1 Objetivo

Encontrar probabilidades de acuerdo a la distribución binomial.

2 Descripción

Identificar dos casos de la literatura de distribuciones de probabilidad binomial y realizar cálculos de probabilidades utilizando la fórmula y las funciones dbinom() y pbinom(), identificar el valor medio, la varianza y la desviación.

3 Fundamento teórico

Pendiente

4 Desarrollo

4.1 Cargar librerías

library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.4
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.4
library(mosaic) # Gráficos de distribuciones
## Warning: package 'mosaic' was built under R version 4.0.5
## Registered S3 method overwritten by 'mosaic':
##   method                           from   
##   fortify.SpatialPolygonsDataFrame ggplot2
## 
## The 'mosaic' package masks several functions from core packages in order to add 
## additional features.  The original behavior of these functions should not be affected by this.
## 
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
## 
##     mean
## The following object is masked from 'package:ggplot2':
## 
##     stat
## The following objects are masked from 'package:dplyr':
## 
##     count, do, tally
## The following objects are masked from 'package:stats':
## 
##     binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##     quantile, sd, t.test, var
## The following objects are masked from 'package:base':
## 
##     max, mean, min, prod, range, sample, sum
options(scipen=999) # Notación normal

# options(scipen=1) # Notación científica

4.2 Cargar funciones

Se carga función de servicio github o de manera local

#source("../funciones/funciones.distribuciones.r")

# o

source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")
## 
## Attaching package: 'gtools'
## The following object is masked from 'package:mosaic':
## 
##     logit

4.3 Ejercicios

4.3.1 Tienda de ropa MartinClothingStore

Tienda de ropa MartinClothingStore (Anderson, Sweeney, and Williams 2008)

De acuerdo con la experiencia, el gerente de la tienda estima que la probabilidad de que un cliente realice una compra es 0.30.

  • Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad acumulada

  • Encontrar la probabilidad de que compren dos clientes

  • Encontrar la probabilidad de que compren los tres próximos clientes.

  • Encontrar la probabilidad de que sean menor o igual que dos.

  • Calcular la probabilidad de que sean mayor que dos

  • Determinar el valor esperado y su significado

  • Determinar la varianza y la desviación estándar y si significado

  • Interpretar

4.3.1.1 Probabilidad para 0,1,2,3 y tabla de distribución

Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad cumulada

  • Inicializar valores
x <- c(0,1,2,3)
n <- 3
exito <- 0.30
  • Determinar tabla de probabilidad usando la función creada y conforme a la fórmula
tabla1 <- data.frame(x=x, f.prob.x = f.prob.binom(x,n,exito), f.acum.x = cumsum(f.prob.binom(x,n,exito)))
tabla1
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000
  • Determinar tabla de probabilidad usando función propia de los paquetes base de R dbinom()
tabla2 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = cumsum(dbinom(x = x, size = n, prob = exito)))
tabla2
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000

con pbinom() en lugar de cumsum()

tabla3 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla3
##   x f.prob.x f.acum.x
## 1 0    0.343    0.343
## 2 1    0.441    0.784
## 3 2    0.189    0.973
## 4 3    0.027    1.000

4.3.1.2 Visualizar tabla de distribución

plotDist(dist = "binom", size=3, prob=0.30,xlab = paste("Variables ",min(tabla1$x),"-",max(tabla1$x) )) 

plotDist(dist = "binom", size=3, prob=0.30,xlab = paste("Variables ",min(tabla1$x),"-",max(tabla1$x) ), kind = "histogram") 

4.3.1.3 Probabilidad de que compren dos clientes

Encontrar la probabilidad de que compren dos clientes

  • Identificar la probabilidad cuando P(x=2) de la tabla.
  • Se puede usar tabla1, tabla2 o tabla3 es la misma.
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 2    0.189    0.973
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  2  es igual a :  0.189"

Usando dbinom()

dbinom(x = 2, size = 3, prob = exito)
## [1] 0.189

4.3.1.4 Probabilidad de que compren los tres próximos clientes

Encontrar la probabilidad de que compren los tres próximos clientes

  • Identificar la probabilidad cuando P(x=3) de la tabla.
  • Se puede usar tabla1, tabla2 o tabla3 es la misma.
valor.x <- 3
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 3    0.027        1
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es  3  es igual a :  0.027"

Usando dbinom()

dbinom(x = 3, size = 3, prob = exito)
## [1] 0.027

4.3.1.5 Probabilidad de que sean menor o igual que dos

Encontrar la probabilidad de que sean menor o igual que dos

  • Ahora usar la función acumulada por la pregunta
  • P(x=0)+P(x=1)+P(x=2)
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x) 
la.probabilidad
##   x f.prob.x f.acum.x
## 1 2    0.189    0.973
paste("La probabilidad de que sea menor o igual a ", valor.x, " es igual a : ", la.probabilidad$f.acum.x )
## [1] "La probabilidad de que sea menor o igual a  2  es igual a :  0.973"

Usando pbinom()

pbinom(q = 2, size = 3, prob = exito)
## [1] 0.973

4.3.1.6 Probabilidad de que sean mayor que dos

La expresión lower.tail = FALSE como atributo de la función pbinom() significa encontrar en la tabla de distribución la sumatoria de las probabilidades a partir de el valor de x, o lo que es lo mismo, 1−prob.acum(x), 1−0.97=0.27.

pbinom(q = 2, size = 3, prob = exito, lower.tail = FALSE)
## [1] 0.027

4.3.1.7 Valor esperado

Determinar el valor esperado y su significado

El valor esperado de la distribución binomial \[μ=n⋅p\] Siendo p el éxito de la probabilidad y n el número de experimentos

VE <- n * exito
paste ("El valor esperado es: ", VE)
## [1] "El valor esperado es:  0.9"

El valor esperado VE significa el valor medio o el valor promedio de todos valores de la distribución de probabilidad.

4.3.1.8 Varianza y desviación estándar

Determinar la varianza y la desviación estándar y su significado.

  • La varianza en la distribución binomial \[σ^2=n⋅p⋅(1−p)\]
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  0.63"
  • La desviación \[σ=√σ^2\]
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  0.79"

4.3.1.9 Interpretar el ejercicio

Durante el desarrollo de este ejercicio podemos darnos cuenta de diversos datos, como son la probabilidad de que un cliente compre ropa, el cual es del 30%.También se calcularon las probabilidades de que 0, 1, 2 o 3 clientes compraran algo en la tienda y a partir de esto ver si la tienda tiene éxito o fracaso. Esto ultimo lo podemos observar de una manera gráfica en las tablas de distribución. Además se puede apreciar el calculo del valor esperado, que como resultado da0.9 con una desviación estándar de 0.79.

4.3.2 Jugador de basquetbol

Un jugador encesta con probabilidad 0.55. (“La Distribución Binomial o de Bernoulli,” n.d.):

  • Determinar las probabilidad de los tiros del 1 al 6 con la tabla de probabilidad

  • Determinar la probabilidad de encestar cuatro tiros P(x=4)

  • Determinar la probabilidad de encestar todos tiros o sea seis P(x=6)

  • Determinar la probabilidad de encestar al menos tres P(x≤3) o, P.acum(x=3)

  • Determinar el valor esperado VE

  • Determinar la varianza y su desviación estándard

  • Interpretar el ejercicio

4.3.2.1 Tabla de probabilidad (0-6)

Se construye la tabla de probabilidades tal y como se construye usando el código de tabla3

Se inicializan valores:

x <- 0:6
n <- 6
exito <- 0.55
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##   x    f.prob.x    f.acum.x
## 1 0 0.008303766 0.008303766
## 2 1 0.060894281 0.069198047
## 3 2 0.186065859 0.255263906
## 4 3 0.303218437 0.558482344
## 5 4 0.277950234 0.836432578
## 6 5 0.135886781 0.972319359
## 7 6 0.027680641 1.000000000

4.3.2.2 Visualización de probabilidades

Dos formas de visualizar las probabilidades

plotDist(dist = "binom", size=n, prob=exito,xlab = paste("Variables ",min(tabla$x),"-",max(tabla$x) )) 

plot(x = tabla$x, y=tabla$f.prob.x, type = "h", xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab= "f(x)")

4.3.2.3 Probabilidad de encestar cuatro tiros

Calcular la probabilidad de encestar cuatro tiros P(x=4)

dbinom(x = 4, size = n, prob = exito)
## [1] 0.2779502

4.3.2.4 Probabilidad de encestar todos los tiros

Determinar la probabilidad de encestar todos tiros o sea seis P(x=6)

dbinom(x = 6, size = n, prob = exito)
## [1] 0.02768064

4.3.2.5 Probabilidad de encestar al menos tres

Usando la función pbinom()

pbinom(q = 3, size = n, prob = exito)
## [1] 0.5584823

o utilizando el renglón de la tabla de distribución en la columna de probabilidad acumulada f.acum.x.

valor.x <- 3
la.probabilidad <- filter(tabla, x == valor.x) 
la.probabilidad
##   x  f.prob.x  f.acum.x
## 1 3 0.3032184 0.5584823

4.3.2.6 Valor esperado

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  3.3"

El valor esperado de 3.3 significa que es lo que se espera encestar en promedio de los n= 6 tiros.

4.3.2.7 Varianza y desviación

Varianza

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  1.48"

Desviación

desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  1.22"

De el valor esperado 3.3 hay una desviación aproximada de 1.2186058 hacia arriba o hacia abajo.

4.3.3 Recuperación de un paciente

La probabilidad de que un paciente se recupere de una rara enfermedad sanguínea es 0.4. Si se sabe que 15 personas contraen tal enfermedad,

Determine tabla de probabilidad de 1 al 15

  • ¿Cuál es la probabilidad de que sobrevivan al menos diez,

  • ¿Cuál es la probabilidad de que sobrevivan de tres a ocho?

  • ¿Cuál es la probabilidad de que sobrevivan exactamente cinco?

  • ¿Cuál es el valor esperado ‘VE’ o la esperanza media?

  • ¿Cual es la varianza y la desviación estándar?

  • Interpretación del ejercicio (Walpole, Myers, and Myers 2012).

4.3.3.1 Tabla de probabilidad 1 al 15

Se inicializan los valores

x <- c(1:15)
n <- 15
exito <- 0.40

Se construye la tabla

tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##     x       f.prob.x    f.acum.x
## 1   1 0.004701849846 0.005172035
## 2   2 0.021941965947 0.027114001
## 3   3 0.063387901624 0.090501902
## 4   4 0.126775803249 0.217277706
## 5   5 0.185937844765 0.403215550
## 6   6 0.206597605294 0.609813156
## 7   7 0.177083661681 0.786896817
## 8   8 0.118055774454 0.904952592
## 9   9 0.061214105272 0.966166697
## 10 10 0.024485642109 0.990652339
## 11 11 0.007419891548 0.998072231
## 12 12 0.001648864788 0.999721096
## 13 13 0.000253671506 0.999974767
## 14 14 0.000024159191 0.999998926
## 15 15 0.000001073742 1.000000000

4.3.3.2 Visualización de probabilidades

Dos formas de visualizar las probabilidades

plotDist(dist = "binom", size=n, prob=exito,xlab = paste("Variables ",min(tabla$x),"-",max(tabla$x) )) 

plot(x = tabla$x, y=tabla$f.prob.x, type = "h", xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab= "f(x)")

4.3.3.3 Probabilidad de que sobrebivan al menos 10

Usando la función pbinom()

pbinom(q = 10, size = n, prob = exito)
## [1] 0.9906523

o utilizando el renglón de la tabla de distribución en la columna de probabilidad acumulada f.acum.x.

valor.x <- 10
la.probabilidad <- filter(tabla, x == valor.x) 
la.probabilidad
##    x   f.prob.x  f.acum.x
## 1 10 0.02448564 0.9906523

4.3.3.4 Probabilidad de que sobrevivan de 3 a 8

Usando la función pbinom()

pbinom(q = 3:8, size = n, prob = exito)
## [1] 0.0905019 0.2172777 0.4032156 0.6098132 0.7868968 0.9049526

o utilizando el renglón de la tabla de distribución en la columna de probabilidad acumulada f.acum.x.

valor.x <- 3:8
la.probabilidad <- filter(tabla, x == valor.x) 
## Warning in x == valor.x: longitud de objeto mayor no es múltiplo de la longitud
## de uno menor
la.probabilidad
## [1] x        f.prob.x f.acum.x
## <0 rows> (or 0-length row.names)

4.3.3.5 Probabilidad de eque sobrevivan exactamente 5

Calcular la probabilidad de encestar cuatro tiros \(P(x=5)\)

dbinom(x = 5, size = n, prob = exito)
## [1] 0.1859378

4.3.3.6 Valor esperado

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  6"

4.3.3.7 Varianza y desviación

Varianza

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  3.6"

Desviación

desviacion.std <- sqrt(varianza)
paste("La desviación estandard es: ", round(desviacion.std, 2))
## [1] "La desviación estandard es:  1.9"

4.3.3.8 Interpretación del caso

Durante este ejercicio se sacaron las probabilidades de que un jugador de basquetbol de éxito para anotar 0, 1, 2, 3, 4, 5 o 6 canastas. Podemos observar que las probabilidades de éxito tienen un pico máximo de probabilidad a las 3 canastas, antes de eso la probabilidad de éxito solo subía y después de las 3 canastas, la probabilidad de éxito comienza a bajar. Esto concuerda un poco con el valor esperado, cuyo valor es de 3.3 en donde hay una desviación estándar de aproximadamente 1.22 hacia arriba o hacía abajo.

4.3.4 Aprobar un examen

Un estudio refleja que al aplicar un examen de estadística la probabilidad de aprobar (éxito) es del 60%. Se pide lo siguiente:

Encuentre la tabla de distribución binomial para 30 estudiantes que presentan el examen

  • ¿Cuál es la probabilidad de que aprueben 5 alumnos?

  • ¿Cuál es la probabilidad de que aprueben 10 alumnos?

  • ¿Cuál es la probabilidad de que aprueben 15 o menos alumnos?

  • ¿Cuál es la probabilidad de que aprueben entre 10 y 20 alumnos?

  • ¿Cuál es la probabilidad de que aprueben mas de 25 alumnos?

  • Determinar el valor esperado VE y su significado.

  • Determinar la varianza y su desviación estándard y su significado.

4.3.4.1 Tabla de distribución binomial

Se incializan valores

x <- 0:30
n <- 30
exito <- 0.60

Se construye la tabla

tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##     x             f.prob.x             f.acum.x
## 1   0 0.000000000001152922 0.000000000001152922
## 2   1 0.000000000051881468 0.000000000053034389
## 3   2 0.000000001128421923 0.000000001181456312
## 4   3 0.000000015797906917 0.000000016979363229
## 5   4 0.000000159953807533 0.000000176933170762
## 6   5 0.000001247639698760 0.000001424572869522
## 7   6 0.000007797748117251 0.000009222320986774
## 8   7 0.000040102704603007 0.000049325025589781
## 9   8 0.000172942913600469 0.000222267939190250
## 10  9 0.000634124016535054 0.000856391955725303
## 11 10 0.001997490652085418 0.002853882607810724
## 12 11 0.005447701778414773 0.008301584386225485
## 13 12 0.012938291723735080 0.021239876109960601
## 14 13 0.026871836656988245 0.048111712766948846
## 15 14 0.048945131053800175 0.097056843820749084
## 16 15 0.078312209686080117 0.175369053506829159
## 17 16 0.110126544871050142 0.285495598377879189
## 18 17 0.136038673076003175 0.421534271453882614
## 19 18 0.147375229165670141 0.568909500619552144
## 20 19 0.139618638156950664 0.708528138776503003
## 21 20 0.115185376479484264 0.823713515255987683
## 22 21 0.082275268913917302 0.905988784169904804
## 23 22 0.050487096833540038 0.956475881003445050
## 24 23 0.026341094000107985 0.982816975003552917
## 25 24 0.011524228625047248 0.994341203628600123
## 26 25 0.004148722305017007 0.998489925933617184
## 27 26 0.001196746818754908 0.999686672752372107
## 28 27 0.000265943737501089 0.999952616489873214
## 29 28 0.000042740957812675 0.999995357447685862
## 30 29 0.000004421478394415 0.999999778926080274
## 31 30 0.000000221073919721 1.000000000000000000

4.3.4.2 Visualizar la tabla de distribución

plot(x=tabla$x, y=tabla$f.prob.x, 
     type='h', las=1, lwd=6, xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab = "f(x)")

4.3.4.3 Probabilidad de que aprueben 15 o menos alumnos

Se calcula la probabilidad de P(x=0)+P(x=1)+P(x=2)…+P(15) o la probabilidad acumulada cuando F(x=15)

prob <- pbinom(q = 15, size = n, prob = exito)
paste("La probabilida de que aprueben 15 o menos es de ", prob)
## [1] "La probabilida de que aprueben 15 o menos es de  0.175369053506829"

4.3.4.4 Probabilidad de que aprueben entre 10 y 20 alumnos

Se calcula la probabilidad acumulada de F(x=20)−F(x=10)

prob <- pbinom(q = 20, size = n, prob = exito) - pbinom(q = 10, size = n, prob = exito)
paste ("La probabilidad de que aprueben entre 10 y 20 estudiantes es de: ", prob)
## [1] "La probabilidad de que aprueben entre 10 y 20 estudiantes es de:  0.820859632648177"
# Se comprueba sumando los valores
sum(tabla$f.prob.x[11:21])
## [1] 0.8228571

4.3.4.5 Probabilidad de que aprueben mas de 25 alumnos

Se debe calcular P(x≥26) o restar del el valor acumulado de 25 a 1. 1−F(x=26)

Con pbinom() y con lower.tail() = TRUE se encuentra la probabilidad.

prob <- pbinom(q = 25, size = n, prob = exito, lower.tail = FALSE)
paste ("La probabilidad de que aprueben mas de 25 alumnos es de ", prob)
## [1] "La probabilidad de que aprueben mas de 25 alumnos es de  0.00151007406638281"
# Se puede comprobar sumando los renglones 27 al 31 de la tabla
sum(tabla$f.prob.x[27:31])
## [1] 0.001510074

4.3.4.6 Valor esperado

El valor esperado es la cantidad de alumnos que aprueben el examen.

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  18"

4.3.4.7 Varianza y desviación

Varianza

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  7.2"

Desviación

desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  2.68"

La desviación como parte de la varianza significa la cantidad de alumnos que puede variar con respecto al valor medio VE previamente calculado.

4.3.5 Autobuses contaminantes

Suponga que un grupo de agentes de tránsito sale a una vía principal para revisar el estado de los autobuses de transporte intermunicipal. De datos históricos se sabe que un 10% de los camiones generan una mayor cantidad de humo de la permitida. En cada jornada los agentes revisan siempre 18 unidades (autobuses), asuma que el estado de un autobus es independiente del estado de los otros buses. (Hernández 2021).

  • Construir la tabla de distribución

  • Visualizar la densidad o las probabilidades para cada variable discreta

  • Calcular la probabilidad de que se encuentren exactamente 2 buses que generan una mayor cantidad de humo de la permitida.

  • Calcular la probabilidad de que el número de autobuses que sobrepasan el límite de generación de gases sea al menos 4.

  • Calcular la probabilidad de que existan MAS DE TRES (a partir de CUATRO) autobuses que emitan gases por encima de lo permitido en la norma

  • Calcular el valor esperado.

  • Calcular la varianza y la desviación.

  • Generar una muestra aleatoria de 100 valores y comparar las frecuencias relativas con las probabilidad originales.

  • Interpretar el caso.

4.3.5.1 Construir la tabla de distribución

Se inicializan variables

x <- 0:18
n <- 18
exito <- 0.10

Se construye la tabla de distribución con dbimom() y dbinom().

tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
##     x             f.prob.x  f.acum.x
## 1   0 0.150094635296999152 0.1500946
## 2   1 0.300189270593998137 0.4502839
## 3   2 0.283512088894331660 0.7337960
## 4   3 0.168007163789233555 0.9018032
## 5   4 0.070002984912180641 0.9718061
## 6   5 0.021778706417122911 0.9935848
## 7   6 0.005243021915233281 0.9988279
## 8   7 0.000998670840996817 0.9998265
## 9   8 0.000152574711818958 0.9999791
## 10  9 0.000018836384175180 0.9999980
## 11 10 0.000001883638417518 0.9999998
## 12 11 0.000000152213205456 1.0000000
## 13 12 0.000000009865670724 1.0000000
## 14 13 0.000000000505931832 1.0000000
## 15 14 0.000000000020076660 1.0000000
## 16 15 0.000000000000594864 1.0000000
## 17 16 0.000000000000012393 1.0000000
## 18 17 0.000000000000000162 1.0000000
## 19 18 0.000000000000000001 1.0000000

4.3.5.2 Visualizar probabilidades

Se muestran las probabilidades de cada variable discreta usando directamente la función plot()

plot(x=tabla$x, y=tabla$f.prob.x, 
     type='h', las=1, lwd=6, xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab = "f(x)")

4.3.5.3 Probabilidad de que se encuentren exactamente 2 buses

x <- 2
prob <- dbinom(x = x, size = n, prob = exito)
paste ("La probabilidad de encontrar dos camiones contaminantes es de : ", prob)
## [1] "La probabilidad de encontrar dos camiones contaminantes es de :  0.283512088894332"

4.3.5.4 Probabilidad de menos de cuatro autobuses

Se requiere encontrar la probabilidad de cuando la variables tenga valores entre cero y cuatro. P(x=0)+P(x=1)+P(x=2)+P(x=3)+P(x=4) o lo que es lo mismo P(x≤4) o en términos de probabilidad acumulada F(x=4).

x <- 4
prob <- pbinom(q = x, size = n, prob = exito)
paste ("La probabilidad de encontrar menos de cuatro camiones es de: ", prob)
## [1] "La probabilidad de encontrar menos de cuatro camiones es de:  0.971806143486743"

4.3.5.5 Probabilidad de MAS de tres autobuses

Se requiere encontrar la probabilidad de cuando la variables tenga valores entre cuatro y dieciocho. P(x=4)+P(x=5)+P(x=6)+P(x=7)…+…P(x=18) o lo que es lo mismo P(x≥3) o en términos de probabilidad acumulada F(x=18)−F(x=4).

x1 <- 4
x2 <- 18
prob <- pbinom(q = x2, size = n, prob = exito) - pbinom(q = x1, size = n, prob = exito)  
paste ("La probabilidad de encontrar menos de cuatro camiones es de: ", prob)
## [1] "La probabilidad de encontrar menos de cuatro camiones es de:  0.0281938565132567"

Se puede encontrar usando la expresión lower.tail = FALSE

pbinom(q = 4, size = n, prob = exito, lower.tail = FALSE)
## [1] 0.02819386

4.3.5.6 Valor esperado

VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es:  1.8"

El valor esperado de 1.8 significa el valor medio de camiones que se pueden encontrar que contaminan

4.3.5.7 Varianza y desviación

Varianza

varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es:  1.62"

Desviación

desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es:  1.27"

La varianza y de manera más específica la desviación significa que tanto varía (se aleja o se acerca) con respeto al valor medio o valor esperado VE el número de autobuses con probabilidad de encontrarse con partículas contaminantes.

4.3.5.8 Valores aleatorios

Se utiliza la función rbinom() para simular un estudio y generar valores aleatorios conforme a la distribución binomial.

El estudio o la simulación se hace con un experimento de 100 camiones, a partir del estudio previo de 18 camiones.

n.muestra <- 100
muestra <- rbinom(n = n.muestra, size = n, prob = exito)
muestra
##   [1] 4 3 3 0 0 2 3 1 1 1 3 1 2 0 2 0 2 2 2 1 2 2 2 2 1 2 0 2 3 0 3 4 2 1 4 0 2
##  [38] 3 1 2 4 4 1 2 2 1 0 2 3 2 3 2 2 2 2 0 3 5 3 1 1 4 0 4 1 2 1 2 1 0 2 1 0 1
##  [75] 1 4 1 1 1 2 2 0 2 2 1 5 2 1 2 3 0 1 1 2 2 1 3 1 1 0

Calculando frecuencias relativas

Con la función table() se determina la frecuencia y con prop.table() se encuentra la frecuencia relativa.

table(muestra)
## muestra
##  0  1  2  3  4  5 
## 15 28 34 13  8  2
data.frame(prob = prop.table(table(muestra)))
##   prob.muestra prob.Freq
## 1            0      0.15
## 2            1      0.28
## 3            2      0.34
## 4            3      0.13
## 5            4      0.08
## 6            5      0.02

Se observa que los mayores valores probabilísticos está entre 1 y 3, entonces la muestra se relaciona con los valores probabilísticos del origen de los datos.

5 Referencias bibliográficas

Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia • Brasil • Corea • España • Estados Unidos • Japón • México • Reino Unido • Singapur: Cengage Learning,. Hernández, Freddy. 2021. “Manual de r. Distribuciones Discretas.” https://fhernanb.github.io/Manual-de-R/. “La Distribución Binomial o de Bernoulli.” n.d. https://www.profesor10demates.com/2014/04/la-distribucion-binomial-o-de-bernoulli_3.html. Mendenhall, William, Robert J. Beaver, and Barbara M. Beaver. 2006. Introducción a La Probabilidad y Estadística. 13a Edición. R CODER Binom. n.d. “La Función Dbinom.” https://r-coder.com/distribucion-binomial-r/. Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.