Encontrar probabilidades de acuerdo a la distribución binomial.
Identificar dos casos de la literatura de distribuciones de probabilidad binomial y realizar cálculos de probabilidades utilizando la fórmula y las funciones dbinom() y pbinom(), identificar el valor medio, la varianza y la desviación.
Pendiente
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.4
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.4
library(mosaic) # Gráficos de distribuciones
## Warning: package 'mosaic' was built under R version 4.0.5
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
options(scipen=999) # Notación normal
# options(scipen=1) # Notación científica
Se carga función de servicio github o de manera local
#source("../funciones/funciones.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")
##
## Attaching package: 'gtools'
## The following object is masked from 'package:mosaic':
##
## logit
Tienda de ropa MartinClothingStore (Anderson, Sweeney, and Williams 2008)
De acuerdo con la experiencia, el gerente de la tienda estima que la probabilidad de que un cliente realice una compra es 0.30.
Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad acumulada
Encontrar la probabilidad de que compren dos clientes
Encontrar la probabilidad de que compren los tres próximos clientes.
Encontrar la probabilidad de que sean menor o igual que dos.
Calcular la probabilidad de que sean mayor que dos
Determinar el valor esperado y su significado
Determinar la varianza y la desviación estándar y si significado
Interpretar
Identificar las probabilidad para cuando se compre 0,1,2,3, determinar la tabla de probabilidad incluyendo probabilidad cumulada
x <- c(0,1,2,3)
n <- 3
exito <- 0.30
tabla1 <- data.frame(x=x, f.prob.x = f.prob.binom(x,n,exito), f.acum.x = cumsum(f.prob.binom(x,n,exito)))
tabla1
## x f.prob.x f.acum.x
## 1 0 0.343 0.343
## 2 1 0.441 0.784
## 3 2 0.189 0.973
## 4 3 0.027 1.000
tabla2 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = cumsum(dbinom(x = x, size = n, prob = exito)))
tabla2
## x f.prob.x f.acum.x
## 1 0 0.343 0.343
## 2 1 0.441 0.784
## 3 2 0.189 0.973
## 4 3 0.027 1.000
con pbinom() en lugar de cumsum()
tabla3 <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla3
## x f.prob.x f.acum.x
## 1 0 0.343 0.343
## 2 1 0.441 0.784
## 3 2 0.189 0.973
## 4 3 0.027 1.000
plotDist(dist = "binom", size=3, prob=0.30,xlab = paste("Variables ",min(tabla1$x),"-",max(tabla1$x) ))
plotDist(dist = "binom", size=3, prob=0.30,xlab = paste("Variables ",min(tabla1$x),"-",max(tabla1$x) ), kind = "histogram")
Encontrar la probabilidad de que compren dos clientes
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x)
la.probabilidad
## x f.prob.x f.acum.x
## 1 2 0.189 0.973
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es 2 es igual a : 0.189"
Usando dbinom()
dbinom(x = 2, size = 3, prob = exito)
## [1] 0.189
Encontrar la probabilidad de que compren los tres próximos clientes
valor.x <- 3
la.probabilidad <- filter(tabla1, x == valor.x)
la.probabilidad
## x f.prob.x f.acum.x
## 1 3 0.027 1
paste("La probabilidad cuando x es ", valor.x, " es igual a : ", la.probabilidad$f.prob.x )
## [1] "La probabilidad cuando x es 3 es igual a : 0.027"
Usando dbinom()
dbinom(x = 3, size = 3, prob = exito)
## [1] 0.027
Encontrar la probabilidad de que sean menor o igual que dos
valor.x <- 2
la.probabilidad <- filter(tabla1, x == valor.x)
la.probabilidad
## x f.prob.x f.acum.x
## 1 2 0.189 0.973
paste("La probabilidad de que sea menor o igual a ", valor.x, " es igual a : ", la.probabilidad$f.acum.x )
## [1] "La probabilidad de que sea menor o igual a 2 es igual a : 0.973"
Usando pbinom()
pbinom(q = 2, size = 3, prob = exito)
## [1] 0.973
La expresión lower.tail = FALSE como atributo de la función pbinom() significa encontrar en la tabla de distribución la sumatoria de las probabilidades a partir de el valor de x, o lo que es lo mismo, 1−prob.acum(x), 1−0.97=0.27.
pbinom(q = 2, size = 3, prob = exito, lower.tail = FALSE)
## [1] 0.027
Determinar el valor esperado y su significado
El valor esperado de la distribución binomial \[μ=n⋅p\] Siendo p el éxito de la probabilidad y n el número de experimentos
VE <- n * exito
paste ("El valor esperado es: ", VE)
## [1] "El valor esperado es: 0.9"
El valor esperado VE significa el valor medio o el valor promedio de todos valores de la distribución de probabilidad.
Determinar la varianza y la desviación estándar y su significado.
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es: 0.63"
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es: 0.79"
Durante el desarrollo de este ejercicio podemos darnos cuenta de diversos datos, como son la probabilidad de que un cliente compre ropa, el cual es del 30%.También se calcularon las probabilidades de que 0, 1, 2 o 3 clientes compraran algo en la tienda y a partir de esto ver si la tienda tiene éxito o fracaso. Esto ultimo lo podemos observar de una manera gráfica en las tablas de distribución. Además se puede apreciar el calculo del valor esperado, que como resultado da0.9 con una desviación estándar de 0.79.
Un jugador encesta con probabilidad 0.55. (“La Distribución Binomial o de Bernoulli,” n.d.):
Determinar las probabilidad de los tiros del 1 al 6 con la tabla de probabilidad
Determinar la probabilidad de encestar cuatro tiros P(x=4)
Determinar la probabilidad de encestar todos tiros o sea seis P(x=6)
Determinar la probabilidad de encestar al menos tres P(x≤3) o, P.acum(x=3)
Determinar el valor esperado VE
Determinar la varianza y su desviación estándard
Interpretar el ejercicio
Se construye la tabla de probabilidades tal y como se construye usando el código de tabla3
Se inicializan valores:
x <- 0:6
n <- 6
exito <- 0.55
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
## x f.prob.x f.acum.x
## 1 0 0.008303766 0.008303766
## 2 1 0.060894281 0.069198047
## 3 2 0.186065859 0.255263906
## 4 3 0.303218437 0.558482344
## 5 4 0.277950234 0.836432578
## 6 5 0.135886781 0.972319359
## 7 6 0.027680641 1.000000000
Dos formas de visualizar las probabilidades
plotDist(dist = "binom", size=n, prob=exito,xlab = paste("Variables ",min(tabla$x),"-",max(tabla$x) ))
plot(x = tabla$x, y=tabla$f.prob.x, type = "h", xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab= "f(x)")
Calcular la probabilidad de encestar cuatro tiros P(x=4)
dbinom(x = 4, size = n, prob = exito)
## [1] 0.2779502
Determinar la probabilidad de encestar todos tiros o sea seis P(x=6)
dbinom(x = 6, size = n, prob = exito)
## [1] 0.02768064
Usando la función pbinom()
pbinom(q = 3, size = n, prob = exito)
## [1] 0.5584823
o utilizando el renglón de la tabla de distribución en la columna de probabilidad acumulada f.acum.x.
valor.x <- 3
la.probabilidad <- filter(tabla, x == valor.x)
la.probabilidad
## x f.prob.x f.acum.x
## 1 3 0.3032184 0.5584823
VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es: 3.3"
El valor esperado de 3.3 significa que es lo que se espera encestar en promedio de los n= 6 tiros.
Varianza
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es: 1.48"
Desviación
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es: 1.22"
De el valor esperado 3.3 hay una desviación aproximada de 1.2186058 hacia arriba o hacia abajo.
La probabilidad de que un paciente se recupere de una rara enfermedad sanguínea es 0.4. Si se sabe que 15 personas contraen tal enfermedad,
Determine tabla de probabilidad de 1 al 15
¿Cuál es la probabilidad de que sobrevivan al menos diez,
¿Cuál es la probabilidad de que sobrevivan de tres a ocho?
¿Cuál es la probabilidad de que sobrevivan exactamente cinco?
¿Cuál es el valor esperado ‘VE’ o la esperanza media?
¿Cual es la varianza y la desviación estándar?
Interpretación del ejercicio (Walpole, Myers, and Myers 2012).
Se inicializan los valores
x <- c(1:15)
n <- 15
exito <- 0.40
Se construye la tabla
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
## x f.prob.x f.acum.x
## 1 1 0.004701849846 0.005172035
## 2 2 0.021941965947 0.027114001
## 3 3 0.063387901624 0.090501902
## 4 4 0.126775803249 0.217277706
## 5 5 0.185937844765 0.403215550
## 6 6 0.206597605294 0.609813156
## 7 7 0.177083661681 0.786896817
## 8 8 0.118055774454 0.904952592
## 9 9 0.061214105272 0.966166697
## 10 10 0.024485642109 0.990652339
## 11 11 0.007419891548 0.998072231
## 12 12 0.001648864788 0.999721096
## 13 13 0.000253671506 0.999974767
## 14 14 0.000024159191 0.999998926
## 15 15 0.000001073742 1.000000000
Dos formas de visualizar las probabilidades
plotDist(dist = "binom", size=n, prob=exito,xlab = paste("Variables ",min(tabla$x),"-",max(tabla$x) ))
plot(x = tabla$x, y=tabla$f.prob.x, type = "h", xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab= "f(x)")
Usando la función pbinom()
pbinom(q = 10, size = n, prob = exito)
## [1] 0.9906523
o utilizando el renglón de la tabla de distribución en la columna de probabilidad acumulada f.acum.x.
valor.x <- 10
la.probabilidad <- filter(tabla, x == valor.x)
la.probabilidad
## x f.prob.x f.acum.x
## 1 10 0.02448564 0.9906523
Usando la función pbinom()
pbinom(q = 3:8, size = n, prob = exito)
## [1] 0.0905019 0.2172777 0.4032156 0.6098132 0.7868968 0.9049526
o utilizando el renglón de la tabla de distribución en la columna de probabilidad acumulada f.acum.x.
valor.x <- 3:8
la.probabilidad <- filter(tabla, x == valor.x)
## Warning in x == valor.x: longitud de objeto mayor no es múltiplo de la longitud
## de uno menor
la.probabilidad
## [1] x f.prob.x f.acum.x
## <0 rows> (or 0-length row.names)
Calcular la probabilidad de encestar cuatro tiros \(P(x=5)\)
dbinom(x = 5, size = n, prob = exito)
## [1] 0.1859378
VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es: 6"
Varianza
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es: 3.6"
Desviación
desviacion.std <- sqrt(varianza)
paste("La desviación estandard es: ", round(desviacion.std, 2))
## [1] "La desviación estandard es: 1.9"
Durante este ejercicio se sacaron las probabilidades de que un jugador de basquetbol de éxito para anotar 0, 1, 2, 3, 4, 5 o 6 canastas. Podemos observar que las probabilidades de éxito tienen un pico máximo de probabilidad a las 3 canastas, antes de eso la probabilidad de éxito solo subía y después de las 3 canastas, la probabilidad de éxito comienza a bajar. Esto concuerda un poco con el valor esperado, cuyo valor es de 3.3 en donde hay una desviación estándar de aproximadamente 1.22 hacia arriba o hacía abajo.
Un estudio refleja que al aplicar un examen de estadística la probabilidad de aprobar (éxito) es del 60%. Se pide lo siguiente:
Encuentre la tabla de distribución binomial para 30 estudiantes que presentan el examen
¿Cuál es la probabilidad de que aprueben 5 alumnos?
¿Cuál es la probabilidad de que aprueben 10 alumnos?
¿Cuál es la probabilidad de que aprueben 15 o menos alumnos?
¿Cuál es la probabilidad de que aprueben entre 10 y 20 alumnos?
¿Cuál es la probabilidad de que aprueben mas de 25 alumnos?
Determinar el valor esperado VE y su significado.
Determinar la varianza y su desviación estándard y su significado.
Se incializan valores
x <- 0:30
n <- 30
exito <- 0.60
Se construye la tabla
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
## x f.prob.x f.acum.x
## 1 0 0.000000000001152922 0.000000000001152922
## 2 1 0.000000000051881468 0.000000000053034389
## 3 2 0.000000001128421923 0.000000001181456312
## 4 3 0.000000015797906917 0.000000016979363229
## 5 4 0.000000159953807533 0.000000176933170762
## 6 5 0.000001247639698760 0.000001424572869522
## 7 6 0.000007797748117251 0.000009222320986774
## 8 7 0.000040102704603007 0.000049325025589781
## 9 8 0.000172942913600469 0.000222267939190250
## 10 9 0.000634124016535054 0.000856391955725303
## 11 10 0.001997490652085418 0.002853882607810724
## 12 11 0.005447701778414773 0.008301584386225485
## 13 12 0.012938291723735080 0.021239876109960601
## 14 13 0.026871836656988245 0.048111712766948846
## 15 14 0.048945131053800175 0.097056843820749084
## 16 15 0.078312209686080117 0.175369053506829159
## 17 16 0.110126544871050142 0.285495598377879189
## 18 17 0.136038673076003175 0.421534271453882614
## 19 18 0.147375229165670141 0.568909500619552144
## 20 19 0.139618638156950664 0.708528138776503003
## 21 20 0.115185376479484264 0.823713515255987683
## 22 21 0.082275268913917302 0.905988784169904804
## 23 22 0.050487096833540038 0.956475881003445050
## 24 23 0.026341094000107985 0.982816975003552917
## 25 24 0.011524228625047248 0.994341203628600123
## 26 25 0.004148722305017007 0.998489925933617184
## 27 26 0.001196746818754908 0.999686672752372107
## 28 27 0.000265943737501089 0.999952616489873214
## 29 28 0.000042740957812675 0.999995357447685862
## 30 29 0.000004421478394415 0.999999778926080274
## 31 30 0.000000221073919721 1.000000000000000000
plot(x=tabla$x, y=tabla$f.prob.x,
type='h', las=1, lwd=6, xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab = "f(x)")
Se calcula la probabilidad de P(x=0)+P(x=1)+P(x=2)…+P(15) o la probabilidad acumulada cuando F(x=15)
prob <- pbinom(q = 15, size = n, prob = exito)
paste("La probabilida de que aprueben 15 o menos es de ", prob)
## [1] "La probabilida de que aprueben 15 o menos es de 0.175369053506829"
Se calcula la probabilidad acumulada de F(x=20)−F(x=10)
prob <- pbinom(q = 20, size = n, prob = exito) - pbinom(q = 10, size = n, prob = exito)
paste ("La probabilidad de que aprueben entre 10 y 20 estudiantes es de: ", prob)
## [1] "La probabilidad de que aprueben entre 10 y 20 estudiantes es de: 0.820859632648177"
# Se comprueba sumando los valores
sum(tabla$f.prob.x[11:21])
## [1] 0.8228571
Se debe calcular P(x≥26) o restar del el valor acumulado de 25 a 1. 1−F(x=26)
Con pbinom() y con lower.tail() = TRUE se encuentra la probabilidad.
prob <- pbinom(q = 25, size = n, prob = exito, lower.tail = FALSE)
paste ("La probabilidad de que aprueben mas de 25 alumnos es de ", prob)
## [1] "La probabilidad de que aprueben mas de 25 alumnos es de 0.00151007406638281"
# Se puede comprobar sumando los renglones 27 al 31 de la tabla
sum(tabla$f.prob.x[27:31])
## [1] 0.001510074
El valor esperado es la cantidad de alumnos que aprueben el examen.
VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es: 18"
Varianza
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es: 7.2"
Desviación
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es: 2.68"
La desviación como parte de la varianza significa la cantidad de alumnos que puede variar con respecto al valor medio VE previamente calculado.
Suponga que un grupo de agentes de tránsito sale a una vía principal para revisar el estado de los autobuses de transporte intermunicipal. De datos históricos se sabe que un 10% de los camiones generan una mayor cantidad de humo de la permitida. En cada jornada los agentes revisan siempre 18 unidades (autobuses), asuma que el estado de un autobus es independiente del estado de los otros buses. (Hernández 2021).
Construir la tabla de distribución
Visualizar la densidad o las probabilidades para cada variable discreta
Calcular la probabilidad de que se encuentren exactamente 2 buses que generan una mayor cantidad de humo de la permitida.
Calcular la probabilidad de que el número de autobuses que sobrepasan el límite de generación de gases sea al menos 4.
Calcular la probabilidad de que existan MAS DE TRES (a partir de CUATRO) autobuses que emitan gases por encima de lo permitido en la norma
Calcular el valor esperado.
Calcular la varianza y la desviación.
Generar una muestra aleatoria de 100 valores y comparar las frecuencias relativas con las probabilidad originales.
Interpretar el caso.
Se inicializan variables
x <- 0:18
n <- 18
exito <- 0.10
Se construye la tabla de distribución con dbimom() y dbinom().
tabla <- data.frame(x=x, f.prob.x = dbinom(x = x, size = n, prob = exito), f.acum.x = pbinom(q = x, size = n, prob = exito))
tabla
## x f.prob.x f.acum.x
## 1 0 0.150094635296999152 0.1500946
## 2 1 0.300189270593998137 0.4502839
## 3 2 0.283512088894331660 0.7337960
## 4 3 0.168007163789233555 0.9018032
## 5 4 0.070002984912180641 0.9718061
## 6 5 0.021778706417122911 0.9935848
## 7 6 0.005243021915233281 0.9988279
## 8 7 0.000998670840996817 0.9998265
## 9 8 0.000152574711818958 0.9999791
## 10 9 0.000018836384175180 0.9999980
## 11 10 0.000001883638417518 0.9999998
## 12 11 0.000000152213205456 1.0000000
## 13 12 0.000000009865670724 1.0000000
## 14 13 0.000000000505931832 1.0000000
## 15 14 0.000000000020076660 1.0000000
## 16 15 0.000000000000594864 1.0000000
## 17 16 0.000000000000012393 1.0000000
## 18 17 0.000000000000000162 1.0000000
## 19 18 0.000000000000000001 1.0000000
Se muestran las probabilidades de cada variable discreta usando directamente la función plot()
plot(x=tabla$x, y=tabla$f.prob.x,
type='h', las=1, lwd=6, xlab = paste(min(tabla$x), '-', max(tabla$x)), ylab = "f(x)")
x <- 2
prob <- dbinom(x = x, size = n, prob = exito)
paste ("La probabilidad de encontrar dos camiones contaminantes es de : ", prob)
## [1] "La probabilidad de encontrar dos camiones contaminantes es de : 0.283512088894332"
Se requiere encontrar la probabilidad de cuando la variables tenga valores entre cero y cuatro. P(x=0)+P(x=1)+P(x=2)+P(x=3)+P(x=4) o lo que es lo mismo P(x≤4) o en términos de probabilidad acumulada F(x=4).
x <- 4
prob <- pbinom(q = x, size = n, prob = exito)
paste ("La probabilidad de encontrar menos de cuatro camiones es de: ", prob)
## [1] "La probabilidad de encontrar menos de cuatro camiones es de: 0.971806143486743"
Se requiere encontrar la probabilidad de cuando la variables tenga valores entre cuatro y dieciocho. P(x=4)+P(x=5)+P(x=6)+P(x=7)…+…P(x=18) o lo que es lo mismo P(x≥3) o en términos de probabilidad acumulada F(x=18)−F(x=4).
x1 <- 4
x2 <- 18
prob <- pbinom(q = x2, size = n, prob = exito) - pbinom(q = x1, size = n, prob = exito)
paste ("La probabilidad de encontrar menos de cuatro camiones es de: ", prob)
## [1] "La probabilidad de encontrar menos de cuatro camiones es de: 0.0281938565132567"
Se puede encontrar usando la expresión lower.tail = FALSE
pbinom(q = 4, size = n, prob = exito, lower.tail = FALSE)
## [1] 0.02819386
VE <- n * exito
paste("El valor esperado es: ",VE)
## [1] "El valor esperado es: 1.8"
El valor esperado de 1.8 significa el valor medio de camiones que se pueden encontrar que contaminan
Varianza
varianza <- n * exito *( 1 - exito)
paste ("La varianza es: ", round(varianza,2))
## [1] "La varianza es: 1.62"
Desviación
desviacion.std <- sqrt(varianza)
paste("La desviación std es: ", round(desviacion.std, 2))
## [1] "La desviación std es: 1.27"
La varianza y de manera más específica la desviación significa que tanto varía (se aleja o se acerca) con respeto al valor medio o valor esperado VE el número de autobuses con probabilidad de encontrarse con partículas contaminantes.
Se utiliza la función rbinom() para simular un estudio y generar valores aleatorios conforme a la distribución binomial.
El estudio o la simulación se hace con un experimento de 100 camiones, a partir del estudio previo de 18 camiones.
n.muestra <- 100
muestra <- rbinom(n = n.muestra, size = n, prob = exito)
muestra
## [1] 4 3 3 0 0 2 3 1 1 1 3 1 2 0 2 0 2 2 2 1 2 2 2 2 1 2 0 2 3 0 3 4 2 1 4 0 2
## [38] 3 1 2 4 4 1 2 2 1 0 2 3 2 3 2 2 2 2 0 3 5 3 1 1 4 0 4 1 2 1 2 1 0 2 1 0 1
## [75] 1 4 1 1 1 2 2 0 2 2 1 5 2 1 2 3 0 1 1 2 2 1 3 1 1 0
Calculando frecuencias relativas
Con la función table() se determina la frecuencia y con prop.table() se encuentra la frecuencia relativa.
table(muestra)
## muestra
## 0 1 2 3 4 5
## 15 28 34 13 8 2
data.frame(prob = prop.table(table(muestra)))
## prob.muestra prob.Freq
## 1 0 0.15
## 2 1 0.28
## 3 2 0.34
## 4 3 0.13
## 5 4 0.08
## 6 5 0.02
Se observa que los mayores valores probabilísticos está entre 1 y 3, entonces la muestra se relaciona con los valores probabilísticos del origen de los datos.
Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia • Brasil • Corea • España • Estados Unidos • Japón • México • Reino Unido • Singapur: Cengage Learning,. Hernández, Freddy. 2021. “Manual de r. Distribuciones Discretas.” https://fhernanb.github.io/Manual-de-R/. “La Distribución Binomial o de Bernoulli.” n.d. https://www.profesor10demates.com/2014/04/la-distribucion-binomial-o-de-bernoulli_3.html. Mendenhall, William, Robert J. Beaver, and Barbara M. Beaver. 2006. Introducción a La Probabilidad y Estadística. 13a Edición. R CODER Binom. n.d. “La Función Dbinom.” https://r-coder.com/distribucion-binomial-r/. Walpole, Ronald E., Raymond H. Myers, and Sharon L. Myers. 2012. Probabilidad y Estadística Para Ingeniería y Ciencias. Novena Edición. México: Pearson.