1 Objetivo

Encontrar probabilidades de acuerdo a la distribución binomial.

2 Descripción

Identificar dos casos de la literatura de distribuciones de probabilidad binomial y realizar cálculos de probabilidades utilizando la fórmula y las funciones dbinom() y pbinom(), identificar el valor medio, la varianza y la desviación.

3 Desarrollo

3.1 Cargar librerías

library(dplyr)
library(ggplot2)
library(mosaic) # Gráficos de distribuciones
## Warning: package 'mosaic' was built under R version 4.0.5
options(scipen=999) # Notación normal

# options(scipen=1) # Notación científica

3.2 Cargar funciones

Se carga función de servicio github o de manera local.

#source("../funciones/funciones.distribuciones.r")

# o

source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")

3.3 Ejercicios

3.3.1 Tienda de ropa MartinClothingStore

Tienda de ropa MartinClothingStore (Anderson, Sweeney, and Williams 2008)

De acuerdo con la experiencia, el gerente de la tienda estima que la probabilidad de que un cliente realice una compra es 0.30.

  • Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad acumulada

  • Encontrar la probabilidad de que compren dos clientes

  • Encontrar la probabilidad de que compren los tres próximos clientes.

  • Encontrar la probabilidad de que sean menor o igual que dos.

  • Calcular la probabilidad de que sean mayor que dos

  • Determinar el valor esperado y su significado

  • Determinar la varianza y la desviación estándar y si significado

  • Interpretar

3.3.1.1 Probabilidad para 0,1,2,3 y tabla de distribución

Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad cumulada

  • Inicializar valores
x <- c(0,1,2,3)
n <- 3
exito <- 0.30
  • Determinar tabla de probabilidad usando la función creada y conforme a la fórmula
tabla1 <- data.frame(x=x, f.prob.x = f.prob.binom(x,n,exito), f.acum.x = cumsum(f.prob.binom(x,n,exito)))
tabla1
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000
  • Determinar tabla de probabilidad usando función propia de los paquetes base de R dbinom()
tabla2 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = cumsum(dbinom(x = x, size = n, prob = exito)))
tabla2
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000

con pbinom() en lugar de cumsum()

tabla3 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla3
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000

3.3.1.2 Visualizar tabla de distribución

plotDist(dist = "binom", size=3, prob=0.30,xlab = paste("Variables ",min(tabla1$x),"-",max(tabla1$x) )) 

plotDist(dist = "binom", size=3, prob=0.30,xlab = paste("Variables ",min(tabla1$x),"-",max(tabla1$x) ), kind = "histogram") 

3.3.1.3 Probabilidad de que compren dos clientes

Encontrar la probabilidad de que compren dos clientes

  • Identificar la probabilidad cuando \(P(x=2)\) de la tabla.

  • Se puede usar tabla1, tabla2 o tabla3 es la misma.

valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 2    0.189    0.973
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  2  es igual a :  0.189"

Usando dbinom()

dbinom(x = 2, size = 3, prob = exito)
## [1] 0.189

3.3.1.4 Probabilidad de que compren los tres próximos clientes

Encontrar la probabilidad de que compren los tres próximos clientes

  • Identificar la probabilidad cuando \(P(x=3)\) de la tabla.

  • Se puede usar tabla1, tabla2 o tabla3 es la misma.

valor.x <- 3
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 3    0.027        1
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  3  es igual a :  0.027"

Usando dbinom()

dbinom(x = 3, size = 3, prob = exito)
## [1] 0.027

3.3.1.5 Probabilidad de que sean menor o igual que dos

Encontrar la probabilidad de que sean menor o igual que dos

  • Ahora usar la función acumulada por la pregunta

\(P(x=0)+P(x=1)+P(x=2)\)

valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 2    0.189    0.973
paste("La probabilidad de que sea menor o igual a ", valor.x, " es igual a : ", la.probabilidad$f.acum.x )
## [1] "La probabilidad de que sea menor o igual a  2  es igual a :  0.973"

Usando pbinom()

pbinom(q = 2, size = 3, prob = exito)
## [1] 0.973

3.3.1.6 Probabilidad de que sean mayor que dos

La expresión lower.tail = FALSE como atributo de la función pbinom() significa encontrar en la tabla de distribución la sumatoria de las probabilidades a partir de el valor de \(x\), o lo que es lo mismo, \(1−prob.acum(x)\), \(1−0.973=0.027\).

pbinom(q = 2, size = 3, prob = exito, lower.tail = FALSE)
## [1] 0.027

3.3.1.7 Valor esperado

Determinar el valor esperado y su significado

  • El valor esperado de la distribución binomial

\(μ=n⋅p\)

Siendo pp el éxito de la probabilidad y nn el número de experimentos

VE <- n * exito
paste ("El valor esperado es: ", VE)
## [1] "El valor esperado es:  0.9"

El valor esperado VEVE significa el valor medio o el valor promedio de todos valores de la distribución de probabilidad.

3.3.1.8 Varianza y desviación estándar

Determinar la varianza y la desviación estándar y su significado.

  • La varianza en la distribución binomial

\(σ^2=n⋅p⋅(1−p)\)

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  0.63"
  • La desviación

\(σ=\sqrt{σ^2})\)

desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  0.79"

3.3.2 Jugador de basquetbol

Un jugador encesta con probabilidad 0.55. (“La Distribución Binomial o de Bernoulli,” n.d.):

  • Determinar las probabilidad de los tiros del 1 al 6 con la tabla de probabilidad

  • Determinar la probabilidad de encestar cuatro tiros \(P(x=4)\)

  • Determinar la probabilidad de encestar todos tiros o sea seis \(P(x=6)\)

  • Determinar la probabilidad de encestar al menos tres \(P(x≤3)\) o, \(P.acum(x=3)\)

  • Determinar el valor esperado VE

  • Determinar la varianza y su desviación estándard

  • Interpretar el ejercicio

3.3.2.1 Tabla de probabilidad (0-6)

Se construye la tabla de probabilidades tal y como se construye usando el código de tabla3

Se inicializan valores:

x <- 0:6
n <- 6
exito <- 0.55
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##   x    f.prob.x    f.acum.x
## 1 0 0.008303766 0.008303766
## 2 1 0.060894281 0.069198047
## 3 2 0.186065859 0.255263906
## 4 3 0.303218437 0.558482344
## 5 4 0.277950234 0.836432578
## 6 5 0.135886781 0.972319359
## 7 6 0.027680641 1.000000000

3.3.2.2 Visualización de probabilidades

Dos formas de visualizar las probabilidades

plotDist(dist = "binom", size=n, prob=exito,xlab = paste("Variables ",min(tabla$x),"-",max(tabla$x) )) 

plot(x = tabla$x, y=tabla$f.prob.x, type = "h", xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab= "f(x)")

3.3.2.3 Probabilidad de encestar cuatro tiros

Calcular la probabilidad de encestar cuatro tiros \(P(x=4)\)

dbinom(x = 4, size = n, prob = exito)
## [1] 0.2779502

3.3.2.4 Probabilidad de encestar todos los tiros

Determinar la probabilidad de encestar todos tiros o sea seis \(P(x=6)\)

dbinom(x = 6, size = n, prob = exito)
## [1] 0.02768064

3.3.2.5 Probabilidad de encestar al menos tres

Usando la función pbinom()

pbinom(q = 3, size = n, prob = exito)
## [1] 0.5584823

o utilizando el renglón de la tabla de distribución en la columna de probabilidad acumulada f.acum.x.

valor.x <- 3
la.probabilidad <- filter(tabla, x == valor.x) 
la.probabilidad
##   x  f.prob.x  f.acum.x
## 1 3 0.3032184 0.5584823

3.3.2.6 Valor esperado

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  3.3"

El valor esperado de 3.3 significa que es lo que se espera encestar en promedio de los \(n=\) 6 tiros.

3.3.2.7 Varianza y desviación

Varianza

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  1.48"

Desviación

desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  1.22"

3.3.3 Aprobar un examen

Un estudio refleja que al aplicar un examen de estadística la probabilidad de aprobar (éxito) es del 60%. Se pide lo siguiente:

  • Encuentre la tabla de distribución binomial para 30 estudiantes que presentan el examen

  • ¿Cuál es la probabilidad de que aprueben 15 o menos alumnos?

  • ¿Cuál es la probabilidad de que aprueben entre 10 y 20 alumnos?

  • ¿Cuál es la probabilidad de que aprueben mas de 25 alumnos?

  • Determinar el valor esperado VE y su significado.

  • Determinar la varianza y su desviación estándard y su significado.

3.3.3.1 Tabla de distribución binomial

x <- 0:30
n <- 30
exito <- 0.60

Se construye la tabla

tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##     x             f.prob.x             f.acum.x
## 1   0 0.000000000001152922 0.000000000001152922
## 2   1 0.000000000051881468 0.000000000053034389
## 3   2 0.000000001128421923 0.000000001181456312
## 4   3 0.000000015797906917 0.000000016979363229
## 5   4 0.000000159953807533 0.000000176933170762
## 6   5 0.000001247639698760 0.000001424572869522
## 7   6 0.000007797748117251 0.000009222320986774
## 8   7 0.000040102704603007 0.000049325025589781
## 9   8 0.000172942913600469 0.000222267939190250
## 10  9 0.000634124016535054 0.000856391955725303
## 11 10 0.001997490652085418 0.002853882607810724
## 12 11 0.005447701778414773 0.008301584386225485
## 13 12 0.012938291723735080 0.021239876109960601
## 14 13 0.026871836656988245 0.048111712766948846
## 15 14 0.048945131053800175 0.097056843820749084
## 16 15 0.078312209686080117 0.175369053506829159
## 17 16 0.110126544871050142 0.285495598377879189
## 18 17 0.136038673076003175 0.421534271453882614
## 19 18 0.147375229165670141 0.568909500619552144
## 20 19 0.139618638156950664 0.708528138776503003
## 21 20 0.115185376479484264 0.823713515255987683
## 22 21 0.082275268913917302 0.905988784169904804
## 23 22 0.050487096833540038 0.956475881003445050
## 24 23 0.026341094000107985 0.982816975003552917
## 25 24 0.011524228625047248 0.994341203628600123
## 26 25 0.004148722305017007 0.998489925933617184
## 27 26 0.001196746818754908 0.999686672752372107
## 28 27 0.000265943737501089 0.999952616489873214
## 29 28 0.000042740957812675 0.999995357447685862
## 30 29 0.000004421478394415 0.999999778926080274
## 31 30 0.000000221073919721 1.000000000000000000

3.3.3.2 Visualizar la tabla de distribución

plot(x=tabla$x, y=tabla$f.prob.x, 
     type='h', las=1, lwd=6, xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab = "f(x)")

3.3.3.3 Probabilidad de que aprueben 15 o menos alumnos

Se calcula la probabilidad de \(P(x=0)+P(x=1)+P(x=2)...+P(15)\) o la probabilidad acumulada cuando \(F(x=15)\)

prob <- pbinom(q = 15, size = n, prob = exito)
paste("La probabilida de que aprueben 15 o menos es de ", prob)
## [1] "La probabilida de que aprueben 15 o menos es de  0.175369053506829"

3.3.3.4 Probabilidad de que aprueben entre 10 y 20 alumnos

Se calcula la probabilidad acumulada de \(F(x=20)−F(x=10)\)

prob <- pbinom(q = 20, size = n, prob = exito) - pbinom(q = 10, size = n, prob = exito)
paste ("La probabilidad de que aprueben entre 10 y 20 estudiantes es de: ", prob)
## [1] "La probabilidad de que aprueben entre 10 y 20 estudiantes es de:  0.820859632648177"
# Se comprueba sumando los valores
sum(tabla$f.prob.x[11:21])
## [1] 0.8228571

3.3.3.5 Probabilidad de que aprueben mas de 25 alumnos

Se debe calcular \(P(x≥26)\) o restar del el valor acumulado de 25 a 1. \(1−F(x=26)\)

Con pbinom() y con lower.tail() = TRUE se encuentra la probabilidad.

prob <- pbinom(q = 25, size = n, prob = exito, lower.tail = FALSE)
paste ("La probabilidad de que aprueben mas de 25 alumnos es de ", prob)
## [1] "La probabilidad de que aprueben mas de 25 alumnos es de  0.00151007406638281"
# Se puede comprobar sumando los renglones 27 al 31 de la tabla
sum(tabla$f.prob.x[27:31])
## [1] 0.001510074

3.3.3.6 Valor esperado

El valor esperado es la cantidad de alumnos que aprueben el examen.

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  18"

3.3.3.7 Varianza y desviación

Varianza

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  7.2"

Desviación

desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  2.68"

La desviación como parte de la varianza significa la cantidad de alumnos que puede variar con respecto al valor medio \(VE\) previamente calculado.

3.3.4 Interpretación de los ejercicios

En esta práctica revisamos el concepto de Variable Aleatoria Binomial, la cual a grandes rasgos es una variable aleatoria discreta que nos permite determinar las probabilidades de éxito o fracaso de un experimento con varios resultados posibles a través de un método llamado Experimento de Bernoulli. Considera que el experimento se realiza n cantidad de veces, y que cada vez que se realiza es completamente independiente de las otras.

En el primer ejercicio se tiene el caso de una tienda de ropa, en la que considera que la probabilidad de que quienes entran compren algo es del 0.30, o 30%. Se determinaron las probabilidades de que un cliente compre de 0 a 3 artículos, la posibilidad de que 2 clientes compren a la vez (18.9%), la probabilidad de que los próximos 3 clientes realicen todos una compra (2.7%), la posibilidad de que se venda una cantidad menor o igual a dos (97.3%), y la probabilidad de que se vendan más de dos artículos (2-7%). Luego se determinaron el valor esperado (El valor promedio de artículos que se compran en los datos registrados), la Varianza (La posibilidad de que un cliente compre más o menos productos del valor esperado) y la desviación estándar (Qué tanto puede cambiar la cantidad de artículos comprados por cliente).

En el segundo ejercicio, se considera un jugador de básquetbol que tiene una probabilidad de 0.55 o 55% de acertar una canasta. Se consideró que lanzó una cantidad de 6 tiros y se determinó la probabilidad de que acertara 4 (27.7%), la probabilidad de que acertara los 6 tiros (2.7%), la probabilidad de que acertara 3 o más tiros (55.8%), el Valor Esperado (La cantidad de tiros que se espera que acierte: 3.3), la varianza (Qué tantos tiros más o menos puede acertar del valor esperado: 1.48) y la desviación estándar (1.22).

En el tercer ejercicio, se presenta un exámen de estadística cuya probabilidad de que sea aprobado es del 60%. En base a esto, se consideró la tabla de distribución binomial de 30 alumnos que aplicaron dicho examen. Se determinó la probabilidad de que aprueben 15 alumnos o menos (17.53%), de que aprueben entre 10 y 20 alumnos (82.2%), la probabilidad de que aprueben más de 25 alumnos (0.15%), el valor esperado (Que representa la cantidad de alumnos que se espera que aprueben: 18), la varianza (Que en este caso representa qué tantos alumnos aproximadamente pueden reprobar o aprobar respecto al valor esperado: 7.2) y la desviación estándar (2.68)

3.3.5 Referencias bibliográficas

Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia • Brasil • Corea • España • Estados Unidos • Japón • México • Reino Unido • Singapur: Cengage Learning,.

Hernández, Freddy. 2021. “Manual de r. Distribuciones Discretas.” https://fhernanb.github.io/Manual-de-R/.

“La Distribución Binomial o de Bernoulli.” n.d. https://www.profesor10demates.com/2014/04/la-distribucion-binomial-o-de-bernoulli_3.html.

Mendenhall, William, Robert J. Beaver, and Barbara M. Beaver. 2006. Introducción a La Probabilidad y Estadística. 13a Edición.

R CODER Binom. n.d. “La Función Dbinom.” https://r-coder.com/distribucion-binomial-r/.

Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.