1.渔民在太湖用网箱养鱼。一个网箱的成本是 1000 元,鱼的价格是 10 元/ \(\mathrm{kg}\), 每个网箱的平均产 量为 \(q=500-n\), 其中 \(n\) 为湖中网箱的总数。试求:
1) 若所有渔民都可以自由地在太湖用网箱养鱼,求均衡时湖中网箱个数。
2)若由一个公司经营太湖中网箱养鱼业,求均衡时湖中的网箱个数。
3)在第 1 问的条件下,若政府对网箱征税,何种税能使社会总福利最大化?
solution:
1)自由养鱼:
均衡时:
\(\pi\left(n^{*}\right)=10\left(500-n^{*}\right)-1000 \geqslant 0\)
\(\pi\left(n^{*}+1\right)=10\left(500-n^{*}-1\right)-1000<0\)
解得:
\(n^{*}=400\)
2)公司经营:
\(\max : \pi=\operatorname{10n}(500-n)-1000 n\)
FOC:\(\frac{d \pi}{d n}=4000-20 n=0\)
解得:
\(n^{* *}=200\)
3)若对网箱征税:单位网箱征t
则均衡时: \(\pi(n)=10(500-n)-1000-t \geqslant 0\)
\(\pi(n+1)=10(500-n-1)-1000-t<0\)
解得 \(399-\frac{t}{10}<n \leq 400-\frac{t}{10}\)
\(n=[n^{* *}]=200\)
则: \(1990<t \leq 2000\)
若不强调整数约束,则取t=2000
( 1 ) 以清晰的图形表示帕托最优分配的轨迹。
(2)在哪个(或哪些)资源亭赋点 \(\mathrm{p}=(1,1)\) 为瓦尔拉斯均衡点?
假设 \(\left(\mathrm{w}_{1}^{\mathrm{F}},\mathrm{w}_{2}^{\mathrm{F}}\right)=(8,0),\) 这是一个帕累托最优的分配吗?在此条件之下,请解出均衡的的价格比。
如果 \(\left(\mathrm{w}_{1}^{\mathrm{F}}, \mathrm{w}_{2}^{\mathrm{F}}\right)=(3,4),\) 瓦尔拉斯均衡的价格比是多少?
总资源京赋不变的情况下,随着 Robinson 的京赋变化,该经济的均衡价格比会在什么范围内变化?
solution:
1)内部解:
\(\max : \quad U^{F}=\left(10+x_{1}^ F\right)\left(20+x_{2}^{F}\right)\)
\(\bar{U}^{R}=\ln x_{1}^{R}+\ln x_{2}^{R}\)
\(x_{1}^F+x_{1}^{R}=30\) \(x_{2}^{F}+x_{2}^{R}=20\)
拉格朗日函数:
\(\mathcal{L}=\left(10+x_{1}^{F}\right)\left(20+x_{2}^{F}\right)+\lambda\left[\bar{U}^{R}-\ln \left(30-x_{1}^{F}\right)-\ln \left(20-x_{2}^{F}\right)\right]\)
FOC: \(\left\{\begin{array}{l}\frac{\partial \mathcal{L}}{\partial x_{1}^F}=20+x_{2}^{F}+\lambda \cdot \frac{1}{30-x_{1}^{F}}=0 \\ \frac{\partial \mathcal{L}}{\partial x_{2}^{F}}=10+x_{1}^{F}+\lambda \cdot \frac{1}{20-x_{2}^{F}}=0\end{array}\right.\)
解得: \(x_{2}^{F}=x_{1}^{F}-10 \quad\left(10 \leq x_{1}^{F} \leq 30\right)\)
角点解:
\(x_{2}^{F}=0\) 且\(0 \leq x_{1}^{F} \leq 10\)
2)当 \(p=(1,1)\)时,F与R的需求分别为:
\(\left\{\begin{array}{l}x_{1}^F=\frac{e_{1}^{F}+e_{2}^{F}+10}{2} \\ x_{2}^{F}=\frac{e_{1}^{F}+e_{2}^{F}-10}{2}\end{array}\right.\)
\(\left\{\begin{array}{l}x_{1}^{R}=\frac{e_{1}^{R}+e_{2}^{R}}{2} \\ x_{2}^{R}=\frac{e^{R}_1+e_{2}^{R}}{2}\end{array}\right.\)
由禀赋约束知: \(x_{2}^{F} \geqslant 0 \Rightarrow e_{1}^{F}+e_{2}^{F} \geqslant 10\)
则 \(p=(1,1)\)对应的内部解区域为:
\(e_{1}^{F}+e_{2}^{F} \geqslant 10\left(0 \leqslant e_{1} ^{F} \leqslant 30\right)\)
实际上整个内部解对应的价格均为: \(p=(1,1)\)
对于任意角点解区域, \(p=(1,1)\)就能达到,见5)
综上: \(p=(1,1)\)对应所有的禀赋点。
3)
\(\left(w_{1}^ F, w_{2}^F\right)=(8,0)\)是帕累托最优分配,此时为角点解均衡,无交易,但 \(p=\frac{p_{x}}{p_{y}}\)应满足一定的条件。
\(\frac{10}{11}=M R S_{1,2}^{R} \leq p=\frac{p_{x}}{p_{y}} \leq M R S_{1,2}^{F}=\frac{10}{9}\)
4) \(\left(w_{1}^{F}, w_{2}^{F}\right)=(3,4)\)时,此时对应角点解的区域。
\(\left\{\begin{array}{l}x_{1}^F=\frac{p w_{1}^{F}+w_{2}^{F}+20-10 p}{2 p}=\frac{24-7 p}{2 p} \\ x_{2}^{F}=\frac{p w_{1}^{F}+w_{2}^{F}+10 p-20}{2}=\frac{13 p-16}{2}\end{array}\right.\)
\(\left\{\begin{array}{ll}x_{1}^R & =\frac{P w_{1}^{R}+w_{2}^{R}}{2 p} & =\frac{27 p+16}{2 p} \\ x_{2}^{R} & =\frac{p{w}_1^ R+w_{2}^R}{2} & =\frac{27 p+16}{2}\end{array}\right.\)
若能达到角点解均衡:
\(\left\{\begin{aligned} 0 \leqslant x_{1}^F \leqslant 10 & \Rightarrow & \frac{8}{9} & \leq P \leqslant \frac{24}{7} \\ x_{2}^{F} \leq 0 & & \Rightarrow & p \leqslant \frac{16}{13} \\ 30 \leq x_{2}^{k} \leq 20 & \Rightarrow & \frac{16}{33} \leq & p \leq \frac{16}{13} \\ x_{2}^{R} \geqslant 20 & \Rightarrow & & p \geqslant \frac{8}{9} \end{aligned}\right.\)
综上: \(\frac{8}{9} \leqslant p \leqslant \frac{16}{13}\)
数值比较:
\(\frac{16}{27} \leqslant \frac{20}{27} \leqslant\left(\frac{8}{9}\right) \leq|k| \leq \leq\left(\frac{16}{13}\right) \leq \frac{20}{13} \leq \frac{24}{13}\)
5)均衡价格比的范围:
内部解均衡:
\(p=p_{x} \mid p_{y}=1\)
角点解均衡:
\(0 \leqslant x_{1}^F=\frac{p w_{1}^{F}+w_{2}^{F}+20-10 p}{2 p} \leq 10\)
\(x_{2}^{F}=\frac{p w_{1}^{F}+w_{2}^{7}+10 p-20}{2} \leq 0\)
\(20 \leqslant x_{1}^{R}=\frac{p w_{1}^{R}+w_{2}^{R}}{2 p} \leqslant 30\)
\(x_{2}^{R}=\frac{p{w_{1}^R}+w_{2}^{R}}{2} \geqslant 20\)
\(\Rightarrow \quad \frac{20+w_{2} F}{30-w_{1} F} \leqslant p \leqslant \frac{20-w_{2}^{F}}{10+w_{1}^{F}}\)
\(\left(0 \leq w_{1}^{F}+w_{2}^F \leq 10, \quad w_{1}^{F} \geqslant 0, \quad w_{2}^ F \geqslant 0\right)\)
故 \(\frac{2}{3} \leqslant p \leq 2\)
1)求出最优的反应函数,并解释
2)对于什么样 \(q_{2}\) 值使得厂商1的反应函数的斜率等于0
3)求解均衡产出。
solution:
1)企业1利润最大化:
\(\max : \pi_{1}=\left(\frac{a}{1+b Q}-c\right) q_{1}\)
\(Foc: \frac{\partial \pi_{1}}{\partial q_{1}}=\frac{a}{1+b_{Q}}-c-\frac{a b_{1}}{(1+b_Q)^{2}}=0\)
反应函数为:
\(\left\{\begin{array}{l}q_{1}\left(q_{2}\right)=\frac{1}{b} \sqrt{\frac{a}{c}} \sqrt{1+bq_2}-q_{2}-\frac{1}{b} \\ q_{2}\left(q_{1}\right)=\frac{1}{b} \sqrt{\frac{a}{c}} \sqrt{1+b q_{1}}-q_{1}-\frac{1}{b}\end{array}\right.\)
2)令 \(\frac{d q_{1}\left(q_{2}\right)}{d q_{2}}=\sqrt{\frac{a}{c}} \frac{1}{2 \sqrt{1+b q_{2}}}-1=0\)
得: \(q_{2}=\frac{a-4 c}{4 b c}\)
\(\left\{\begin{array}{l}a \geq 4 c时,存在 \\ a<4 c时,不存在\end{array}\right.\)
3)联立反应函数得:
\(\left\{\begin{array}{l}q_{1}\left(q_{2}\right)=\frac{1}{b} \sqrt{\frac{a}{c}} \sqrt{1+b{q}}_{2}-q_{2}-\frac{1}{b} \\ q_{2}\left(q_{1}\right)=\frac{1}{b} \sqrt{\frac{a}{c}} \sqrt{1+b q_{1}}-q_{1}-\frac{1}{b}\end{array}\right.\)
由对称性知:
\(q_{1}^{*}=q_{2}^{*}=1\)
\(\Rightarrow b^{2}(a-4 c) q^{*}+2 b(a-2 c) q^{*}+(a-c)=0\)
\(\Rightarrow \quad q^{*}=\frac{\sqrt{a c}-(a-2 c)}{b(a-4 c)}\)
4)反应函数
\(q_{2}(0)=\frac{1}{b}\left(\sqrt{\frac{a}{c}}-1\right)>0\)
由2)知: \(a>4 c\)时存在极大值
\(a \leq 4 c\)时不存在极大值
\(\frac{d^{2} q_{2}}{d q_{1}^{2}}=-\frac{1}{4} \sqrt{\frac{c}{a}}\left(1+b q_{2}\right)^{-\frac{3}{2}}<0\)
\(\lim _{q_{1} \rightarrow+\infty} q_{2}\left(q_{1}\right)=-\infty\)