Executive Summary:

Using a set of car data obtained from Motor Trend magazine in 1974 we plan to examine which transmission truly gets the best mileage. The popular consensus among the public is that manual gets you superior mileage, but is that really the case? We visualize the difference between the two variables with Figure 1, which can be found with all other data visualizations in this report’s appendix. Figure 1 shows the distribution of cars with the best miles per gallon belongs to those with manual transmissions. Our dataset contains 11 variables in total, so we must test them against this hypothesis to be sure our initial assumption is correct. When we are done we should be able to resolve the following:

"Is an automatic or manual transmission better for MPG"
"Quantify the MPG difference between automatic and manual transmissions"

Exploratory Data Analyses:

First I’m going to convert the transmission variable to a factor and generate a boxplot (see Appendix: Figure 1).

data(mtcars)
mtcars$am<-factor(mtcars$am,labels=c("Auto","Manual"))
library(ggplot2)
ggplot(mtcars, aes(x=am, y=mpg, fill=am)) + geom_boxplot() + ggtitle("MPG Distribution by Transmission Type")

Let’s take a look at the other variables in the dataset.

names(mtcars)
##  [1] "mpg"  "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"   "am"   "gear"
## [11] "carb"

We can aggregate the two transmissions types to see where they stand numerically.

aggregate(mpg ~ am, data = mtcars, mean)
##       am      mpg
## 1   Auto 17.14737
## 2 Manual 24.39231

This shows us manual transmissions get 7.24494 more miles per gallon on average. We can get more information if we do a t.test.

t.test(mtcars$mpg~mtcars$am)
## 
##  Welch Two Sample t-test
## 
## data:  mtcars$mpg by mtcars$am
## t = -3.7671, df = 18.332, p-value = 0.001374
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -11.280194  -3.209684
## sample estimates:
##   mean in group Auto mean in group Manual 
##             17.14737             24.39231

We now have a p-value of 0.001374 which tells us there is a significant difference between transmissions types.

So, at least as far as this dataset is concerned, cars with manual transmissions get better mileage. We need to quantify the difference, and investigate whether the difference is not actually due to one or more of the remaining 10 variables.

Regression Modelling:

We will start with a simple linear regression of MPG and Transmission.

simpleModel<-lm(mpg~am, data=mtcars)
summary(simpleModel)
## 
## Call:
## lm(formula = mpg ~ am, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.3923 -3.0923 -0.2974  3.2439  9.5077 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   17.147      1.125  15.247 1.13e-15 ***
## amManual       7.245      1.764   4.106 0.000285 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared:  0.3598, Adjusted R-squared:  0.3385 
## F-statistic: 16.86 on 1 and 30 DF,  p-value: 0.000285

We get 17.147 for the intercept, which matches the average MPG of automatic transmissions, and 7.245 which when added to the intercept equals the average for manual. Based on multiple r-squared this model only accounts for 36% of the variance. Let’s see what we get using multivariate linear regression.

multivariateModel<-lm(mpg~., data=mtcars)
summary(multivariateModel)
## 
## Call:
## lm(formula = mpg ~ ., data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4506 -1.6044 -0.1196  1.2193  4.6271 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 12.30337   18.71788   0.657   0.5181  
## cyl         -0.11144    1.04502  -0.107   0.9161  
## disp         0.01334    0.01786   0.747   0.4635  
## hp          -0.02148    0.02177  -0.987   0.3350  
## drat         0.78711    1.63537   0.481   0.6353  
## wt          -3.71530    1.89441  -1.961   0.0633 .
## qsec         0.82104    0.73084   1.123   0.2739  
## vs           0.31776    2.10451   0.151   0.8814  
## amManual     2.52023    2.05665   1.225   0.2340  
## gear         0.65541    1.49326   0.439   0.6652  
## carb        -0.19942    0.82875  -0.241   0.8122  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.65 on 21 degrees of freedom
## Multiple R-squared:  0.869,  Adjusted R-squared:  0.8066 
## F-statistic: 13.93 on 10 and 21 DF,  p-value: 3.793e-07

It appears that weight is a major contributing factor, along with transmission type. Let’s use a stepwise model to verify the which variables are the best fit.

stepwiseModel<-step(lm(mpg~.,data=mtcars),direction="both")
## Start:  AIC=70.9
## mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb
## 
##        Df Sum of Sq    RSS    AIC
## - cyl   1    0.0799 147.57 68.915
## - vs    1    0.1601 147.66 68.932
## - carb  1    0.4067 147.90 68.986
## - gear  1    1.3531 148.85 69.190
## - drat  1    1.6270 149.12 69.249
## - disp  1    3.9167 151.41 69.736
## - hp    1    6.8399 154.33 70.348
## - qsec  1    8.8641 156.36 70.765
## <none>              147.49 70.898
## - am    1   10.5467 158.04 71.108
## - wt    1   27.0144 174.51 74.280
## 
## Step:  AIC=68.92
## mpg ~ disp + hp + drat + wt + qsec + vs + am + gear + carb
## 
##        Df Sum of Sq    RSS    AIC
## - vs    1    0.2685 147.84 66.973
## - carb  1    0.5201 148.09 67.028
## - gear  1    1.8211 149.40 67.308
## - drat  1    1.9826 149.56 67.342
## - disp  1    3.9009 151.47 67.750
## - hp    1    7.3632 154.94 68.473
## <none>              147.57 68.915
## - qsec  1   10.0933 157.67 69.032
## - am    1   11.8359 159.41 69.384
## + cyl   1    0.0799 147.49 70.898
## - wt    1   27.0280 174.60 72.297
## 
## Step:  AIC=66.97
## mpg ~ disp + hp + drat + wt + qsec + am + gear + carb
## 
##        Df Sum of Sq    RSS    AIC
## - carb  1    0.6855 148.53 65.121
## - gear  1    2.1437 149.99 65.434
## - drat  1    2.2139 150.06 65.449
## - disp  1    3.6467 151.49 65.753
## - hp    1    7.1060 154.95 66.475
## <none>              147.84 66.973
## - am    1   11.5694 159.41 67.384
## - qsec  1   15.6830 163.53 68.200
## + vs    1    0.2685 147.57 68.915
## + cyl   1    0.1883 147.66 68.932
## - wt    1   27.3799 175.22 70.410
## 
## Step:  AIC=65.12
## mpg ~ disp + hp + drat + wt + qsec + am + gear
## 
##        Df Sum of Sq    RSS    AIC
## - gear  1     1.565 150.09 63.457
## - drat  1     1.932 150.46 63.535
## <none>              148.53 65.121
## - disp  1    10.110 158.64 65.229
## - am    1    12.323 160.85 65.672
## - hp    1    14.826 163.35 66.166
## + carb  1     0.685 147.84 66.973
## + vs    1     0.434 148.09 67.028
## + cyl   1     0.414 148.11 67.032
## - qsec  1    26.408 174.94 68.358
## - wt    1    69.127 217.66 75.350
## 
## Step:  AIC=63.46
## mpg ~ disp + hp + drat + wt + qsec + am
## 
##        Df Sum of Sq    RSS    AIC
## - drat  1     3.345 153.44 62.162
## - disp  1     8.545 158.64 63.229
## <none>              150.09 63.457
## - hp    1    13.285 163.38 64.171
## + gear  1     1.565 148.53 65.121
## + cyl   1     1.003 149.09 65.242
## + vs    1     0.645 149.45 65.319
## + carb  1     0.107 149.99 65.434
## - am    1    20.036 170.13 65.466
## - qsec  1    25.574 175.67 66.491
## - wt    1    67.572 217.66 73.351
## 
## Step:  AIC=62.16
## mpg ~ disp + hp + wt + qsec + am
## 
##        Df Sum of Sq    RSS    AIC
## - disp  1     6.629 160.07 61.515
## <none>              153.44 62.162
## - hp    1    12.572 166.01 62.682
## + drat  1     3.345 150.09 63.457
## + gear  1     2.977 150.46 63.535
## + cyl   1     2.447 150.99 63.648
## + vs    1     1.121 152.32 63.927
## + carb  1     0.011 153.43 64.160
## - qsec  1    26.470 179.91 65.255
## - am    1    32.198 185.63 66.258
## - wt    1    69.043 222.48 72.051
## 
## Step:  AIC=61.52
## mpg ~ hp + wt + qsec + am
## 
##        Df Sum of Sq    RSS    AIC
## - hp    1     9.219 169.29 61.307
## <none>              160.07 61.515
## + disp  1     6.629 153.44 62.162
## + carb  1     3.227 156.84 62.864
## + drat  1     1.428 158.64 63.229
## - qsec  1    20.225 180.29 63.323
## + cyl   1     0.249 159.82 63.465
## + vs    1     0.249 159.82 63.466
## + gear  1     0.171 159.90 63.481
## - am    1    25.993 186.06 64.331
## - wt    1    78.494 238.56 72.284
## 
## Step:  AIC=61.31
## mpg ~ wt + qsec + am
## 
##        Df Sum of Sq    RSS    AIC
## <none>              169.29 61.307
## + hp    1     9.219 160.07 61.515
## + carb  1     8.036 161.25 61.751
## + disp  1     3.276 166.01 62.682
## + cyl   1     1.501 167.78 63.022
## + drat  1     1.400 167.89 63.042
## + gear  1     0.123 169.16 63.284
## + vs    1     0.000 169.29 63.307
## - am    1    26.178 195.46 63.908
## - qsec  1   109.034 278.32 75.217
## - wt    1   183.347 352.63 82.790
summary(stepwiseModel)
## 
## Call:
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4811 -1.5555 -0.7257  1.4110  4.6610 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   9.6178     6.9596   1.382 0.177915    
## wt           -3.9165     0.7112  -5.507 6.95e-06 ***
## qsec          1.2259     0.2887   4.247 0.000216 ***
## amManual      2.9358     1.4109   2.081 0.046716 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared:  0.8497, Adjusted R-squared:  0.8336 
## F-statistic: 52.75 on 3 and 28 DF,  p-value: 1.21e-11

According to the stepwise model we can include qsec as well. Finally, let’s do an analysis of variance (anova).

anova(simpleModel,stepwiseModel)
## Analysis of Variance Table
## 
## Model 1: mpg ~ am
## Model 2: mpg ~ wt + qsec + am
##   Res.Df    RSS Df Sum of Sq      F   Pr(>F)    
## 1     30 720.90                                 
## 2     28 169.29  2    551.61 45.618 1.55e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Using anova() we find that our multiple model gives us a p-value of 1.55e-09, which is superior to that of our simple model. It seems logical that the multiple model the superior of the two models.

Conclusion:

Do manual transmissions get better gas mileage? Yes, especially if it’s still 1974 where you live. That said, the weight of the overall vehicle has a lot to do with it, as is clearly shown by our multivariate model. See Figure 2 in the appendix below for a visual representation of weight by transmission type. I think it would be beneficial for this analysis to be done knowing the weight of the individual transmissions. I have worked on cars as a hobby for many years and I know from experience that automatic transmissions, due to their complexity, weigh a great deal more than their manual counterparts. It would be interesting to see how much of the overall weight increase of an automatic transmission could impact miles per gallon.

Appendix:

Figure 1:

library(ggplot2)

ggplot(mtcars, aes(x=am, y=mpg, fill=am)) + geom_boxplot() + ggtitle("MPG Distribution by Transmission Type")

Figure 2:

ggplot(mtcars, aes(x=am, y=wt, fill=am)) + geom_boxplot() + ggtitle("Weight Distribution by Transmission Type")

Additional Figures:

plot(stepwiseModel)