## Warning: package 'ggplot2' was built under R version 4.0.5
## Warning: package 'GGally' was built under R version 4.0.5
table one # of patients age gender days elapsed avg follow up
BY when second surgery occurred
Lumped together
| variable | Total Population | Separate Day Surgery | Same Day Surgery |
|---|---|---|---|
| Volume | |||
| Patients | 54 | 28 | 26 |
| Patient Info | |||
| Age mean (SD) | 61.4 / 10.9 | 61.2 / 10.9 | 61.6 / 11.1 |
| Male N(%) | 23 / 43 | 15 / 54 | 8 / 31 |
| Interval Time | |||
| Days Elapsed | 105.6 / 186.1 | 203.6 / 217.4 | 0 / 0 |
| Follow up Time | 653.9 / 814.9 | 721.4 / 901.9 | 581.2 / 720.2 |
table two Pain 2 ROM 2 Pain 8 ROM 8 Pain 4mo ROM 4mo Revision All cause revision
BY when second surgery occurred
Lumped together
| variable | Total Population | Separate Day Surgery | Same Day Surgery |
|---|---|---|---|
| Volume | |||
| Patients | 54 | 28 | 26 |
| Clinical Outcomes | |||
| Pain at Week 2 | 5.8 / 2.3 | 5.4 / 2.2 | 6.3 / 2.4 |
| ROM at Week 2 | 88.8 / 19 | 88.5 / 15.2 | 89.1 / 22.6 |
| Pain at Week 8 | 4.2 / 2.6 | 3.5 / 2.4 | 5.1 / 2.6 |
| ROM at Week 8 | 107 / 18 | 106.2 / 17.9 | 108 / 18.5 |
| Pain at Month 4 | 3.2 / 3.2 | 3.1 / 3.1 | 3.2 / 3.3 |
| ROM at Month 4 | 120.9 / 16.5 | 120 / 19.4 | 121.8 / 13.5 |
| Revision | 10 | 4 | 6 |
| All Cause Revision | 12 | 6 | 6 |
Table 3: staged surgery patients
Lumped together
| variable | Total Population | Within 4 Months | 4 Month Delay |
|---|---|---|---|
| Volume | |||
| Patients | 28 | 12 | 16 |
| Clinical Outcomes | |||
| Pain at Week 2 | 5.4 / 2.2 | 4.7 / 2.2 | 6 / 2.1 |
| ROM at Week 2 | 88.5 / 15.2 | 87 / 11.8 | 89.5 / 17.5 |
| Pain at Week 8 | 3.5 / 2.4 | 3 / 2.3 | 4.1 / 2.5 |
| ROM at Week 8 | 106.2 / 17.9 | 107 / 19 | 105.6 / 17.7 |
| Pain at Month 4 | 3.1 / 3.1 | 1 / 0.8 | 4.3 / 3.4 |
| ROM at Month 4 | 120 / 19.4 | 121.2 / 23.4 | 118.9 / 16.4 |
| Revision | 4 | 2 | 2 |
| All Cause Revision | 6 | 3 | 3 |
#pain trend
data_pain2$ID <- as.factor(data_pain2$ID)
data_pain2 %>%
ggplot( aes(x=week, y=number, group=ID, color=ID)) +
geom_line() +
theme(
legend.position="none",
plot.title = element_text(size=14)
) +
ggtitle("Pain trend: 16 weeks post op") +
theme_minimal()
## Warning: Removed 60 row(s) containing missing values (geom_path).
#ROM trend
data_rom2$ID <- as.factor(data_rom2$ID)
data_rom2 %>%
ggplot( aes(x=week, y=number, group=ID, color=ID)) +
geom_line() +
theme(
legend.position="none",
plot.title = element_text(size=14)
) +
ggtitle("Range of motion trend: 16 weeks post op") +
theme_minimal()
## Warning: Removed 34 row(s) containing missing values (geom_path).
log model
logmodel <- glm(revision ~ #Age +
gender +
same_day,
family = binomial,
data = data_select2)
summary(logmodel)
##
## Call:
## glm(formula = revision ~ gender + same_day, family = binomial,
## data = data_select2)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.8459 -0.6674 -0.6162 -0.4785 2.1091
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.1097 0.7135 -2.957 0.00311 **
## gender 0.5447 0.7346 0.741 0.45842
## same_day 0.7213 0.7420 0.972 0.33101
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 51.750 on 53 degrees of freedom
## Residual deviance: 50.506 on 51 degrees of freedom
## AIC: 56.506
##
## Number of Fisher Scoring iterations: 4
odds_ci_overall <- as.data.frame(exp(cbind(Odds = coef(logmodel),
confint(logmodel,
level = 0.95))))
## Waiting for profiling to be done...