Official unemployment rates by Gender, based on 4 week job search period
*Data: Economic Active Survey from Korean Statistical Information Service (KOSIS)
library(ggplot2)
library(tidyr)
## Warning: package 'tidyr' was built under R version 4.0.5
library(RColorBrewer)
library(ggsci)
## Warning: package 'ggsci' was built under R version 4.0.5
# load econ_active
econ_active <- read.csv("econ_active.csv")
colnames(econ_active)[colnames(econ_active) == "ï..Month"] <- "Month" #change colname
econ_active
## Month All Male Female
## 1 Apr-20 27734 15912 11822
## 2 May-20 28209 16119 12090
## 3 Jun-20 28283 16125 12158
## 4 Jul-20 28244 16103 12141
## 5 Aug-20 27949 15953 11996
## 6 Sep-20 28012 16018 11994
## 7 Oct-20 28116 16060 12056
## 8 Nov-20 28208 16063 12145
## 9 Dec-20 27661 15838 11823
## 10 Jan-21 27388 15728 11660
## 11 Feb-21 27718 15889 11829
## 12 Mar-21 28138 16099 12040
## 13 Apr-21 28361 16167 12194
# commit x-bar to prevent alphabetical reordering
econ_active$Month <- factor(econ_active$Month, levels = econ_active$Month)
# econ_active plot
econ_active %>%
gather("Gender", "Population", -Month) %>%
ggplot(aes(x= Month, y = Population, fill = Gender)) +
geom_bar(width = 0.7, position = "dodge", stat = "identity") +
theme_minimal() +
labs(title = "Economically Active Population By Gender | Korea 2020 - 2021",
x = "Month", y = "Population (thousands)") +
theme(plot.title = element_text(face = "bold"),
axis.title.x = element_text(face = "bold"),
axis.title.y = element_text(face = "bold"),
legend.title = element_text(face = "bold")
) +
coord_cartesian(ylim = c(5000, 30000)) +
scale_y_continuous(limits = c(0, 30000), breaks=seq(0, 30000, 5000)) +
scale_fill_manual(values = c("Female" = "#ff69b4",
"Male" = "#00bfff",
"All" = "#90ee90"))
# employed csv
employed <- read.csv("Employed.csv")
colnames(employed)[colnames(employed) == "ï..Month"] <- "Month" #change colname
employed
## Month All Male Female
## 1 20-Apr 26562 15237 11325
## 2 20-May 26930 15382 11549
## 3 20-Jun 27055 15431 11624
## 4 20-Jul 27106 15461 11645
## 5 20-Aug 27085 15469 11615
## 6 20-Sep 27012 15430 11582
## 7 20-Oct 27088 15456 11633
## 8 20-Nov 27241 15523 11718
## 9 20-Dec 26526 15244 11281
## 10 21-Jan 25818 14939 10879
## 11 21-Feb 26365 15149 11215
## 12 21-Mar 26923 15417 11506
## 13 21-Apr 27214 15514 11699
# commit x-bar to prevent alphabetical reordering
employed$Month <- factor(employed$Month, levels = employed$Month)
# econ_active plot
employed %>%
gather("Gender", "Population", -Month) %>%
ggplot(aes(x= Month, y = Population, fill = Gender)) +
geom_bar(width = 0.7, position = "dodge", stat = "identity") +
theme_minimal() +
labs(title = "Employed Population By Gender | Korea 2020 - 2021",
x = "Month", y = "Population (thousands)") +
theme(plot.title = element_text(face = "bold"),
axis.title.x = element_text(face = "bold"),
axis.title.y = element_text(face = "bold"),
legend.title = element_text(face = "bold")
) +
coord_cartesian(ylim = c(5000, 30000)) +
scale_y_continuous(limits = c(0, 30000), breaks=seq(0, 30000, 5000)) +
scale_fill_manual(values = c("Female" = "#ff69b4",
"Male" = "#00bfff",
"All" = "#90ee90"))
# unemployed csv
unemployed <- read.csv("Unemployed.csv")
colnames(unemployed)[colnames(unemployed) == "ï..Month"] <- "Month" #change colname
unemployed
## Month All Male Female
## 1 20-Apr 1172 675 497
## 2 20-May 1278 737 541
## 3 20-Jun 1228 694 534
## 4 20-Jul 1138 642 496
## 5 20-Aug 864 484 381
## 6 20-Sep 1000 587 413
## 7 20-Oct 1028 605 423
## 8 20-Nov 967 540 427
## 9 20-Dec 1135 594 542
## 10 21-Jan 1570 789 781
## 11 21-Feb 1353 739 614
## 12 21-Mar 1215 682 534
## 13 21-Apr 1147 653 494
# commit x-bar to prevent alphabetical reordering
unemployed$Month <- factor(unemployed$Month, levels = unemployed$Month)
# econ_active plot
unemployed %>%
gather("Gender", "Population", -Month) %>%
ggplot(aes(x= Month, y = Population, fill = Gender)) +
geom_bar(width = 0.7, position = "dodge", stat = "identity") +
theme_minimal() +
labs(title = "Unemployed Population By Gender | Korea 2020 - 2021",
x = "Month", y = "Population (thousands)") +
theme(plot.title = element_text(face = "bold"),
axis.title.x = element_text(face = "bold"),
axis.title.y = element_text(face = "bold"),
legend.title = element_text(face = "bold")
) +
coord_cartesian(ylim = c(300,1600)) +
scale_y_continuous(limits = c(0, 1600), breaks=seq(0, 1600, 100)) +
scale_fill_manual(values = c("Female" = "#ff69b4",
"Male" = "#00bfff",
"All" = "#90ee90"))
# perc participation csv
participation <- read.csv("perc_participation.csv")
colnames(participation)[colnames(participation) == "ï..Month"] <- "Month" #change colname
participation
## Month All Male Female
## 1 20-Apr 62.0 72.3 52.0
## 2 20-May 63.0 73.2 53.2
## 3 20-Jun 63.2 73.2 53.5
## 4 20-Jul 63.1 73.1 53.4
## 5 20-Aug 62.4 72.4 52.7
## 6 20-Sep 62.5 72.6 52.7
## 7 20-Oct 62.7 72.8 52.9
## 8 20-Nov 62.8 72.7 53.3
## 9 20-Dec 61.6 71.6 51.8
## 10 21-Jan 60.9 71.0 51.1
## 11 21-Feb 61.6 71.7 51.8
## 12 21-Mar 62.5 72.6 52.7
## 13 21-Apr 63.0 72.9 53.4
# commit x-bar to prevent alphabetical reordering
participation$Month <- factor(participation$Month, levels = participation$Month)
# econ_active plot
participation %>%
gather("Gender", "Percentage", -Month) %>%
ggplot(aes(x= Month, y = Percentage, fill = Gender)) +
geom_bar(width = 0.7, position = "dodge", stat = "identity") +
theme_minimal() +
labs(title = "Percentage Workforce Participation By Gender | Korea 2020 - 2021",
x = "Month", y = "Percentage") +
theme(plot.title = element_text(face = "bold"),
axis.title.x = element_text(face = "bold"),
axis.title.y = element_text(face = "bold"),
legend.title = element_text(face = "bold")
) +
coord_cartesian(ylim = c(45, 75)) +
scale_y_continuous(breaks=seq(45, 75, 5), labels = scales::percent_format(scale = 1)) +
scale_fill_manual(values = c("Female" = "#ff69b4",
"Male" = "#00bfff",
"All" = "#90ee90"))
# unemployed% csv
unemployed_perc <- read.csv("Unemployed%.csv")
colnames(unemployed_perc)[colnames(unemployed_perc) == "ï..Month"] <- "Month" #change colname
unemployed_perc
## Month All Male Female
## 1 20-Apr 4.2 4.2 4.2
## 2 20-May 4.5 4.6 4.5
## 3 20-Jun 4.3 4.3 4.4
## 4 20-Jul 4.0 4.0 4.1
## 5 20-Aug 3.1 3.0 3.2
## 6 20-Sep 3.6 3.7 3.4
## 7 20-Oct 3.7 3.8 3.5
## 8 20-Nov 3.4 3.4 3.5
## 9 20-Dec 4.1 3.7 4.6
## 10 21-Jan 5.7 5.0 6.7
## 11 21-Feb 4.9 4.7 5.2
## 12 21-Mar 4.3 4.2 4.4
## 13 21-Apr 4.0 4.0 4.1
# commit x-bar to prevent alphabetical reordering
unemployed_perc$Month <- factor(unemployed_perc$Month, levels = unemployed_perc$Month)
# econ_active plot
unemployed_perc %>%
gather("Gender", "Percentage", -Month) %>%
ggplot(aes(x= Month, y = Percentage, fill = Gender)) +
geom_bar(width = 0.7, position = "dodge", stat = "identity") +
theme_minimal() +
labs(title = "Percentage Unemployment By Gender | Korea 2020 - 2021",
x = "Month", y = "Percentage") +
theme(plot.title = element_text(face = "bold"),
axis.title.x = element_text(face = "bold"),
axis.title.y = element_text(face = "bold"),
legend.title = element_text(face = "bold")
) +
coord_cartesian(ylim = c(3, 7)) +
scale_y_continuous(breaks = seq(3, 7, 0.5), labels = scales::percent_format(scale = 1)) +
scale_fill_manual(values = c("Female" = "#ff69b4",
"Male" = "#00bfff",
"All" = "#90ee90"))
# Employed% csv
employed_perc <- read.csv("Employed%.csv")
colnames(employed_perc)[colnames(employed_perc) == "ï..Month"] <- "Month" #change colname
employed_perc
## Month All Male Female
## 1 20-Apr 59.4 69.3 49.8
## 2 20-May 60.2 69.9 50.8
## 3 20-Jun 60.4 70.1 51.1
## 4 20-Jul 60.5 70.2 51.2
## 5 20-Aug 60.4 70.2 51.0
## 6 20-Sep 60.3 70.0 50.9
## 7 20-Oct 60.4 70.0 51.1
## 8 20-Nov 60.7 70.3 51.4
## 9 20-Dec 59.1 68.9 49.5
## 10 21-Jan 57.4 67.4 47.7
## 11 21-Feb 58.6 68.4 49.1
## 12 21-Mar 59.8 69.6 50.4
## 13 21-Apr 60.4 70.0 51.2
# commit x-bar to prevent alphabetical reordering
employed_perc$Month <- factor(employed_perc$Month, levels = employed_perc$Month)
# econ_active plot
employed_perc %>%
gather("Gender", "Percentage", -Month) %>%
ggplot(aes(x= Month, y = Percentage, fill = Gender)) +
geom_bar(width = 0.7, position = "dodge", stat = "identity") +
theme_minimal() +
labs(title = "Percentage Employment By Gender | Korea 2020 - 2021",
x = "Month", y = "Percentage") +
theme(plot.title = element_text(face = "bold"),
axis.title.x = element_text(face = "bold"),
axis.title.y = element_text(face = "bold"),
legend.title = element_text(face = "bold")
) +
coord_cartesian(ylim = c(48, 71)) +
scale_y_continuous(breaks = seq(48, 71, 5), labels = scales::percent_format(scale = 1)) +
scale_fill_manual(values = c("Female" = "#ff69b4",
"Male" = "#00bfff",
"All" = "#90ee90"))