##
## Call:
## glm(formula = response ~ Forest_200m + Herb_200m + Crop_200m +
## Other_200m + ForestEdge_200m, family = "binomial", data = Data_NestSelection)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.88030 -0.97563 0.03279 0.93233 1.74692
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.377e+02 4.867e+01 -2.829 0.00467 **
## Forest_200m 1.089e+01 3.874e+00 2.811 0.00494 **
## Herb_200m 1.087e+01 3.873e+00 2.806 0.00501 **
## Crop_200m 1.070e+01 3.865e+00 2.770 0.00561 **
## Other_200m 1.132e+01 3.893e+00 2.907 0.00364 **
## ForestEdge_200m 9.311e-04 3.045e-04 3.058 0.00223 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 180.22 on 129 degrees of freedom
## Residual deviance: 147.87 on 124 degrees of freedom
## AIC: 159.87
##
## Number of Fisher Scoring iterations: 4
##
## Call:
## glm(formula = response ~ Height_GC + Percent_WoodyVeg, family = "binomial",
## data = Data_NestSelection)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.55256 -0.99287 -0.09811 0.92106 1.92723
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.99607 0.91485 -4.368 1.25e-05 ***
## Height_GC 4.87033 1.29503 3.761 0.000169 ***
## Percent_WoodyVeg 0.03703 0.01078 3.434 0.000594 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 174.67 on 125 degrees of freedom
## Residual deviance: 141.98 on 123 degrees of freedom
## (4 observations deleted due to missingness)
## AIC: 147.98
##
## Number of Fisher Scoring iterations: 4
## Call:
## coxph(formula = response ~ Forest_200m + Herb_200m)
##
## n= 76, number of events= 34
##
## coef exp(coef) se(coef) z Pr(>|z|)
## Forest_200m 0.2345 1.2643 0.1300 1.804 0.0712 .
## Herb_200m 0.2543 1.2895 0.1258 2.022 0.0432 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## Forest_200m 1.264 0.7910 0.9799 1.631
## Herb_200m 1.290 0.7755 1.0078 1.650
##
## Concordance= 0.634 (se = 0.062 )
## Likelihood ratio test= 4.47 on 2 df, p=0.1
## Wald test = 4.09 on 2 df, p=0.1
## Score (logrank) test = 4.19 on 2 df, p=0.1
## Call:
## coxph(formula = response ~ BasalArea + ForestEdgeDist + Height_GC +
## Percent_Grasses + Percent_Forbs + Percent_WoodyVeg)
##
## n= 76, number of events= 34
##
## coef exp(coef) se(coef) z Pr(>|z|)
## BasalArea 0.003655 1.003662 0.007268 0.503 0.615
## ForestEdgeDist -0.001023 0.998978 0.007547 -0.136 0.892
## Height_GC -1.186352 0.305333 1.588903 -0.747 0.455
## Percent_Grasses -0.009915 0.990134 0.029526 -0.336 0.737
## Percent_Forbs 0.010098 1.010149 0.025241 0.400 0.689
## Percent_WoodyVeg -0.006107 0.993911 0.028189 -0.217 0.828
##
## exp(coef) exp(-coef) lower .95 upper .95
## BasalArea 1.0037 0.9964 0.98947 1.018
## ForestEdgeDist 0.9990 1.0010 0.98431 1.014
## Height_GC 0.3053 3.2751 0.01356 6.875
## Percent_Grasses 0.9901 1.0100 0.93446 1.049
## Percent_Forbs 1.0101 0.9900 0.96139 1.061
## Percent_WoodyVeg 0.9939 1.0061 0.94049 1.050
##
## Concordance= 0.635 (se = 0.062 )
## Likelihood ratio test= 5.1 on 6 df, p=0.5
## Wald test = 4.97 on 6 df, p=0.5
## Score (logrank) test = 5.11 on 6 df, p=0.5