máximo de la tabla de probabilidades, teniendo una desviación estándar de 2.68.

4.3.5.- Autobuses contaminantes

Pendiente.

Referencias bibliográficas

Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia • Brasil • Corea • España • Estados Unidos • Japón • México • Reino Unido • Singapur: Cengage Learning,. Hernández, Freddy. 2021. “Manual de r. Distribuciones Discretas.” https://fhernanb.github.io/Manual-de-R/. “La Distribución Binomial o de Bernoulli.” n.d. https://www.profesor10demates.com/2014/04/la-distribucion-binomial-o-de-bernoulli_3.html. Mendenhall, William, Robert J. Beaver, and Barbara M. Beaver. 2006. Introducción a La Probabilidad y Estadística. 13a Edición. R CODER Binom. n.d. “La Función Dbinom.” https://r-coder.com/distribucion-binomial-r/. Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.