Can create a frequency table with the table() function
(tc <- table(mtcars$cyl))
##
## 4 6 8
## 11 7 14
nlevels(mtcars$cyl)
## [1] 0
Can create a table with paired observations
(mytable <- table(mtcars$cyl,mtcars$carb))
##
## 1 2 3 4 6 8
## 4 5 6 0 0 0 0
## 6 2 0 0 4 1 0
## 8 0 4 3 6 0 1
(table.complete <- addmargins(mytable, FUN=sum, quiet=TRUE))
##
## 1 2 3 4 6 8 sum
## 4 5 6 0 0 0 0 11
## 6 2 0 0 4 1 0 7
## 8 0 4 3 6 0 1 14
## sum 7 10 3 10 1 1 32
Some useful summary statistics
mean(mtcars$mpg)
## [1] 20.09062
median(mtcars$mpg)
## [1] 19.2
sd(mtcars$mpg) #Standard Deviation
## [1] 6.026948
max(mtcars$mpg)-min(mtcars$mpg) #Range
## [1] 23.5
IQR(mtcars$mpg) #Interquartile
## [1] 7.375
mean(abs(mtcars$mpg-mean(mtcars$mpg))) #Deviation measure, mean absolute difference
## [1] 4.714453
quantile(mtcars$mpg, probs=c(0.1,0.9)) #Quantiles
## 10% 90%
## 14.34 30.09
Can handle NA’s with the following functions:
is.na(data) #Returns true if there is N/As in the data
na.omit(data) #Removes observations with N/A
Can compute correlation matrix by passing the dataframe/matrix into the corr function
cor(mtcars)
## mpg cyl disp hp drat wt
## mpg 1.0000000 -0.8521620 -0.8475514 -0.7761684 0.68117191 -0.8676594
## cyl -0.8521620 1.0000000 0.9020329 0.8324475 -0.69993811 0.7824958
## disp -0.8475514 0.9020329 1.0000000 0.7909486 -0.71021393 0.8879799
## hp -0.7761684 0.8324475 0.7909486 1.0000000 -0.44875912 0.6587479
## drat 0.6811719 -0.6999381 -0.7102139 -0.4487591 1.00000000 -0.7124406
## wt -0.8676594 0.7824958 0.8879799 0.6587479 -0.71244065 1.0000000
## qsec 0.4186840 -0.5912421 -0.4336979 -0.7082234 0.09120476 -0.1747159
## vs 0.6640389 -0.8108118 -0.7104159 -0.7230967 0.44027846 -0.5549157
## am 0.5998324 -0.5226070 -0.5912270 -0.2432043 0.71271113 -0.6924953
## gear 0.4802848 -0.4926866 -0.5555692 -0.1257043 0.69961013 -0.5832870
## carb -0.5509251 0.5269883 0.3949769 0.7498125 -0.09078980 0.4276059
## qsec vs am gear carb
## mpg 0.41868403 0.6640389 0.59983243 0.4802848 -0.55092507
## cyl -0.59124207 -0.8108118 -0.52260705 -0.4926866 0.52698829
## disp -0.43369788 -0.7104159 -0.59122704 -0.5555692 0.39497686
## hp -0.70822339 -0.7230967 -0.24320426 -0.1257043 0.74981247
## drat 0.09120476 0.4402785 0.71271113 0.6996101 -0.09078980
## wt -0.17471588 -0.5549157 -0.69249526 -0.5832870 0.42760594
## qsec 1.00000000 0.7445354 -0.22986086 -0.2126822 -0.65624923
## vs 0.74453544 1.0000000 0.16834512 0.2060233 -0.56960714
## am -0.22986086 0.1683451 1.00000000 0.7940588 0.05753435
## gear -0.21268223 0.2060233 0.79405876 1.0000000 0.27407284
## carb -0.65624923 -0.5696071 0.05753435 0.2740728 1.00000000
Can get the density function using d—
dnorm(1.96, mean = 0 , sd = 1)
## [1] 0.05844094
Can get the CDF using p—-
pnorm(1.96, mean = 0 , sd = 1)
## [1] 0.9750021
Can get the relative result for a quantile using q—
qnorm(0.975, mean = 0 , sd = 1)
## [1] 1.959964
Can generate a random number using r—-
rnorm(1, mean = 0, sd = 1)
## [1] -0.1578528