Data Preprocessing

Period: 1999 - 2006 (8 yrs)

setwd("C:\\Users\\bjh55\\Desktop\\Rstorage\\BD_NHANES\\WHANES")
'%!in%' <- function(x,y)!('%in%'(x,y))

## Data setting (1999 - 2006)
for (i in 1:4) {
  # Demographics data
  DEMO <- read_xpt(paste0("DEMO_", LETTERS[i], ".xpt"))
  print(length(unique(DEMO$SEQN)))
  
  # Examination data (Whole body DXA)  
  DXX <- read_xpt(paste0("DXX_", LETTERS[i], ".xpt"))
  print(length(unique(DXX$SEQN)))
  
  # Body measures data
  BMX <- read_xpt(paste0("BMX_", LETTERS[i], ".xpt"))
  print(length(unique(BMX$SEQN)))
  
  # Merge component files
  # Keep all records in DEMO, even if that SEQN does not match to DXX or BMX files
  one_tmp <- DEMO %>% filter(RIDSTATR == 2 & RIDEXPRG %!in% c(1,3) & RIDAGEYR >= 17) %>% left_join(., select(BMX, "SEQN", "BMXWT", "BMXHT", "BMXBMI", "BMXWAIST"), by="SEQN") %>%
    left_join(., select(DXX, "SEQN", ends_with("MULT_"), "DXAEXSTS", "DXDTOFAT", "DXDTOLE", "DXDTOLI", "DXDTOPF", "DXDLLLE", "DXDLALE", "DXDRALE", "DXDRLLE") , by="SEQN")
  print(length(unique(one_tmp$SEQN)))
  
  assign(paste0("one_tmp_",LETTERS[i]), one_tmp)
}
## [1] 9965
## [1] 6235
## [1] 9282
## [1] 4858
## [1] 11039
## [1] 8242
## [1] 10477
## [1] 5451
## [1] 10122
## [1] 7656
## [1] 9643
## [1] 5224
## [1] 10348
## [1] 6893
## [1] 9950
## [1] 5168
# 1999 - 2006 Data Full Join
tmp_all <- select(one_tmp_A, ends_with("_MULT_"), "SEQN", "SDDSRVYR", "WTMEC4YR", "RIAGENDR", "RIDAGEYR", "RIDRETH1", "SDMVSTRA", "SDMVPSU", "BMXWT", "BMXHT", "BMXBMI", "BMXWAIST", "DXAEXSTS", "DXDTOFAT", "DXDTOLE", "DXDTOLI", "DXDTOPF", "DXDLLLE", "DXDLALE", "DXDRALE", "DXDRLLE") %>%  
  full_join(., select(one_tmp_B, ends_with("_MULT_"), "SEQN", "SDDSRVYR", "WTMEC4YR", "RIAGENDR", "RIDAGEYR", "RIDRETH1", "SDMVSTRA", "SDMVPSU", "BMXWT", "BMXHT", "BMXBMI", "BMXWAIST", "DXAEXSTS", "DXDTOFAT", "DXDTOLE", "DXDTOLI", "DXDTOPF", "DXDLLLE", "DXDLALE", "DXDRALE", "DXDRLLE")) %>%
  full_join(., select(one_tmp_C, ends_with("_MULT_"), "SEQN", "SDDSRVYR", "WTMEC2YR", "RIAGENDR", "RIDAGEYR", "RIDRETH1", "SDMVSTRA", "SDMVPSU", "BMXWT", "BMXHT", "BMXBMI", "BMXWAIST", "DXAEXSTS", "DXDTOFAT", "DXDTOLE", "DXDTOLI", "DXDTOPF", "DXDLLLE", "DXDLALE", "DXDRALE", "DXDRLLE")) %>%
  full_join(., select(one_tmp_D, ends_with("_MULT_"), "SEQN", "SDDSRVYR", "WTMEC2YR", "RIAGENDR", "RIDAGEYR", "RIDRETH1", "SDMVSTRA", "SDMVPSU", "BMXWT", "BMXHT", "BMXBMI", "BMXWAIST", "DXAEXSTS", "DXDTOFAT", "DXDTOLE", "DXDTOLI", "DXDTOPF", "DXDLLLE", "DXDLALE", "DXDRALE", "DXDRLLE")) %>% 
  mutate(.,
         # Generate 8-year MEC weight
         WTMEC8YR = ifelse(SDDSRVYR %in% c(1, 2), 1/2 * WTMEC4YR, 1/4 * WTMEC2YR),
         # Create factor variables
         Gender = factor(RIAGENDR, labels=c("Men", "Women")),
         Age.Group = cut(RIDAGEYR, breaks=c(-Inf,19,24,29,34,39,44,49,54,59,64,69,74,79,Inf),labels=c("17-19", "20-24","25-29","30-34","35-39","40-44","45-49","50-54","55-59","60-64","65-69","70-74","75-79","Over 80")),
         Age.Group2 = cut(RIDAGEYR, breaks=c(-Inf, 29, 39, 49, 59, 69, 79, Inf), labels=c("17-29", "30-39", "40-49", "50-59", "60-69", "70-79", "Over 80")),
         Age.Group3 = cut(RIDAGEYR, breaks=c(-Inf, 17, 18, 19, 20, 21, 29, 39, 49, 59, 69, Inf), labels=c("17", "18", "19", "20", "21", "22-29", "30-39", "40-49", "50-59", "60-69", "Over 70")),
         Age.A = ifelse(Age.Group3=="18", 1, 0),
         Age.B = ifelse(Age.Group3=="19", 1, 0),
         Age.C = ifelse(Age.Group3=="20", 1, 0),
         Age.D = ifelse(Age.Group3=="21", 1, 0),
         Age.E = ifelse(Age.Group3=="22-29", 1, 0),
         Age.F = ifelse(Age.Group3=="30-39", 1, 0),
         Age.G = ifelse(Age.Group3=="40-49", 1, 0),
         Age.H = ifelse(Age.Group3=="50-59", 1, 0),
         Age.I = ifelse(Age.Group3=="60-69", 1, 0),
         Age.J = ifelse(Age.Group3=="Over 70", 1, 0),
         BMI.Group = cut(BMXBMI, breaks=c(-Inf,18.5,25,30,35,Inf), labels=c("Under 18.5", "18.5-25", "26-30", "31-35", "36 and over")),                
         TOTLEANH2 = (DXDTOLE/1000)/((BMXHT/100)^2),
         WHRATIO = BMXWAIST/BMXHT,
         RALEANH2 = DXDRALE/((BMXHT/100)^2),
         LALEANH2 = DXDLALE/((BMXHT/100)^2),
         RLLEANH2 = DXDRLLE/((BMXHT/100)^2),
         LLLEANH2 = DXDLLLE/((BMXHT/100)^2),
         TFWHR = DXDTOPF*(BMXWAIST/BMXHT)
  )
## Joining, by = c("_MULT_", "SEQN", "SDDSRVYR", "WTMEC4YR", "RIAGENDR", "RIDAGEYR", "RIDRETH1", "SDMVSTRA", "SDMVPSU", "BMXWT", "BMXHT", "BMXBMI", "BMXWAIST", "DXAEXSTS", "DXDTOFAT", "DXDTOLE", "DXDTOLI", "DXDTOPF", "DXDLLLE", "DXDLALE", "DXDRALE", "DXDRLLE")
## Joining, by = c("_MULT_", "SEQN", "SDDSRVYR", "RIAGENDR", "RIDAGEYR", "RIDRETH1", "SDMVSTRA", "SDMVPSU", "BMXWT", "BMXHT", "BMXBMI", "BMXWAIST", "DXAEXSTS", "DXDTOFAT", "DXDTOLE", "DXDTOLI", "DXDTOPF", "DXDLLLE", "DXDLALE", "DXDRALE", "DXDRLLE")
## Joining, by = c("_MULT_", "SEQN", "SDDSRVYR", "RIAGENDR", "RIDAGEYR", "RIDRETH1", "SDMVSTRA", "SDMVPSU", "BMXWT", "BMXHT", "BMXBMI", "BMXWAIST", "DXAEXSTS", "DXDTOFAT", "DXDTOLE", "DXDTOLI", "DXDTOPF", "DXDLLLE", "DXDLALE", "DXDRALE", "DXDRLLE", "WTMEC2YR")
# Select samples ->  Whole body scan completed.
length(unique(tmp_all$SEQN))  # Check the number of our samples.
## [1] 20701
tmp_all.1 <- tmp_all %>% filter(tmp_all[,1] == 1)
tmp_all.2 <- tmp_all %>% filter(tmp_all[,1] == 2)
tmp_all.3 <- tmp_all %>% filter(tmp_all[,1] == 3)
tmp_all.4 <- tmp_all %>% filter(tmp_all[,1] == 4)
tmp_all.5 <- tmp_all %>% filter(tmp_all[,1] == 5)

imput_tmp_all <- list(tmp_all.1, tmp_all.2, tmp_all.3, tmp_all.4, tmp_all.5)

# the "id" is actually the PSU!!!!!
nhc_all <- svydesign(id=~SDMVPSU, weights=~WTMEC8YR, strata=~SDMVSTRA, nest=TRUE, survey.lonely.psu = "adjust", data=imputationList(imput_tmp_all))
nhc_all
## Multiple (5) imputations: svydesign(id = ~SDMVPSU, weights = ~WTMEC8YR, strata = ~SDMVSTRA, 
##     nest = TRUE, survey.lonely.psu = "adjust", data = imputationList(imput_tmp_all))

Check the Number of our sample:

By Gender, Age group, Race.

## Multiple imputation results:
##       with(nhc_all, svymean(~Gender, na = TRUE))
##       MIcombine.default(with(nhc_all, svymean(~Gender, na = TRUE)))
##               results          se
## GenderMen   0.5044081 0.003324992
## GenderWomen 0.4955919 0.003324992
## # A tibble: 2 x 3
##   Gender          n  prop
## * <fct>       <dbl> <dbl>
## 1 Men    100617374.  50.4
## 2 Women   98858738.  49.6
## # A tibble: 14 x 3
##    Age.Group         n  prop
##  * <fct>         <dbl> <dbl>
##  1 17-19     10831560.   5.4
##  2 20-24     18336290.   9.2
##  3 25-29     16239598.   8.1
##  4 30-34     18653456.   9.4
##  5 35-39     20165536.  10.1
##  6 40-44     21751620.  10.9
##  7 45-49     21435575.  10.7
##  8 50-54     19186522.   9.6
##  9 55-59     13213386.   6.6
## 10 60-64     11394589.   5.7
## 11 65-69     10176371.   5.1
## 12 70-74      6663387.   3.3
## 13 75-79      5265543.   2.6
## 14 Over 80    6162680.   3.1
## # A tibble: 5 x 3
##   RIDRETH1          n  prop
## *    <dbl>      <dbl> <dbl>
## 1        1  15159449.   7.6
## 2        2  10575070.   5.3
## 3        3 141644699.  71  
## 4        4  22185534.  11.1
## 5        5   9911360.   5
## # A tibble: 14 x 3
##    Age.Group         n  prop
##  * <fct>         <dbl> <dbl>
##  1 17-19      5945047.   5.9
##  2 20-24      9815676.   9.8
##  3 25-29      9264325.   9.2
##  4 30-34      9782666.   9.7
##  5 35-39     10488100.  10.4
##  6 40-44     10934497.  10.9
##  7 45-49     10501236.  10.4
##  8 50-54      9781188.   9.7
##  9 55-59      6639379.   6.6
## 10 60-64      5330206.   5.3
## 11 65-69      4806717.   4.8
## 12 70-74      2891269.   2.9
## 13 75-79      2172320.   2.2
## 14 Over 80    2264748.   2.3
## # A tibble: 14 x 3
##    Age.Group         n  prop
##  * <fct>         <dbl> <dbl>
##  1 17-19      4886513.   4.9
##  2 20-24      8520613.   8.6
##  3 25-29      6975273.   7.1
##  4 30-34      8870790.   9  
##  5 35-39      9677436.   9.8
##  6 40-44     10817123.  10.9
##  7 45-49     10934339.  11.1
##  8 50-54      9405334.   9.5
##  9 55-59      6574007.   6.6
## 10 60-64      6064383.   6.1
## 11 65-69      5369653.   5.4
## 12 70-74      3772119.   3.8
## 13 75-79      3093223.   3.1
## 14 Over 80    3897933.   3.9
## # A tibble: 7 x 3
##   Age.Group2         n  prop
## * <fct>          <dbl> <dbl>
## 1 17-29      25025048.  24.9
## 2 30-39      20270766.  20.1
## 3 40-49      21435733.  21.3
## 4 50-59      16420567.  16.3
## 5 60-69      10136923.  10.1
## 6 70-79       5063588.   5  
## 7 Over 80     2264748.   2.3
## # A tibble: 7 x 3
##   Age.Group2         n  prop
## * <fct>          <dbl> <dbl>
## 1 17-29      20382399.  20.6
## 2 30-39      18548226.  18.8
## 3 40-49      21751463.  22  
## 4 50-59      15979341.  16.2
## 5 60-69      11434036.  11.6
## 6 70-79       6865342.   6.9
## 7 Over 80     3897933.   3.9
## # A tibble: 11 x 3
##    Age.Group3         n  prop
##  * <fct>          <dbl> <dbl>
##  1 17          1975032.   2  
##  2 18          2065374.   2.1
##  3 19          1904641.   1.9
##  4 20          2033223.   2  
##  5 21          2235848.   2.2
##  6 22-29      14810931.  14.7
##  7 30-39      20270766.  20.1
##  8 40-49      21435733.  21.3
##  9 50-59      16420567.  16.3
## 10 60-69      10136923.  10.1
## 11 Over 70     7328336.   7.3
## # A tibble: 11 x 3
##    Age.Group3         n  prop
##  * <fct>          <dbl> <dbl>
##  1 17          1587463.   1.6
##  2 18          1732048.   1.8
##  3 19          1567002.   1.6
##  4 20          1842263.   1.9
##  5 21          1697745.   1.7
##  6 22-29      11955879.  12.1
##  7 30-39      18548226.  18.8
##  8 40-49      21751463.  22  
##  9 50-59      15979341.  16.2
## 10 60-69      11434036.  11.6
## 11 Over 70    10763274.  10.9

Distribution of our target values.

By Gender, Age group, BMI group.

## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + Gender, na = TRUE, 
##     svymean))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + 
##     Gender, na = TRUE, svymean)))
##                    results        se
## Under 18.5.Men    16.83579 0.3073872
## 18.5-25.Men       22.27656 0.1194408
## 26-30.Men         27.96340 0.0991413
## 31-35.Men         31.97096 0.1184991
## 36 and over.Men   36.75856 0.1580697
## Under 18.5.Women  26.59001 0.3048568
## 18.5-25.Women     34.11953 0.1322851
## 26-30.Women       40.66613 0.1071343
## 31-35.Women       43.99776 0.1017997
## 36 and over.Women 47.90797 0.1426048
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + Gender, na = TRUE, 
##     svyquantile, quantiles = c(0.5), keep.var = TRUE, se = T, 
##     ci = T))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + 
##     Gender, na = TRUE, svyquantile, quantiles = c(0.5), keep.var = TRUE, 
##     se = T, ci = T)))
##                    results        se
## Under 18.5.Men    16.40000 0.4127974
## 18.5-25.Men       22.13421 0.1744641
## 26-30.Men         27.94000 0.1258484
## 31-35.Men         32.18000 0.1462411
## 36 and over.Men   36.58000 0.2287236
## Under 18.5.Women  26.57656 0.4212896
## 18.5-25.Women     34.34000 0.1622571
## 26-30.Women       40.92000 0.1533101
## 31-35.Women       44.00000 0.1354870
## 36 and over.Women 48.14000 0.2118021
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + Age.Group, na = TRUE, 
##     svymean))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + 
##     Age.Group, na = TRUE, svymean)))
##                      results        se
## Under 18.5.17-19    21.67060 0.6311274
## 18.5-25.17-19       24.79467 0.2811471
## 26-30.17-19         31.27723 0.4219859
## 31-35.17-19         36.95278 0.5340402
## 36 and over.17-19   42.83561 0.7673254
## Under 18.5.20-24    21.78756 1.1224856
## 18.5-25.20-24       26.16099 0.3204712
## 26-30.20-24         31.37494 0.4933393
## 31-35.20-24         36.22976 0.5790418
## 36 and over.20-24   43.51556 0.6672434
## Under 18.5.25-29    22.32186 0.9180107
## 18.5-25.25-29       26.94825 0.3001688
## 26-30.25-29         30.81023 0.3513910
## 31-35.25-29         36.82055 0.5386981
## 36 and over.25-29   42.28226 0.6692687
## Under 18.5.30-34    23.83385 1.2435163
## 18.5-25.30-34       27.36239 0.3515711
## 26-30.30-34         31.42390 0.3401313
## 31-35.30-34         36.69404 0.6344490
## 36 and over.30-34   43.37397 0.4988293
## Under 18.5.35-39    22.73763 2.0788430
## 18.5-25.35-39       28.31206 0.3716338
## 26-30.35-39         31.86403 0.4080180
## 31-35.35-39         35.79044 0.4891566
## 36 and over.35-39   43.36334 0.5703634
## Under 18.5.40-44    23.99492 0.9224410
## 18.5-25.40-44       29.28276 0.3483952
## 26-30.40-44         32.39905 0.3359044
## 31-35.40-44         36.53386 0.4699999
## 36 and over.40-44   42.02589 0.5392224
## Under 18.5.45-49    26.78269 1.0787021
## 18.5-25.45-49       29.24573 0.3857253
## 26-30.45-49         32.58012 0.4122963
## 31-35.45-49         37.63882 0.4759514
## 36 and over.45-49   43.99539 0.5288008
## Under 18.5.50-54    23.61621 1.8413232
## 18.5-25.50-54       30.57210 0.4545269
## 26-30.50-54         33.39985 0.3670701
## 31-35.50-54         37.83450 0.4863833
## 36 and over.50-54   42.64262 0.5192341
## Under 18.5.55-59    21.40761 1.4701127
## 18.5-25.55-59       31.37350 0.5599491
## 26-30.55-59         34.19677 0.4830676
## 31-35.55-59         37.84588 0.5152726
## 36 and over.55-59   45.36226 0.5037674
## Under 18.5.60-64    19.88356 2.2670843
## 18.5-25.60-64       32.12272 0.5282979
## 26-30.60-64         35.40704 0.3984166
## 31-35.60-64         38.94965 0.4137243
## 36 and over.60-64   44.88092 0.5878013
## Under 18.5.65-69    23.65807 1.6947248
## 18.5-25.65-69       32.69215 0.4340091
## 26-30.65-69         35.64502 0.3510023
## 31-35.65-69         40.24220 0.5663818
## 36 and over.65-69   44.60838 0.6314035
## Under 18.5.70-74    27.76751 1.1846519
## 18.5-25.70-74       32.17714 0.4756711
## 26-30.70-74         36.79590 0.4861047
## 31-35.70-74         41.15710 0.5965579
## 36 and over.70-74   46.13014 0.6454266
## Under 18.5.75-79    24.58186 2.3588576
## 18.5-25.75-79       33.62258 0.6443062
## 26-30.75-79         37.48480 0.4192039
## 31-35.75-79         40.86466 0.6921697
## 36 and over.75-79   46.69228 0.7655712
## Under 18.5.Over 80  27.15754 1.4299920
## 18.5-25.Over 80     34.07336 0.3530255
## 26-30.Over 80       37.78556 0.4064728
## 31-35.Over 80       41.99165 0.3997897
## 36 and over.Over 80 46.22688 1.1003633
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + Age.Group, na = TRUE, 
##     svyquantile, quantiles = c(0.5), keep.var = TRUE, se = T, 
##     ci = T))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + 
##     Age.Group, na = TRUE, svyquantile, quantiles = c(0.5), keep.var = TRUE, 
##     se = T, ci = T)))
##                      results        se
## Under 18.5.17-19    22.83546 1.3410565
## 18.5-25.17-19       23.85382 0.8077948
## 26-30.17-19         30.50681 0.7659629
## 31-35.17-19         36.40342 1.0377280
## 36 and over.17-19   43.60004 1.4827360
## Under 18.5.20-24    21.17720 2.0676281
## 18.5-25.20-24       25.89201 0.8046333
## 26-30.20-24         30.41432 0.8126559
## 31-35.20-24         35.22280 1.0313288
## 36 and over.20-24   44.38440 1.1117552
## Under 18.5.25-29    22.86566 1.9807422
## 18.5-25.25-29       26.33239 0.5885100
## 26-30.25-29         29.40569 0.4175794
## 31-35.25-29         36.52116 1.2085770
## 36 and over.25-29   41.51212 1.2388289
## Under 18.5.30-34    23.83100 1.4660316
## 18.5-25.30-34       27.66506 0.6496740
## 26-30.30-34         29.50288 0.5073021
## 31-35.30-34         37.33200 1.1778606
## 36 and over.30-34   44.43420 0.7297151
## Under 18.5.35-39    21.56987 1.5252654
## 18.5-25.35-39       28.25433 0.6948237
## 26-30.35-39         30.68617 0.7099252
## 31-35.35-39         34.32777 0.9508529
## 36 and over.35-39   44.89093 0.9903095
## Under 18.5.40-44    24.86378 2.6150283
## 18.5-25.40-44       29.16778 0.7482810
## 26-30.40-44         30.63283 0.5462568
## 31-35.40-44         34.59943 1.2043097
## 36 and over.40-44   43.10404 1.0544960
## Under 18.5.45-49    26.51786 2.1280987
## 18.5-25.45-49       29.98663 0.9157126
## 26-30.45-49         30.42779 0.7192710
## 31-35.45-49         37.61561 1.0976843
## 36 and over.45-49   45.37767 0.7768566
## Under 18.5.50-54    22.02513 3.2298673
## 18.5-25.50-54       30.98233 0.6987883
## 26-30.50-54         31.58919 0.3820020
## 31-35.50-54         37.67835 1.3730298
## 36 and over.50-54   43.27415 1.1632604
## Under 18.5.55-59    21.19734       NaN
## 18.5-25.55-59       30.51808 0.9105755
## 26-30.55-59         32.43695 0.9180298
## 31-35.55-59         35.88738 1.4920980
## 36 and over.55-59   47.16209 0.7767502
## Under 18.5.60-64    18.64528 0.6810542
## 18.5-25.60-64       32.52672 1.0989439
## 26-30.60-64         34.88084 1.0919548
## 31-35.60-64         38.60811 1.2496176
## 36 and over.60-64   47.14000 1.0443229
## Under 18.5.65-69    22.25896       NaN
## 18.5-25.65-69       33.40452 0.7744511
## 26-30.65-69         35.07458 0.9934562
## 31-35.65-69         40.38137 1.2860524
## 36 and over.65-69   45.79850 0.8103655
## Under 18.5.70-74    28.47209       NaN
## 18.5-25.70-74       32.71908 0.8543166
## 26-30.70-74         36.64114 1.2086192
## 31-35.70-74         42.36485 1.0854953
## 36 and over.70-74   47.26445 0.9095093
## Under 18.5.75-79    25.03151       NaN
## 18.5-25.75-79       33.89501 1.2669487
## 26-30.75-79         38.48469 1.0803781
## 31-35.75-79         41.95974 1.3955505
## 36 and over.75-79   48.21788 0.9628798
## Under 18.5.Over 80  25.49964 2.5969766
## 18.5-25.Over 80     34.20572 0.5651357
## 26-30.Over 80       38.29865 0.8464856
## 31-35.Over 80       42.77735 0.7765957
## 36 and over.Over 80 47.08226 1.7597005
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + RIDRETH1, na = TRUE, 
##     svymean))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + 
##     RIDRETH1, na = TRUE, svymean)))
##                results        se
## Under 18.5.1  24.59603 0.8725551
## 18.5-25.1     27.97854 0.3118409
## 26-30.1       32.59052 0.2400881
## 31-35.1       37.37082 0.2706221
## 36 and over.1 43.56664 0.3661515
## Under 18.5.2  26.67057 2.3361053
## 18.5-25.2     28.28149 0.5663572
## 26-30.2       33.62376 0.4787048
## 31-35.2       38.63607 0.7341099
## 36 and over.2 43.26368 0.7890223
## Under 18.5.3  23.25130 0.4581193
## 18.5-25.3     29.18759 0.1444031
## 26-30.3       33.32109 0.2032951
## 31-35.3       37.80020 0.2498472
## 36 and over.3 43.66797 0.2523778
## Under 18.5.4  19.05242 0.6748043
## 18.5-25.4     24.62651 0.2817754
## 26-30.4       31.90423 0.2414605
## 31-35.4       37.23163 0.3805348
## 36 and over.4 43.78339 0.3106646
## Under 18.5.5  24.38657 1.4648647
## 18.5-25.5     30.07709 0.4942687
## 26-30.5       33.66335 0.5611041
## 31-35.5       35.64384 0.8277096
## 36 and over.5 43.06668 1.0421191
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + Age.Group + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + 
##     Age.Group + Gender, na = TRUE, svymean)))
##                            results        se
## Under 18.5.17-19.Men      15.73465 0.4507527
## 18.5-25.17-19.Men         18.86657 0.1933846
## 26-30.17-19.Men           26.11311 0.3703496
## 31-35.17-19.Men           32.00163 0.4890500
## 36 and over.17-19.Men     37.08344 0.5471586
## Under 18.5.20-24.Men      16.23929 0.5250669
## 18.5-25.20-24.Men         20.00922 0.2273880
## 26-30.20-24.Men           26.25114 0.3853843
## 31-35.20-24.Men           31.10966 0.5071526
## 36 and over.20-24.Men     36.97270 0.5280719
## Under 18.5.25-29.Men      15.67754 0.5406840
## 18.5-25.25-29.Men         21.68437 0.2702246
## 26-30.25-29.Men           26.87191 0.2782017
## 31-35.25-29.Men           31.11532 0.3699343
## 36 and over.25-29.Men     37.28002 0.4709883
## Under 18.5.30-34.Men      16.98321 1.3031802
## 18.5-25.30-34.Men         21.54765 0.3410600
## 26-30.30-34.Men           27.03160 0.2280380
## 31-35.30-34.Men           30.86226 0.4678854
## 36 and over.30-34.Men     36.05657 0.5958456
## Under 18.5.35-39.Men      17.02993 1.1428383
## 18.5-25.35-39.Men         22.22573 0.3890290
## 26-30.35-39.Men           27.16232 0.3068192
## 31-35.35-39.Men           30.91090 0.3169878
## 36 and over.35-39.Men     35.92398 0.5661108
## Under 18.5.40-44.Men      16.21487 1.3888828
## 18.5-25.40-44.Men         22.89632 0.3415968
## 26-30.40-44.Men           27.39831 0.2194374
## 31-35.40-44.Men           31.13595 0.2942543
## 36 and over.40-44.Men     35.78116 0.4643813
## Under 18.5.45-49.Men      16.21784 0.6516569
## 18.5-25.45-49.Men         22.68177 0.4752111
## 26-30.45-49.Men           27.65718 0.2506235
## 31-35.45-49.Men           31.74313 0.3424752
## 36 and over.45-49.Men     36.44526 0.5573145
## Under 18.5.50-54.Men      18.40121 1.1825122
## 18.5-25.50-54.Men         23.67883 0.4133307
## 26-30.50-54.Men           28.15034 0.2788936
## 31-35.50-54.Men           31.90632 0.3848255
## 36 and over.50-54.Men     36.51689 0.3498893
## Under 18.5.55-59.Men      20.50443 1.6201221
## 18.5-25.55-59.Men         24.99417 0.4290591
## 26-30.55-59.Men           29.05485 0.3071528
## 31-35.55-59.Men           32.37030 0.4108707
## 36 and over.55-59.Men     38.00753 0.6186612
## Under 18.5.60-64.Men      17.08199 1.1846178
## 18.5-25.60-64.Men         25.13270 0.4150290
## 26-30.60-64.Men           29.32819 0.2951990
## 31-35.60-64.Men           33.10378 0.3384544
## 36 and over.60-64.Men     37.33427 0.4115167
## Under 18.5.65-69.Men      17.73870 1.0472858
## 18.5-25.65-69.Men         25.99618 0.4466313
## 26-30.65-69.Men           30.31134 0.1889768
## 31-35.65-69.Men           34.20158 0.4252815
## 36 and over.65-69.Men     37.66484 0.5293741
## Under 18.5.70-74.Men      23.21452 1.7584789
## 18.5-25.70-74.Men         25.54576 0.5018266
## 26-30.70-74.Men           30.87706 0.2545368
## 31-35.70-74.Men           35.38295 0.5228856
## 36 and over.70-74.Men     40.17551 0.8046182
## Under 18.5.75-79.Men      16.49345 1.4447807
## 18.5-25.75-79.Men         27.51410 0.5569083
## 26-30.75-79.Men           31.21802 0.3517536
## 31-35.75-79.Men           35.80896 0.4478400
## 36 and over.75-79.Men     37.15551 0.9902299
## Under 18.5.Over 80.Men    21.83929 2.2782635
## 18.5-25.Over 80.Men       27.79047 0.3170939
## 26-30.Over 80.Men         31.91233 0.2746580
## 31-35.Over 80.Men         35.95829 0.4685920
## 36 and over.Over 80.Men   39.05557 1.0084494
## Under 18.5.17-19.Women    26.65024 0.3983918
## 18.5-25.17-19.Women       32.07084 0.2508937
## 26-30.17-19.Women         38.76162 0.3505124
## 31-35.17-19.Women         43.41947 0.5057549
## 36 and over.17-19.Women   47.89299 0.4073310
## Under 18.5.20-24.Women    26.41293 0.8240736
## 18.5-25.20-24.Women       32.43387 0.2868426
## 26-30.20-24.Women         39.04349 0.3487893
## 31-35.20-24.Women         43.64266 0.3913797
## 36 and over.20-24.Women   47.98942 0.5987831
## Under 18.5.25-29.Women    25.96717 0.6879963
## 18.5-25.25-29.Women       32.77698 0.3445953
## 26-30.25-29.Women         39.04413 0.3408102
## 31-35.25-29.Women         43.08062 0.4023959
## 36 and over.25-29.Women   47.66750 0.5770909
## Under 18.5.30-34.Women    26.79345 1.1851503
## 18.5-25.30-34.Women       32.81824 0.3952607
## 26-30.30-34.Women         39.50874 0.3568595
## 31-35.30-34.Women         43.29207 0.3126553
## 36 and over.30-34.Women   47.06881 0.3716687
## Under 18.5.35-39.Women    25.77416 1.8998274
## 18.5-25.35-39.Women       33.30810 0.2701370
## 26-30.35-39.Women         39.50903 0.3560858
## 31-35.35-39.Women         43.23123 0.4267856
## 36 and over.35-39.Women   47.65263 0.4150786
## Under 18.5.40-44.Women    25.66285 0.5896893
## 18.5-25.40-44.Women       33.79425 0.3580718
## 26-30.40-44.Women         39.76392 0.2938982
## 31-35.40-44.Women         43.11995 0.2934047
## 36 and over.40-44.Women   46.76084 0.4095174
## Under 18.5.45-49.Women    27.36320 1.1521280
## 18.5-25.45-49.Women       33.76669 0.4038846
## 26-30.45-49.Women         40.42850 0.2556963
## 31-35.45-49.Women         43.48226 0.3935422
## 36 and over.45-49.Women   47.91837 0.3243785
## Under 18.5.50-54.Women    27.38976 1.7639615
## 18.5-25.50-54.Women       35.23468 0.4360582
## 26-30.50-54.Women         41.52525 0.3041680
## 31-35.50-54.Women         44.07740 0.2966747
## 36 and over.50-54.Women   47.49388 0.3609187
## Under 18.5.55-59.Women    27.09097 1.2294068
## 18.5-25.55-59.Women       36.04799 0.5544781
## 26-30.55-59.Women         41.91659 0.2912774
## 31-35.55-59.Women         44.85528 0.3688391
## 36 and over.55-59.Women   48.99118 0.3528748
## Under 18.5.60-64.Women    24.19384 3.6622989
## 18.5-25.60-64.Women       36.85818 0.4506760
## 26-30.60-64.Women         41.97248 0.3276529
## 31-35.60-64.Women         45.07833 0.2430850
## 36 and over.60-64.Women   48.72931 0.3502399
## Under 18.5.65-69.Women    25.73170 1.8291397
## 18.5-25.65-69.Women       37.36764 0.4053649
## 26-30.65-69.Women         42.12033 0.2831004
## 31-35.65-69.Women         45.61526 0.3825729
## 36 and over.65-69.Women   49.04343 0.3296924
## Under 18.5.70-74.Women    29.72784 1.0517751
## 18.5-25.70-74.Women       37.08766 0.3927909
## 26-30.70-74.Women         42.76425 0.4858565
## 31-35.70-74.Women         45.22728 0.3869709
## 36 and over.70-74.Women   48.89426 0.4781580
## Under 18.5.75-79.Women    26.72136 2.4703933
## 18.5-25.75-79.Women       38.00570 0.5876820
## 26-30.75-79.Women         42.51874 0.3648294
## 31-35.75-79.Women         45.08477 0.5878246
## 36 and over.75-79.Women   49.03266 0.5010993
## Under 18.5.Over 80.Women  28.59596 1.8052059
## 18.5-25.Over 80.Women     37.33760 0.4345367
## 26-30.Over 80.Women       42.12256 0.3071662
## 31-35.Over 80.Women       45.07939 0.4931797
## 36 and over.Over 80.Women 47.83976 0.8749159
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + Age.Group + Gender, 
##     na = TRUE, svyquantile, quantiles = c(0.5), keep.var = TRUE, 
##     se = T, ci = T))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + 
##     Age.Group + Gender, na = TRUE, svyquantile, quantiles = c(0.5), 
##     keep.var = TRUE, se = T, ci = T)))
##                            results        se
## Under 18.5.17-19.Men      15.27473 0.3790354
## 18.5-25.17-19.Men         18.32000 0.1626833
## 26-30.17-19.Men           25.60000 0.3899546
## 31-35.17-19.Men           32.30000 0.7756730
## 36 and over.17-19.Men     36.38741 0.8396903
## Under 18.5.20-24.Men      15.47963 0.3365832
## 18.5-25.20-24.Men         19.42164 0.3020597
## 26-30.20-24.Men           26.14000 0.4283666
## 31-35.20-24.Men           31.52056 0.5793281
## 36 and over.20-24.Men     36.88383 0.8619887
## Under 18.5.25-29.Men      16.09010 1.1427624
## 18.5-25.25-29.Men         21.69627 0.4477935
## 26-30.25-29.Men           26.80249 0.2959180
## 31-35.25-29.Men           31.15344 0.5973106
## 36 and over.25-29.Men     37.40715 0.7963578
## Under 18.5.30-34.Men      15.81309       NaN
## 18.5-25.30-34.Men         21.17389 0.4930955
## 26-30.30-34.Men           27.06334 0.2691796
## 31-35.30-34.Men           30.57812 0.6025477
## 36 and over.30-34.Men     35.90562 0.6886023
## Under 18.5.35-39.Men      16.34329       NaN
## 18.5-25.35-39.Men         22.20899 0.6116618
## 26-30.35-39.Men           27.01241 0.3786641
## 31-35.35-39.Men           30.59090 0.4191788
## 36 and over.35-39.Men     36.11327 0.5794167
## Under 18.5.40-44.Men      14.86810       NaN
## 18.5-25.40-44.Men         23.36498 0.6456941
## 26-30.40-44.Men           27.39074 0.2656893
## 31-35.40-44.Men           31.32481 0.6027262
## 36 and over.40-44.Men     35.64358 0.7018014
## Under 18.5.45-49.Men      15.40000 0.1219876
## 18.5-25.45-49.Men         22.60783 0.5937075
## 26-30.45-49.Men           27.63193 0.3532071
## 31-35.45-49.Men           31.66057 0.5564213
## 36 and over.45-49.Men     36.07881 0.8438405
## Under 18.5.50-54.Men      19.05119 0.3177940
## 18.5-25.50-54.Men         23.99985 0.7116491
## 26-30.50-54.Men           28.32401 0.4546956
## 31-35.50-54.Men           31.69466 0.4014554
## 36 and over.50-54.Men     36.57359 0.5572414
## Under 18.5.55-59.Men      20.21646       NaN
## 18.5-25.55-59.Men         24.34759 0.6936046
## 26-30.55-59.Men           28.79465 0.4593367
## 31-35.55-59.Men           32.52000 0.3661771
## 36 and over.55-59.Men     38.16896 0.7231293
## Under 18.5.60-64.Men      16.89295       NaN
## 18.5-25.60-64.Men         24.91166 0.6557769
## 26-30.60-64.Men           29.03652 0.3281043
## 31-35.60-64.Men           33.17443 0.4440784
## 36 and over.60-64.Men     37.40422 0.4880087
## Under 18.5.65-69.Men      17.56310       NaN
## 18.5-25.65-69.Men         26.07853 0.6796105
## 26-30.65-69.Men           30.23197 0.3195880
## 31-35.65-69.Men           34.12113 0.6890517
## 36 and over.65-69.Men     36.96774 1.0682886
## Under 18.5.70-74.Men      22.45401       NaN
## 18.5-25.70-74.Men         25.68394 0.3890506
## 26-30.70-74.Men           30.62491 0.3943570
## 31-35.70-74.Men           35.08664 0.7277634
## 36 and over.70-74.Men     40.06574 1.0311341
## Under 18.5.75-79.Men      14.78018       NaN
## 18.5-25.75-79.Men         27.47516 0.6903997
## 26-30.75-79.Men           31.21277 0.3137545
## 31-35.75-79.Men           36.17364 0.6870328
## 36 and over.75-79.Men     36.53996       NaN
## Under 18.5.Over 80.Men    21.29472 1.5201615
## 18.5-25.Over 80.Men       27.60836 0.3816349
## 26-30.Over 80.Men         31.68512 0.3588416
## 31-35.Over 80.Men         35.90685 0.6428673
## 36 and over.Over 80.Men   38.88309 1.0136949
## Under 18.5.17-19.Women    26.62875 0.6517191
## 18.5-25.17-19.Women       31.72000 0.2594503
## 26-30.17-19.Women         38.64000 0.4997613
## 31-35.17-19.Women         43.40000 0.6624242
## 36 and over.17-19.Women   48.16669 0.3724808
## Under 18.5.20-24.Women    26.83823 1.2824275
## 18.5-25.20-24.Women       32.25381 0.2920364
## 26-30.20-24.Women         39.48271 0.4159879
## 31-35.20-24.Women         43.51562 0.6626356
## 36 and over.20-24.Women   48.32358 0.8032688
## Under 18.5.25-29.Women    25.75341 1.0409898
## 18.5-25.25-29.Women       33.30173 0.5879575
## 26-30.25-29.Women         39.34000 0.4202378
## 31-35.25-29.Women         43.05649 0.5163049
## 36 and over.25-29.Women   47.92261 0.6753538
## Under 18.5.30-34.Women    25.30480 2.0015765
## 18.5-25.30-34.Women       32.98445 0.6128980
## 26-30.30-34.Women         39.53741 0.3469930
## 31-35.30-34.Women         42.81160 0.6858587
## 36 and over.30-34.Women   47.09091 0.5625682
## Under 18.5.35-39.Women    24.90042 0.8024566
## 18.5-25.35-39.Women       33.47507 0.3528235
## 26-30.35-39.Women         40.00017 0.5142898
## 31-35.35-39.Women         42.19933 0.5727916
## 36 and over.35-39.Women   48.04900 0.5802218
## Under 18.5.40-44.Women    25.03698       NaN
## 18.5-25.40-44.Women       34.39959 0.3671685
## 26-30.40-44.Women         40.24882 0.3711636
## 31-35.40-44.Women         43.26802 0.2774739
## 36 and over.40-44.Women   46.44451 0.4754025
## Under 18.5.45-49.Women    26.56386       NaN
## 18.5-25.45-49.Women       34.05407 0.5459525
## 26-30.45-49.Women         40.54608 0.4160265
## 31-35.45-49.Women         43.22132 0.6899812
## 36 and over.45-49.Women   47.93823 0.4405558
## Under 18.5.50-54.Women    26.14165       NaN
## 18.5-25.50-54.Women       35.41323 0.6664209
## 26-30.50-54.Women         41.73034 0.3897682
## 31-35.50-54.Women         43.88187 0.3984449
## 36 and over.50-54.Women   47.43703 0.5727765
## Under 18.5.55-59.Women    25.46093       NaN
## 18.5-25.55-59.Women       36.24621 0.6152838
## 26-30.55-59.Women         42.26141 0.4046605
## 31-35.55-59.Women         44.91382 0.4252930
## 36 and over.55-59.Women   49.11761 0.4447805
## Under 18.5.60-64.Women    19.73089       NaN
## 18.5-25.60-64.Women       37.21126 0.5986938
## 26-30.60-64.Women         42.44864 0.4181261
## 31-35.60-64.Women         45.46000 0.2832698
## 36 and over.60-64.Women   48.84634 0.3380644
## Under 18.5.65-69.Women    23.93829       NaN
## 18.5-25.65-69.Women       37.62981 0.6733475
## 26-30.65-69.Women         42.21201 0.3020548
## 31-35.65-69.Women         45.69891 0.4688104
## 36 and over.65-69.Women   49.00420 0.5388274
## Under 18.5.70-74.Women    29.89299       NaN
## 18.5-25.70-74.Women       36.97011 0.5185113
## 26-30.70-74.Women         42.68045 0.6232570
## 31-35.70-74.Women         45.32696 0.5605114
## 36 and over.70-74.Women   48.83491 0.8317234
## Under 18.5.75-79.Women    29.14125       NaN
## 18.5-25.75-79.Women       38.10771 0.9690461
## 26-30.75-79.Women         42.69359 0.3901340
## 31-35.75-79.Women         44.49803 0.6220077
## 36 and over.75-79.Women   49.08583 0.6559482
## Under 18.5.Over 80.Women  26.97734 0.6446106
## 18.5-25.Over 80.Women     37.73967 0.5806669
## 26-30.Over 80.Women       42.08793 0.3331382
## 31-35.Over 80.Women       45.00598 0.7416319
## 36 and over.Over 80.Women 47.91260 1.4817768
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOLE, ~BMI.Group + Gender, na = TRUE, 
##     svymean))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOLE, ~BMI.Group + 
##     Gender, na = TRUE, svymean)))
##                    results        se
## Under 18.5.Men    43903.07 560.58129
## 18.5-25.Men       52486.92 145.07685
## 26-30.Men         59151.72 138.08272
## 31-35.Men         65820.87 232.20374
## 36 and over.Men   76460.74 484.38290
## Under 18.5.Women  32777.35 282.52328
## 18.5-25.Women     37152.14  89.00896
## 26-30.Women       40942.04 117.86522
## 31-35.Women       45347.00 158.75528
## 36 and over.Women 53464.86 259.88430
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOLE, ~BMI.Group + Age.Group, na = TRUE, 
##     svymean))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOLE, ~BMI.Group + 
##     Age.Group, na = TRUE, svymean)))
##                      results        se
## Under 18.5.17-19    38178.90  787.3510
## 18.5-25.17-19       45691.09  277.1195
## 26-30.17-19         52975.33  622.4805
## 31-35.17-19         58201.62  807.1816
## 36 and over.17-19   63924.91 1321.3366
## Under 18.5.20-24    38289.50 1322.4834
## 18.5-25.20-24       45869.78  458.4105
## 26-30.20-24         52951.35  538.3669
## 31-35.20-24         58616.88  837.1670
## 36 and over.20-24   65213.36 1476.0380
## Under 18.5.25-29    37543.36 1016.9816
## 18.5-25.25-29       46152.41  407.2311
## 26-30.25-29         54154.25  557.7712
## 31-35.25-29         58496.80  954.6972
## 36 and over.25-29   68598.60 1692.1857
## Under 18.5.30-34    36164.79  909.7532
## 18.5-25.30-34       45551.67  461.6844
## 26-30.30-34         54171.77  442.4452
## 31-35.30-34         57012.11 1094.2718
## 36 and over.30-34   63053.59 1210.0675
## Under 18.5.35-39    37796.73 3232.8022
## 18.5-25.35-39       44731.39  439.9409
## 26-30.35-39         53301.98  500.6189
## 31-35.35-39         58519.37  840.0473
## 36 and over.35-39   63390.25 1174.9813
## Under 18.5.40-44    36016.15 1088.4410
## 18.5-25.40-44       44544.57  527.9932
## 26-30.40-44         53263.89  442.9532
## 31-35.40-44         58434.00  909.9700
## 36 and over.40-44   65024.05 1112.8635
## Under 18.5.45-49    33317.19  702.9244
## 18.5-25.45-49       44052.25  599.7080
## 26-30.45-49         52672.89  566.2781
## 31-35.45-49         56483.49  769.6718
## 36 and over.45-49   62391.62 1147.8492
## Under 18.5.50-54    36358.33 1540.9309
## 18.5-25.50-54       43173.04  558.8621
## 26-30.50-54         52087.81  517.8861
## 31-35.50-54         55439.92  754.1483
## 36 and over.50-54   62660.16  801.0557
## Under 18.5.55-59    38213.21 2073.4651
## 18.5-25.55-59       42418.50  647.6462
## 26-30.55-59         51295.77  596.1424
## 31-35.55-59         56236.10  885.7942
## 36 and over.55-59   59042.72 1166.2937
## Under 18.5.60-64    37869.39 2576.9188
## 18.5-25.60-64       41830.40  625.8299
## 26-30.60-64         49373.71  596.6516
## 31-35.60-64         54250.34  699.0709
## 36 and over.60-64   59429.44 1043.0729
## Under 18.5.65-69    33848.46 1962.5120
## 18.5-25.65-69       41095.75  524.1415
## 26-30.65-69         48735.31  537.5100
## 31-35.65-69         52147.09  826.5839
## 36 and over.65-69   58422.05 1097.1733
## Under 18.5.70-74    31993.16 1510.6934
## 18.5-25.70-74       40649.30  600.0940
## 26-30.70-74         46777.95  698.7798
## 31-35.70-74         49837.18  941.8954
## 36 and over.70-74   54162.50 1399.0275
## Under 18.5.75-79    33816.22 1030.0475
## 18.5-25.75-79       39971.99  714.0382
## 26-30.75-79         44962.78  557.5922
## 31-35.75-79         49985.77 1142.6266
## 36 and over.75-79   51862.34 1686.5102
## Under 18.5.Over 80  32276.32  745.5685
## 18.5-25.Over 80     37186.72  314.7219
## 26-30.Over 80       43178.57  513.4183
## 31-35.Over 80       46759.45  730.8218
## 36 and over.Over 80 48861.72 1230.1797
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOLE, ~BMI.Group + RIDRETH1, na = TRUE, 
##     svymean))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOLE, ~BMI.Group + 
##     RIDRETH1, na = TRUE, svymean)))
##                results        se
## Under 18.5.1  33921.72  875.0981
## 18.5-25.1     42840.24  349.3623
## 26-30.1       49203.21  281.0226
## 31-35.1       53018.62  431.5150
## 36 and over.1 58254.16  620.0175
## Under 18.5.2  32570.81 2060.7414
## 18.5-25.2     42718.97  603.6102
## 26-30.2       47762.27  553.7639
## 31-35.2       50458.23  999.1434
## 36 and over.2 57856.30 1626.8139
## Under 18.5.3  36786.80  576.9920
## 18.5-25.3     44307.66  174.8307
## 26-30.3       52467.72  257.7023
## 31-35.3       56749.59  376.7179
## 36 and over.3 62555.75  536.8703
## Under 18.5.4  39890.32  868.5224
## 18.5-25.4     47715.46  345.0197
## 26-30.4       52531.86  313.8698
## 31-35.4       56327.42  635.8933
## 36 and over.4 63139.15  608.4211
## Under 18.5.5  35801.48 1439.7377
## 18.5-25.5     40027.46  509.6244
## 26-30.5       48535.04  886.5618
## 31-35.5       59218.69 1493.0612
## 36 and over.5 65164.46 1834.2816
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOLE, ~BMI.Group + Age.Group + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOLE, ~BMI.Group + 
##     Age.Group + Gender, na = TRUE, svymean)))
##                            results        se
## Under 18.5.17-19.Men      44474.93  682.6649
## 18.5-25.17-19.Men         52440.70  231.9695
## 26-30.17-19.Men           60155.64  475.7018
## 31-35.17-19.Men           66278.32  594.6478
## 36 and over.17-19.Men     74674.97 1036.0668
## Under 18.5.20-24.Men      45234.07  855.2372
## 18.5-25.20-24.Men         53781.87  345.9127
## 26-30.20-24.Men           60072.69  434.8516
## 31-35.20-24.Men           67583.10  712.9734
## 36 and over.20-24.Men     81272.32 2694.0588
## Under 18.5.25-29.Men      44986.34 1430.2443
## 18.5-25.25-29.Men         53673.34  378.3257
## 26-30.25-29.Men           59557.79  400.1639
## 31-35.25-29.Men           68847.87  644.9320
## 36 and over.25-29.Men     80827.17 1231.4445
## Under 18.5.30-34.Men      41850.24 1405.3215
## 18.5-25.30-34.Men         53206.96  451.4259
## 26-30.30-34.Men           60717.48  401.2712
## 31-35.30-34.Men           66917.58  879.2792
## 36 and over.30-34.Men     79946.69 1835.6051
## Under 18.5.35-39.Men      49706.60  823.9543
## 18.5-25.35-39.Men         53118.98  422.0264
## 26-30.35-39.Men           60184.65  396.0391
## 31-35.35-39.Men           66931.78  648.8452
## 36 and over.35-39.Men     79092.52 1666.6521
## Under 18.5.40-44.Men      43141.33 1117.8209
## 18.5-25.40-44.Men         53651.30  487.6593
## 26-30.40-44.Men           60943.69  380.9446
## 31-35.40-44.Men           68029.13  663.5352
## 36 and over.40-44.Men     76861.89 1207.2382
## Under 18.5.45-49.Men      39619.99 1381.9881
## 18.5-25.45-49.Men         53354.64  615.0817
## 26-30.45-49.Men           59737.63  364.3891
## 31-35.45-49.Men           65965.56  663.8562
## 36 and over.45-49.Men     78121.42 1596.4904
## Under 18.5.50-54.Men      41797.40 1435.2774
## 18.5-25.50-54.Men         51993.63  523.4634
## 26-30.50-54.Men           59448.82  400.8792
## 31-35.50-54.Men           64913.01  514.9183
## 36 and over.50-54.Men     74486.40  969.3192
## Under 18.5.55-59.Men      39531.81 2315.9208
## 18.5-25.55-59.Men         50950.92  496.6718
## 26-30.55-59.Men           58510.88  564.0777
## 31-35.55-59.Men           64848.60  553.3217
## 36 and over.55-59.Men     72579.26 1598.2499
## Under 18.5.60-64.Men      42414.31 1312.5660
## 18.5-25.60-64.Men         50513.19  666.7233
## 26-30.60-64.Men           58048.15  540.1203
## 31-35.60-64.Men           64016.80  612.1977
## 36 and over.60-64.Men     73611.49 1143.9211
## Under 18.5.65-69.Men      41904.21 1286.3558
## 18.5-25.65-69.Men         49566.63  645.8102
## 26-30.65-69.Men           56234.89  517.5598
## 31-35.65-69.Men           62488.45  767.6477
## 36 and over.65-69.Men     70598.97 1016.1204
## Under 18.5.70-74.Men      38659.48 2080.2617
## 18.5-25.70-74.Men         48927.14  634.2577
## 26-30.70-74.Men           55175.85  662.1136
## 31-35.70-74.Men           61028.16  863.2626
## 36 and over.70-74.Men     66948.64 1348.3466
## Under 18.5.75-79.Men      38814.77 3055.7406
## 18.5-25.75-79.Men         47578.64  596.7601
## 26-30.75-79.Men           53609.98  545.9758
## 31-35.75-79.Men           59068.11  688.5210
## 36 and over.75-79.Men     69461.88 2374.7354
## Under 18.5.Over 80.Men    35555.35 1899.6099
## 18.5-25.Over 80.Men       45700.42  449.3520
## 26-30.Over 80.Men         51433.97  318.2552
## 31-35.Over 80.Men         58377.66  708.2854
## 36 and over.Over 80.Men   60032.63 1751.0841
## Under 18.5.17-19.Women    32897.18  435.9829
## 18.5-25.17-19.Women       37406.59  202.7401
## 26-30.17-19.Women         42568.86  295.6322
## 31-35.17-19.Women         47652.66  502.2273
## 36 and over.17-19.Women   54473.33  881.5111
## Under 18.5.20-24.Women    32500.09  796.6768
## 18.5-25.20-24.Women       37801.91  328.1904
## 26-30.20-24.Women         42293.16  390.1034
## 31-35.20-24.Women         45635.53  591.7990
## 36 and over.20-24.Women   54232.60  926.3082
## Under 18.5.25-29.Women    33459.88  680.6984
## 18.5-25.25-29.Women       37824.46  354.8730
## 26-30.25-29.Women         42857.03  408.8420
## 31-35.25-29.Women         47139.10  611.9287
## 36 and over.25-29.Women   55433.76  934.6881
## Under 18.5.30-34.Women    33708.58  698.9478
## 18.5-25.30-34.Women       38368.87  300.4973
## 26-30.30-34.Women         42123.18  506.3764
## 31-35.30-34.Women         45805.14  391.3994
## 36 and over.30-34.Women   54523.59  607.6063
## Under 18.5.35-39.Women    31460.61  601.5614
## 18.5-25.35-39.Women       37846.34  277.6763
## 26-30.35-39.Women         42110.71  416.7546
## 31-35.35-39.Women         45691.30  525.3618
## 36 and over.35-39.Women   54336.83  807.0827
## Under 18.5.40-44.Women    34488.61  994.7402
## 18.5-25.40-44.Women       38111.42  401.8843
## 26-30.40-44.Women         41953.38  345.2910
## 31-35.40-44.Women         46726.80  433.6338
## 36 and over.40-44.Women   56048.24  856.0745
## Under 18.5.45-49.Women    32970.87  755.9950
## 18.5-25.45-49.Women       37645.18  309.9843
## 26-30.45-49.Women         41409.96  351.5672
## 31-35.45-49.Women         47085.46  417.4828
## 36 and over.45-49.Women   54218.56  631.9288
## Under 18.5.50-54.Women    32422.65 1546.2717
## 18.5-25.50-54.Women       37206.83  284.5744
## 26-30.50-54.Women         40694.13  320.8149
## 31-35.50-54.Women         45463.90  406.3798
## 36 and over.50-54.Women   53294.41  684.4468
## Under 18.5.55-59.Women    29915.80  837.6475
## 18.5-25.55-59.Women       36166.31  377.1720
## 26-30.55-59.Women         40463.37  327.0537
## 31-35.55-59.Women         45211.07  448.6632
## 36 and over.55-59.Women   52363.63  623.4970
## Under 18.5.60-64.Women    30876.91 1334.3763
## 18.5-25.60-64.Women       35948.15  419.5814
## 26-30.60-64.Women         40004.90  344.2415
## 31-35.60-64.Women         44011.42  404.2586
## 36 and over.60-64.Women   52197.33  517.4169
## Under 18.5.65-69.Women    31026.43 1817.4680
## 18.5-25.65-69.Women       35180.93  327.0724
## 26-30.65-69.Women         39630.51  346.2951
## 31-35.65-69.Women         42948.58  409.0962
## 36 and over.65-69.Women   50644.28  782.8745
## Under 18.5.70-74.Women    29122.92 1178.8388
## 18.5-25.70-74.Women       34519.58  326.0657
## 26-30.70-74.Women         38309.81  442.6593
## 31-35.70-74.Women         41948.71  516.1655
## 36 and over.70-74.Women   48227.20  937.5872
## Under 18.5.75-79.Women    32494.04  638.0420
## 18.5-25.75-79.Women       34513.87  474.0943
## 26-30.75-79.Women         38016.70  430.4280
## 31-35.75-79.Women         42404.53  670.4101
## 36 and over.75-79.Women   47543.32  708.7216
## Under 18.5.Over 80.Women  31389.45  754.3485
## 18.5-25.Over 80.Women     32763.47  302.4722
## 26-30.Over 80.Women       37082.51  322.2241
## 31-35.Over 80.Women       40813.51  452.2050
## 36 and over.Over 80.Women 46349.32 1013.2641
## Multiple imputation results:
##       with(nhc_all, svyby(~BMXWT, ~BMI.Group + Gender, na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~BMXWT, ~BMI.Group + Gender, 
##     na = TRUE, svymean)))
##                     results        se
## Under 18.5.Men     54.90673 0.6252308
## 18.5-25.Men        70.29315 0.1909665
## 26-30.Men          85.15600 0.1561022
## 31-35.Men         100.22419 0.3457411
## 36 and over.Men   125.20362 0.7641406
## Under 18.5.Women   46.65580 0.3716245
## 18.5-25.Women      58.98507 0.1347113
## 26-30.Women        71.90514 0.1707630
## 31-35.Women        84.24583 0.2444906
## 36 and over.Women 106.97599 0.5862280
## Multiple imputation results:
##       with(nhc_all, svyby(~BMXWT, ~BMI.Group + Age.Group, na = TRUE, 
##     svymean))
##       MIcombine.default(with(nhc_all, svyby(~BMXWT, ~BMI.Group + Age.Group, 
##     na = TRUE, svymean)))
##                       results        se
## Under 18.5.17-19     50.50189 0.6618751
## 18.5-25.17-19        62.94178 0.2356118
## 26-30.17-19          79.58767 0.6226262
## 31-35.17-19          95.15221 0.8250710
## 36 and over.17-19   114.97741 1.4072340
## Under 18.5.20-24     50.84453 1.1911653
## 18.5-25.20-24        64.32798 0.4306414
## 26-30.20-24          79.62580 0.4450228
## 31-35.20-24          94.33875 0.7988620
## 36 and over.20-24   118.72452 2.3639595
## Under 18.5.25-29     50.15978 1.0221025
## 18.5-25.25-29        65.44826 0.4682722
## 26-30.25-29          80.77662 0.5433172
## 31-35.25-29          95.24566 0.9284537
## 36 and over.25-29   122.13806 1.9907768
## Under 18.5.30-34     49.35456 0.7571193
## 18.5-25.30-34        64.99791 0.5195916
## 26-30.30-34          81.37825 0.4697422
## 31-35.30-34          92.61006 1.0014741
## 36 and over.30-34   114.65426 1.6050469
## Under 18.5.35-39     50.53240 3.1499010
## 18.5-25.35-39        64.66288 0.4675240
## 26-30.35-39          80.62502 0.4684926
## 31-35.35-39          93.77568 0.7850214
## 36 and over.35-39   115.37997 1.7301662
## Under 18.5.40-44     49.68496 1.2935335
## 18.5-25.40-44        65.23071 0.5535069
## 26-30.40-44          81.17863 0.4135232
## 31-35.40-44          94.65122 0.9058726
## 36 and over.40-44   116.59682 1.5503433
## Under 18.5.45-49     47.60717 1.2508839
## 18.5-25.45-49        64.51526 0.6572046
## 26-30.45-49          80.53970 0.4769633
## 31-35.45-49          93.40716 0.7159196
## 36 and over.45-49   114.98903 1.4962573
## Under 18.5.50-54     49.85189 1.2533603
## 18.5-25.50-54        64.43002 0.5784731
## 26-30.50-54          80.66711 0.5011672
## 31-35.50-54          91.85742 0.7969126
## 36 and over.50-54   112.77019 1.0295373
## Under 18.5.55-59     50.72696 2.2794678
## 18.5-25.55-59        64.11109 0.6679424
## 26-30.55-59          80.45053 0.5479658
## 31-35.55-59          93.24176 0.9444702
## 36 and over.55-59   111.53426 1.6850998
## Under 18.5.60-64     48.52631 2.4468190
## 18.5-25.60-64        63.76607 0.6820008
## 26-30.60-64          78.89490 0.5995296
## 31-35.60-64          91.52591 0.7267811
## 36 and over.60-64   111.36447 1.2015292
## Under 18.5.65-69     45.52602 2.3343990
## 18.5-25.65-69        63.25775 0.5265497
## 26-30.65-69          78.27468 0.5796280
## 31-35.65-69          89.96903 0.7653639
## 36 and over.65-69   109.01503 1.3508031
## Under 18.5.70-74     45.92627 1.6320562
## 18.5-25.70-74        62.04972 0.7199007
## 26-30.70-74          76.42229 0.7227544
## 31-35.70-74          87.46367 0.9606154
## 36 and over.70-74   103.65513 1.9193983
## Under 18.5.75-79     46.55296 1.0372799
## 18.5-25.75-79        62.52540 0.6903582
## 26-30.75-79          74.33317 0.5427392
## 31-35.75-79          87.34907 1.2553872
## 36 and over.75-79   100.49963 2.2058015
## Under 18.5.Over 80   46.02001 0.6031801
## 18.5-25.Over 80      58.51702 0.4869543
## 26-30.Over 80        71.79195 0.5333658
## 31-35.Over 80        83.36872 1.0437201
## 36 and over.Over 80  94.14714 1.6520779
## Multiple imputation results:
##       with(nhc_all, svyby(~BMXWT, ~BMI.Group + RIDRETH1, na = TRUE, 
##     svymean))
##       MIcombine.default(with(nhc_all, svyby(~BMXWT, ~BMI.Group + RIDRETH1, 
##     na = TRUE, svymean)))
##                 results        se
## Under 18.5.1   46.32962 0.6920294
## 18.5-25.1      61.63475 0.3261395
## 26-30.1        75.26334 0.2619435
## 31-35.1        87.10461 0.4775630
## 36 and over.1 106.38817 0.7745084
## Under 18.5.2   46.20742 1.3662882
## 18.5-25.2      61.63131 0.5450501
## 26-30.2        74.10313 0.6092567
## 31-35.2        84.49277 0.8938076
## 36 and over.2 105.11424 2.4069038
## Under 18.5.3   49.79798 0.5464989
## 18.5-25.3      64.79335 0.1916380
## 26-30.3        81.10394 0.2030216
## 31-35.3        93.87986 0.3348350
## 36 and over.3 114.56073 0.7089575
## Under 18.5.4   51.23342 0.7862481
## 18.5-25.4      65.71693 0.3405347
## 26-30.4        79.66230 0.2598503
## 31-35.4        92.45719 0.5586196
## 36 and over.4 115.89226 0.7708271
## Under 18.5.5   49.18571 1.2645706
## 18.5-25.5      59.36946 0.5361250
## 26-30.5        75.29032 0.8772654
## 31-35.5        94.70023 1.6687555
## 36 and over.5 117.83472 1.8824014
## Multiple imputation results:
##       with(nhc_all, svyby(~BMXWT, ~BMI.Group + Age.Group + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~BMXWT, ~BMI.Group + Age.Group + 
##     Gender, na = TRUE, svymean)))
##                             results        se
## Under 18.5.17-19.Men       54.81874 0.7334647
## 18.5-25.17-19.Men          67.24485 0.3219268
## 26-30.17-19.Men            84.49524 0.6890563
## 31-35.17-19.Men           100.85225 0.8840257
## 36 and over.17-19.Men     122.16118 1.6428263
## Under 18.5.20-24.Men       56.33118 1.0816893
## 18.5-25.20-24.Men          70.01534 0.4841712
## 26-30.20-24.Men            84.45828 0.5307682
## 31-35.20-24.Men           101.39045 1.0111411
## 36 and over.20-24.Men     133.00243 4.8296455
## Under 18.5.25-29.Men       55.55574 1.8531918
## 18.5-25.25-29.Men          71.31922 0.5363885
## 26-30.25-29.Men            84.35871 0.4524967
## 31-35.25-29.Men           103.58021 1.1204228
## 36 and over.25-29.Men     132.86086 2.3069365
## Under 18.5.30-34.Men       52.55675 1.3465910
## 18.5-25.30-34.Men          70.55740 0.6449462
## 26-30.30-34.Men            86.17459 0.5308240
## 31-35.30-34.Men           100.14672 1.1730404
## 36 and over.30-34.Men     129.10345 3.1468662
## Under 18.5.35-39.Men       62.17699 0.8147737
## 18.5-25.35-39.Men          71.04451 0.6709378
## 26-30.35-39.Men            85.57748 0.4791976
## 31-35.35-39.Men           100.24243 0.7773604
## 36 and over.35-39.Men     127.73066 3.1248473
## Under 18.5.40-44.Men       53.75682 1.1253356
## 18.5-25.40-44.Men          72.31551 0.6253311
## 26-30.40-44.Men            86.97669 0.4839799
## 31-35.40-44.Men           102.14058 0.9378036
## 36 and over.40-44.Men     125.54243 2.3884439
## Under 18.5.45-49.Men       49.17622 2.1026541
## 18.5-25.45-49.Men          71.77577 0.8015652
## 26-30.45-49.Men            85.54056 0.4788676
## 31-35.45-49.Men           100.13743 0.8360854
## 36 and over.45-49.Men     127.39702 3.0837334
## Under 18.5.50-54.Men       53.23790 1.2904192
## 18.5-25.50-54.Men          70.84037 0.7365835
## 26-30.50-54.Men            85.89730 0.5026645
## 31-35.50-54.Men            98.79304 0.9406373
## 36 and over.50-54.Men     121.44686 1.4569546
## Under 18.5.55-59.Men       51.91236 2.5914603
## 18.5-25.55-59.Men          70.77906 0.7432729
## 26-30.55-59.Men            85.61119 0.8291290
## 31-35.55-59.Men            99.59040 0.8054420
## 36 and over.55-59.Men     121.13811 2.5709455
## Under 18.5.60-64.Men       52.71650 1.7443790
## 18.5-25.60-64.Men          70.13545 0.8546599
## 26-30.60-64.Men            85.35225 0.6534910
## 31-35.60-64.Men            99.36144 0.9498065
## 36 and over.60-64.Men     121.64518 1.9445112
## Under 18.5.65-69.Men       53.02164 1.6344848
## 18.5-25.65-69.Men          69.86070 0.8547780
## 26-30.65-69.Men            83.97163 0.7416946
## 31-35.65-69.Men            98.63556 0.9451825
## 36 and over.65-69.Men     117.09933 1.5582301
## Under 18.5.70-74.Men       52.65605 1.7587355
## 18.5-25.70-74.Men          68.51498 0.9219874
## 26-30.70-74.Men            83.07525 0.8440807
## 31-35.70-74.Men            98.25048 1.0044310
## 36 and over.70-74.Men     115.84741 2.3094753
## Under 18.5.75-79.Men       48.56300 3.3263551
## 18.5-25.75-79.Men          68.66913 0.6883618
## 26-30.75-79.Men            81.25995 0.6577043
## 31-35.75-79.Men            95.72816 0.9735935
## 36 and over.75-79.Men     114.29154 4.1529013
## Under 18.5.Over 80.Men     47.43729 2.0243778
## 18.5-25.Over 80.Men        66.27424 0.6026705
## 26-30.Over 80.Men          78.86564 0.4245780
## 31-35.Over 80.Men          95.13212 1.0351081
## 36 and over.Over 80.Men   102.20011 3.1597276
## Under 18.5.17-19.Women     46.88050 0.5204947
## 18.5-25.17-19.Women        57.64921 0.3068772
## 26-30.17-19.Women          72.46839 0.4884022
## 31-35.17-19.Women          87.68691 0.8052025
## 36 and over.17-19.Women   108.66136 2.0516853
## Under 18.5.20-24.Women     46.27053 1.0805136
## 18.5-25.20-24.Women        58.52865 0.4768100
## 26-30.20-24.Women          72.39323 0.6504676
## 31-35.20-24.Women          84.27940 0.9746432
## 36 and over.20-24.Women   108.96161 1.9625929
## Under 18.5.25-29.Women     47.19937 0.8798057
## 18.5-25.25-29.Women        58.94733 0.5990405
## 26-30.25-29.Women          73.28752 0.6858530
## 31-35.25-29.Women          86.10057 0.8165809
## 36 and over.25-29.Women   110.59429 2.2984877
## Under 18.5.30-34.Women     47.97117 0.8947181
## 18.5-25.30-34.Women        59.76666 0.5032527
## 26-30.30-34.Women          72.56704 0.8003854
## 31-35.30-34.Women          84.08313 0.6313164
## 36 and over.30-34.Women   107.35830 1.2679110
## Under 18.5.35-39.Women     44.33741 1.0289237
## 18.5-25.35-39.Women        59.42444 0.4190593
## 26-30.35-39.Women          72.57229 0.6157891
## 31-35.35-39.Women          83.91454 0.8526309
## 36 and over.35-39.Women   108.29838 1.8185396
## Under 18.5.40-44.Women     48.81201 1.4784875
## 18.5-25.40-44.Women        60.25918 0.5432529
## 26-30.40-44.Women          72.59720 0.5144024
## 31-35.40-44.Women          85.51332 0.6984366
## 36 and over.40-44.Women   109.76432 1.9211609
## Under 18.5.45-49.Women     47.52096 1.3271480
## 18.5-25.45-49.Women        59.43718 0.4757879
## 26-30.45-49.Women          72.55881 0.5722107
## 31-35.45-49.Women          86.73654 0.7036729
## 36 and over.45-49.Women   108.54196 1.3734149
## Under 18.5.50-54.Women     46.78141 1.8751639
## 18.5-25.50-54.Women        60.08108 0.4891645
## 26-30.50-54.Women          72.57161 0.5817508
## 31-35.50-54.Women          84.55359 0.6907965
## 36 and over.50-54.Women   105.89872 1.6405367
## Under 18.5.55-59.Women     43.26778 0.2810073
## 18.5-25.55-59.Women        59.22510 0.6477394
## 26-30.55-59.Women          72.70258 0.5552188
## 31-35.55-59.Women          85.11473 0.9322304
## 36 and over.55-59.Women   106.79561 1.4530725
## Under 18.5.60-64.Women     42.07959 0.6668080
## 18.5-25.60-64.Women        59.44642 0.7568985
## 26-30.60-64.Women          71.88494 0.5818675
## 31-35.60-64.Women          83.28902 0.5454597
## 36 and over.60-64.Women   105.99567 1.1708451
## Under 18.5.65-69.Women     42.90020 2.5358259
## 18.5-25.65-69.Women        58.62974 0.5087032
## 26-30.65-69.Women          71.32947 0.5456960
## 31-35.65-69.Women          82.26026 0.6657208
## 36 and over.65-69.Women   103.78465 1.7039151
## Under 18.5.70-74.Women     43.02870 1.5274608
## 18.5-25.70-74.Women        57.25708 0.5930984
## 26-30.70-74.Women          69.65318 0.6661791
## 31-35.70-74.Women          79.86009 1.0756634
## 36 and over.70-74.Women    97.99550 1.9360171
## Under 18.5.75-79.Women     46.02128 0.9986844
## 18.5-25.75-79.Women        58.11698 0.7915674
## 26-30.75-79.Women          68.76155 0.5517711
## 31-35.75-79.Women          80.37402 1.2120925
## 36 and over.75-79.Women    97.11503 1.6992774
## Under 18.5.Over 80.Women   45.63668 0.5448062
## 18.5-25.Over 80.Women      54.50315 0.5740034
## 26-30.Over 80.Women        66.56850 0.5117243
## 31-35.Over 80.Women        77.44437 0.8381997
## 36 and over.Over 80.Women  92.33598 1.8906629
## Multiple imputation results:
##       with(nhc_all, svyby(~BMXHT, ~BMI.Group + Gender, na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~BMXHT, ~BMI.Group + Gender, 
##     na = TRUE, svymean)))
##                    results        se
## Under 18.5.Men    176.2592 0.8583244
## 18.5-25.Men       176.1551 0.1861533
## 26-30.Men         176.0291 0.1469389
## 31-35.Men         176.4612 0.2560169
## 36 and over.Men   177.0943 0.3069614
## Under 18.5.Women  163.1603 0.4455935
## 18.5-25.Women     162.8030 0.1529019
## 26-30.Women       162.0122 0.1703638
## 31-35.Women       161.3582 0.1839686
## 36 and over.Women 162.2061 0.2039648
## Multiple imputation results:
##       with(nhc_all, svyby(~BMXHT, ~BMI.Group + Age.Group, na = TRUE, 
##     svymean))
##       MIcombine.default(with(nhc_all, svyby(~BMXHT, ~BMI.Group + Age.Group, 
##     na = TRUE, svymean)))
##                      results        se
## Under 18.5.17-19    169.0384 1.1356900
## 18.5-25.17-19       170.2684 0.3027598
## 26-30.17-19         171.1974 0.6260768
## 31-35.17-19         171.8072 0.7676168
## 36 and over.17-19   169.1831 1.0665525
## Under 18.5.20-24    170.4622 1.8164241
## 18.5-25.20-24       170.2181 0.4987106
## 26-30.20-24         170.6607 0.4670854
## 31-35.20-24         171.0005 0.6552419
## 36 and over.20-24   169.7360 0.7841693
## Under 18.5.25-29    169.6728 1.4607719
## 18.5-25.25-29       170.5118 0.4763144
## 26-30.25-29         172.0411 0.5296657
## 31-35.25-29         171.1675 0.9325536
## 36 and over.25-29   171.6867 1.2838144
## Under 18.5.30-34    167.1101 1.1809771
## 18.5-25.30-34       169.7107 0.5466193
## 26-30.30-34         171.7782 0.4831240
## 31-35.30-34         169.2577 0.8620477
## 36 and over.30-34   168.3875 0.7748696
## Under 18.5.35-39    167.9952 4.2647486
## 18.5-25.35-39       169.3843 0.4368738
## 26-30.35-39         171.3750 0.4564576
## 31-35.35-39         170.2365 0.6868417
## 36 and over.35-39   168.1871 0.6973963
## Under 18.5.40-44    167.0193 1.4242659
## 18.5-25.40-44       169.5071 0.6108022
## 26-30.40-44         171.8009 0.4061932
## 31-35.40-44         171.0522 0.7592887
## 36 and over.40-44   169.3486 0.8689666
## Under 18.5.45-49    164.5314 1.4797697
## 18.5-25.45-49       168.9659 0.7000010
## 26-30.45-49         171.0832 0.4270895
## 31-35.45-49         170.1919 0.6378669
## 36 and over.45-49   167.6084 0.7407630
## Under 18.5.50-54    168.4764 1.9474808
## 18.5-25.50-54       168.7282 0.6403125
## 26-30.50-54         170.8210 0.5108038
## 31-35.50-54         168.6026 0.7315214
## 36 and over.50-54   168.7451 0.6557772
## Under 18.5.55-59    168.6078 3.3289520
## 18.5-25.55-59       168.2371 0.7445279
## 26-30.55-59         170.8695 0.4756719
## 31-35.55-59         169.7517 0.7706497
## 36 and over.55-59   165.6751 0.9495503
## Under 18.5.60-64    167.0783 3.1247417
## 18.5-25.60-64       167.5916 0.6373411
## 26-30.60-64         168.9650 0.5557425
## 31-35.60-64         168.1613 0.6023048
## 36 and over.60-64   167.0635 0.7647645
## Under 18.5.65-69    163.2827 4.0299933
## 18.5-25.65-69       166.1514 0.6113284
## 26-30.65-69         168.5634 0.5397599
## 31-35.65-69         167.0425 0.7752439
## 36 and over.65-69   166.2034 0.8801682
## Under 18.5.70-74    161.1501 2.4052521
## 18.5-25.70-74       165.2555 0.6842983
## 26-30.70-74         166.4329 0.6560164
## 31-35.70-74         164.5361 0.9078005
## 36 and over.70-74   163.0163 1.0130051
## Under 18.5.75-79    162.2076 2.0108712
## 18.5-25.75-79       165.5169 0.8594352
## 26-30.75-79         164.6335 0.5738487
## 31-35.75-79         164.8830 1.1107256
## 36 and over.75-79   161.5080 1.3678877
## Under 18.5.Over 80  161.4120 1.1946782
## 18.5-25.Over 80     160.7570 0.3767045
## 26-30.Over 80       162.1164 0.6000183
## 31-35.Over 80       161.2014 0.8670539
## 36 and over.Over 80 157.3201 1.2065380
## Multiple imputation results:
##       with(nhc_all, svyby(~BMXHT, ~BMI.Group + RIDRETH1, na = TRUE, 
##     svymean))
##       MIcombine.default(with(nhc_all, svyby(~BMXHT, ~BMI.Group + RIDRETH1, 
##     na = TRUE, svymean)))
##                results        se
## Under 18.5.1  162.3237 0.9877763
## 18.5-25.1     164.9001 0.3647413
## 26-30.1       165.4287 0.2195375
## 31-35.1       164.3767 0.4315468
## 36 and over.1 162.9262 0.4840485
## Under 18.5.2  160.5450 2.1527415
## 18.5-25.2     165.3545 0.7180547
## 26-30.2       164.4088 0.6018594
## 31-35.2       161.9660 0.7913389
## 36 and over.2 163.2332 1.0236992
## Under 18.5.3  168.3014 0.7433127
## 18.5-25.3     169.7009 0.1886443
## 26-30.3       171.7463 0.2245088
## 31-35.3       170.4546 0.2976466
## 36 and over.3 168.7292 0.3659332
## Under 18.5.4  170.6140 1.1973509
## 18.5-25.4     171.4309 0.3423076
## 26-30.4       170.2477 0.2664270
## 31-35.4       168.9307 0.5114754
## 36 and over.4 167.2672 0.3799195
## Under 18.5.5  166.4284 1.8282109
## 18.5-25.5     163.3265 0.6118404
## 26-30.5       165.6341 0.8414239
## 31-35.5       170.7443 1.3338592
## 36 and over.5 170.5182 1.2600415
## Multiple imputation results:
##       with(nhc_all, svyby(~BMXHT, ~BMI.Group + Age.Group + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~BMXHT, ~BMI.Group + Age.Group + 
##     Gender, na = TRUE, svymean)))
##                            results        se
## Under 18.5.17-19.Men      175.8932 1.2660669
## 18.5-25.17-19.Men         176.1145 0.3163088
## 26-30.17-19.Men           176.6252 0.5764665
## 31-35.17-19.Men           177.6701 0.7531912
## 36 and over.17-19.Men     176.6803 0.7664262
## Under 18.5.20-24.Men      178.8667 1.5875223
## 18.5-25.20-24.Men         177.1794 0.5023020
## 26-30.20-24.Men           175.9604 0.4782032
## 31-35.20-24.Men           177.4686 0.7777987
## 36 and over.20-24.Men     179.4868 1.1831216
## Under 18.5.25-29.Men      178.3566 2.7121520
## 18.5-25.25-29.Men         177.0181 0.5484676
## 26-30.25-29.Men           176.0213 0.4398390
## 31-35.25-29.Men           179.1231 0.9255350
## 36 and over.25-29.Men     179.7011 1.0537107
## Under 18.5.30-34.Men      171.7232 1.6874824
## 18.5-25.30-34.Men         175.7433 0.6691378
## 26-30.30-34.Men           176.7112 0.4970652
## 31-35.30-34.Men           176.2413 0.8215399
## 36 and over.30-34.Men     178.0957 1.0139350
## Under 18.5.35-39.Men      183.9577 1.5452238
## 18.5-25.35-39.Men         176.1345 0.4869333
## 26-30.35-39.Men           176.3616 0.4548626
## 31-35.35-39.Men           176.2322 0.6384297
## 36 and over.35-39.Men     178.1247 0.8094977
## Under 18.5.40-44.Men      174.3791 1.6029540
## 18.5-25.40-44.Men         177.3550 0.7047603
## 26-30.40-44.Men           177.8606 0.4778497
## 31-35.40-44.Men           177.7553 0.7226600
## 36 and over.40-44.Men     177.1238 0.9346340
## Under 18.5.45-49.Men      172.5287 3.0770116
## 18.5-25.45-49.Men         176.9518 0.7376897
## 26-30.45-49.Men           176.1200 0.4515139
## 31-35.45-49.Men           177.0522 0.6580450
## 36 and over.45-49.Men     177.4617 0.9873840
## Under 18.5.50-54.Men      173.9822 1.6701667
## 18.5-25.50-54.Men         176.6956 0.7074550
## 26-30.50-54.Men           176.7115 0.4771799
## 31-35.50-54.Men           175.6946 0.7713635
## 36 and over.50-54.Men     176.6149 0.7022304
## Under 18.5.55-59.Men      170.8301 3.6475235
## 18.5-25.55-59.Men         175.9352 0.7266743
## 26-30.55-59.Men           176.2750 0.6182671
## 31-35.55-59.Men           175.9842 0.6220297
## 36 and over.55-59.Men     174.5739 1.7430752
## Under 18.5.60-64.Men      172.7226 1.4589672
## 18.5-25.60-64.Men         174.8769 0.7806985
## 26-30.60-64.Men           175.4931 0.5219396
## 31-35.60-64.Men           175.2135 0.6918605
## 36 and over.60-64.Men     176.5005 0.7222963
## Under 18.5.65-69.Men      178.8562 2.3195821
## 18.5-25.65-69.Men         174.4718 0.8480507
## 26-30.65-69.Men           174.5807 0.6755814
## 31-35.65-69.Men           175.2970 0.8426865
## 36 and over.65-69.Men     174.7408 0.7142899
## Under 18.5.70-74.Men      171.0293 2.7453784
## 18.5-25.70-74.Men         172.8110 0.9109835
## 26-30.70-74.Men           173.5265 0.7002004
## 31-35.70-74.Men           174.2288 0.8358327
## 36 and over.70-74.Men     172.8881 1.2112743
## Under 18.5.75-79.Men      167.0257 6.3384151
## 18.5-25.75-79.Men         172.9894 0.9047067
## 26-30.75-79.Men           171.8922 0.7111233
## 31-35.75-79.Men           172.4988 0.6029991
## 36 and over.75-79.Men     174.9084 2.0530623
## Under 18.5.Over 80.Men    167.0671 3.3308399
## 18.5-25.Over 80.Men       170.6025 0.6528539
## 26-30.Over 80.Men         170.1821 0.4243244
## 31-35.Over 80.Men         172.2686 0.8383610
## 36 and over.Over 80.Men   165.3267 2.3752267
## Under 18.5.17-19.Women    163.2879 0.9926265
## 18.5-25.17-19.Women       163.0779 0.2770245
## 26-30.17-19.Women         163.3234 0.4055256
## 31-35.17-19.Women         164.1286 0.6455816
## 36 and over.17-19.Women   162.5915 0.7982828
## Under 18.5.20-24.Women    163.4557 1.4216524
## 18.5-25.20-24.Women       163.1198 0.4274694
## 26-30.20-24.Women         162.7288 0.5776726
## 31-35.20-24.Women         161.7736 0.8414597
## 36 and over.20-24.Women   163.0686 0.7544294
## Under 18.5.25-29.Women    164.9086 1.1371855
## 18.5-25.25-29.Women       163.3074 0.5201204
## 26-30.25-29.Women         163.7195 0.5667931
## 31-35.25-29.Women         162.4384 0.8542868
## 36 and over.25-29.Women   163.0587 0.7049830
## Under 18.5.30-34.Women    165.1172 1.4072741
## 18.5-25.30-34.Women       164.0343 0.5666585
## 26-30.30-34.Women         162.7159 0.7355039
## 31-35.30-34.Women         161.3565 0.4963367
## 36 and over.30-34.Women   163.4855 0.5857677
## Under 18.5.35-39.Women    159.5030 1.3740925
## 18.5-25.35-39.Women       163.8433 0.4285056
## 26-30.35-39.Women         163.2666 0.5566781
## 31-35.35-39.Women         161.0936 0.7020556
## 36 and over.35-39.Women   162.4891 0.6262562
## Under 18.5.40-44.Women    165.4415 1.4423711
## 18.5-25.40-44.Women       164.0001 0.5717674
## 26-30.40-44.Women         162.8322 0.5044266
## 31-35.40-44.Women         162.8736 0.5327268
## 36 and over.40-44.Women   163.4100 0.6934729
## Under 18.5.45-49.Women    164.0920 1.6064282
## 18.5-25.45-49.Women       163.3805 0.5233335
## 26-30.45-49.Women         163.0451 0.4689757
## 31-35.45-49.Women         163.3925 0.5417146
## 36 and over.45-49.Women   162.4887 0.4860206
## Under 18.5.50-54.Women    163.4836 2.4697788
## 18.5-25.50-54.Women       163.3229 0.5341810
## 26-30.50-54.Women         161.7035 0.5318172
## 31-35.50-54.Women         161.1341 0.5626705
## 36 and over.50-54.Women   162.5127 0.7846284
## Under 18.5.55-59.Women    154.6242 0.2107554
## 18.5-25.55-59.Women       162.5962 0.6773220
## 26-30.55-59.Women         162.7539 0.6253975
## 31-35.55-59.Women         161.7733 0.6432178
## 36 and over.55-59.Women   161.2844 0.6932576
## Under 18.5.60-64.Women    158.3944 1.6032126
## 18.5-25.60-64.Women       162.6507 0.6543383
## 26-30.60-64.Women         161.8782 0.5799213
## 31-35.60-64.Women         160.7479 0.5218918
## 36 and over.60-64.Women   162.1354 0.5667446
## Under 18.5.65-69.Women    157.8271 3.6703066
## 18.5-25.65-69.Women       160.3196 0.4837210
## 26-30.65-69.Women         161.2275 0.5250552
## 31-35.65-69.Women         159.7001 0.6675134
## 36 and over.65-69.Women   160.6798 0.8926716
## Under 18.5.70-74.Women    156.8965 2.3941707
## 18.5-25.70-74.Women       159.6546 0.6249448
## 26-30.70-74.Women         159.2153 0.6523993
## 31-35.70-74.Women         157.7037 0.9243240
## 36 and over.70-74.Women   158.4338 0.9374887
## Under 18.5.75-79.Women    160.9332 1.9201647
## 18.5-25.75-79.Women       160.1549 0.8590570
## 26-30.75-79.Women         158.7950 0.6060750
## 31-35.75-79.Women         158.5434 0.9377297
## 36 and over.75-79.Women   158.2195 0.8491985
## Under 18.5.Over 80.Women  159.8824 0.9584372
## 18.5-25.Over 80.Women     155.6626 0.4121350
## 26-30.Over 80.Women       156.1605 0.5011078
## 31-35.Over 80.Women       155.6277 0.5915286
## 36 and over.Over 80.Women 155.5194 1.0218087
## Multiple imputation results:
##       with(nhc_all, svyby(~BMXWAIST, ~BMI.Group + Gender, na = TRUE, 
##     svymean))
##       MIcombine.default(with(nhc_all, svyby(~BMXWAIST, ~BMI.Group + 
##     Gender, na = TRUE, svymean)))
##                     results        se
## Under 18.5.Men     72.15605 0.3968813
## 18.5-25.Men        84.94854 0.1897704
## 26-30.Men          98.45902 0.1640902
## 31-35.Men         110.29027 0.2128452
## 36 and over.Men   127.92047 0.5056716
## Under 18.5.Women   69.05233 0.3881204
## 18.5-25.Women      79.64892 0.1784911
## 26-30.Women        92.57103 0.2068690
## 31-35.Women       102.90805 0.2108432
## 36 and over.Women 117.54420 0.4048685
## Multiple imputation results:
##       with(nhc_all, svyby(~BMXWAIST, ~BMI.Group + Age.Group, na = TRUE, 
##     svymean))
##       MIcombine.default(with(nhc_all, svyby(~BMXWAIST, ~BMI.Group + 
##     Age.Group, na = TRUE, svymean)))
##                       results        se
## Under 18.5.17-19     68.94125 0.3501543
## 18.5-25.17-19        77.09348 0.2119662
## 26-30.17-19          91.31922 0.4004158
## 31-35.17-19         103.66153 0.6312842
## 36 and over.17-19   118.11872 1.0442436
## Under 18.5.20-24     69.34743 0.6383943
## 18.5-25.20-24        79.17518 0.2177071
## 26-30.20-24          91.42009 0.4366200
## 31-35.20-24         104.61524 0.6729107
## 36 and over.20-24   121.93906 1.2040631
## Under 18.5.25-29     70.33770 0.9765037
## 18.5-25.25-29        80.81877 0.3070604
## 26-30.25-29          93.37654 0.3974984
## 31-35.25-29         104.62942 0.4869166
## 36 and over.25-29   123.87989 1.5157728
## Under 18.5.30-34     68.73648 0.6419168
## 18.5-25.30-34        81.15197 0.4177458
## 26-30.30-34          94.46770 0.3647077
## 31-35.30-34         102.96416 0.7408492
## 36 and over.30-34   118.74491 1.0399662
## Under 18.5.35-39     70.75034 1.8837614
## 18.5-25.35-39        81.60928 0.3824945
## 26-30.35-39          94.45296 0.3677461
## 31-35.35-39         105.33738 0.4722640
## 36 and over.35-39   120.91441 1.2833576
## Under 18.5.40-44     71.56422 0.6026799
## 18.5-25.40-44        82.69878 0.3759271
## 26-30.40-44          94.99597 0.3914226
## 31-35.40-44         106.57544 0.5006400
## 36 and over.40-44   121.16954 1.0172437
## Under 18.5.45-49     70.21658 0.9695397
## 18.5-25.45-49        82.64131 0.4921307
## 26-30.45-49          96.55280 0.3600507
## 31-35.45-49         107.17331 0.5511517
## 36 and over.45-49   121.87449 1.1332777
## Under 18.5.50-54     71.51747 1.2637254
## 18.5-25.50-54        83.85424 0.4250476
## 26-30.50-54          97.49402 0.3072645
## 31-35.50-54         107.05273 0.5298894
## 36 and over.50-54   121.70507 0.7540192
## Under 18.5.55-59     73.63346 1.9721247
## 18.5-25.55-59        84.53121 0.5982478
## 26-30.55-59          98.18314 0.4462992
## 31-35.55-59         109.51093 0.6335008
## 36 and over.55-59   122.04554 1.2247347
## Under 18.5.60-64     71.93484 1.8313102
## 18.5-25.60-64        85.58968 0.5409121
## 26-30.60-64          98.68412 0.4115270
## 31-35.60-64         109.64932 0.4830366
## 36 and over.60-64   122.96828 0.8069942
## Under 18.5.65-69     69.64954 2.8948098
## 18.5-25.65-69        86.87281 0.5427661
## 26-30.65-69          99.67352 0.4828573
## 31-35.65-69         109.74477 0.5956257
## 36 and over.65-69   122.58771 0.6198953
## Under 18.5.70-74     74.49565 1.8261347
## 18.5-25.70-74        86.55489 0.5490721
## 26-30.70-74         100.26255 0.5781270
## 31-35.70-74         109.49968 0.5444947
## 36 and over.70-74   122.72362 1.5197180
## Under 18.5.75-79     72.11578 1.1653399
## 18.5-25.75-79        88.22898 0.5445629
## 26-30.75-79          99.94705 0.4401341
## 31-35.75-79         109.06652 0.8111297
## 36 and over.75-79   118.88017 1.6334721
## Under 18.5.Over 80   69.94087 1.3916811
## 18.5-25.Over 80      87.14352 0.4866726
## 26-30.Over 80        99.63475 0.3679053
## 31-35.Over 80       108.92835 0.6135781
## 36 and over.Over 80 117.22970 2.3818375
## Multiple imputation results:
##       with(nhc_all, svyby(~BMXWAIST, ~BMI.Group + RIDRETH1, na = TRUE, 
##     svymean))
##       MIcombine.default(with(nhc_all, svyby(~BMXWAIST, ~BMI.Group + 
##     RIDRETH1, na = TRUE, svymean)))
##                 results        se
## Under 18.5.1   69.67164 0.7561178
## 18.5-25.1      81.80304 0.2580076
## 26-30.1        94.39986 0.1881814
## 31-35.1       104.41165 0.3230856
## 36 and over.1 118.87695 0.7388237
## Under 18.5.2   69.59577 0.7934493
## 18.5-25.2      81.08037 0.5386171
## 26-30.2        93.13989 0.6121671
## 31-35.2       102.44320 0.7152432
## 36 and over.2 116.18959 1.5492751
## Under 18.5.3   70.46005 0.3792266
## 18.5-25.3      82.59333 0.1685291
## 26-30.3        97.05493 0.1720553
## 31-35.3       107.84031 0.1984285
## 36 and over.3 122.23433 0.4702746
## Under 18.5.4   68.91762 0.5430895
## 18.5-25.4      79.69081 0.2854952
## 26-30.4        93.11172 0.2171518
## 31-35.4       104.00415 0.3485865
## 36 and over.4 120.24530 0.4216701
## Under 18.5.5   69.19286 0.9050044
## 18.5-25.5      80.35272 0.5258761
## 26-30.5        93.94349 0.4749090
## 31-35.5       107.78231 0.9852230
## 36 and over.5 124.24075 1.5168458
## Multiple imputation results:
##       with(nhc_all, svyby(~BMXWAIST, ~BMI.Group + Age.Group + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~BMXWAIST, ~BMI.Group + 
##     Age.Group + Gender, na = TRUE, svymean)))
##                             results        se
## Under 18.5.17-19.Men       70.02591 0.4826075
## 18.5-25.17-19.Men          77.63177 0.2633561
## 26-30.17-19.Men            92.25791 0.4646573
## 31-35.17-19.Men           105.58240 0.7019616
## 36 and over.17-19.Men     120.79572 1.1644250
## Under 18.5.20-24.Men       71.00736 0.6992997
## 18.5-25.20-24.Men          80.91886 0.3189718
## 26-30.20-24.Men            93.10946 0.5221453
## 31-35.20-24.Men           106.86609 0.8325545
## 36 and over.20-24.Men     127.86545 2.2764751
## Under 18.5.25-29.Men       72.50587 0.9049533
## 18.5-25.25-29.Men          83.44175 0.3642222
## 26-30.25-29.Men            94.87967 0.3812432
## 31-35.25-29.Men           107.77663 0.6321703
## 36 and over.25-29.Men     130.73440 1.8173419
## Under 18.5.30-34.Men       68.90438 0.8151482
## 18.5-25.30-34.Men          84.23906 0.5440469
## 26-30.30-34.Men            96.78172 0.4018892
## 31-35.30-34.Men           106.95829 0.7513739
## 36 and over.30-34.Men     126.78156 2.1532333
## Under 18.5.35-39.Men       77.40627 1.7923829
## 18.5-25.35-39.Men          85.35098 0.5276771
## 26-30.35-39.Men            96.84881 0.4364788
## 31-35.35-39.Men           108.56523 0.4040165
## 36 and over.35-39.Men     127.62379 2.1311941
## Under 18.5.40-44.Men       71.82623 0.9893189
## 18.5-25.40-44.Men          86.68977 0.3716773
## 26-30.40-44.Men            98.02911 0.3720032
## 31-35.40-44.Men           110.23399 0.5193613
## 36 and over.40-44.Men     126.05391 1.2329985
## Under 18.5.45-49.Men       69.73650 2.0915679
## 18.5-25.45-49.Men          86.97930 0.6235085
## 26-30.45-49.Men            99.30897 0.3691892
## 31-35.45-49.Men           110.68043 0.5622611
## 36 and over.45-49.Men     130.11509 2.0407731
## Under 18.5.50-54.Men       74.62800 1.3760424
## 18.5-25.50-54.Men          88.39182 0.5275941
## 26-30.50-54.Men            99.88031 0.3955084
## 31-35.50-54.Men           110.54914 0.6844954
## 36 and over.50-54.Men     126.30894 0.8924208
## Under 18.5.55-59.Men       74.46568 2.2076920
## 18.5-25.55-59.Men          89.81819 0.7753703
## 26-30.55-59.Men           101.13179 0.5562246
## 31-35.55-59.Men           112.62097 0.5101592
## 36 and over.55-59.Men     130.00145 1.5013805
## Under 18.5.60-64.Men       74.66652 1.1871093
## 18.5-25.60-64.Men          89.79391 0.5934596
## 26-30.60-64.Men           102.21887 0.4012237
## 31-35.60-64.Men           113.96264 0.5262082
## 36 and over.60-64.Men     129.81320 1.3614027
## Under 18.5.65-69.Men       75.92301 2.3429219
## 18.5-25.65-69.Men          91.30375 0.5945588
## 26-30.65-69.Men           103.40507 0.4742581
## 31-35.65-69.Men           114.68689 0.6506386
## 36 and over.65-69.Men     127.84890 0.8669222
## Under 18.5.70-74.Men       80.26516 1.9236971
## 18.5-25.70-74.Men          90.29878 0.6788257
## 26-30.70-74.Men           103.63781 0.4965415
## 31-35.70-74.Men           114.91333 0.7357081
## 36 and over.70-74.Men     130.97614 2.0148924
## Under 18.5.75-79.Men       71.55467 1.1452586
## 18.5-25.75-79.Men          92.75838 0.5869434
## 26-30.75-79.Men           103.48040 0.5782424
## 31-35.75-79.Men           114.27146 0.7160722
## 36 and over.75-79.Men     128.32564 3.3984865
## Under 18.5.Over 80.Men     73.56706 1.5153775
## 18.5-25.Over 80.Men        92.03219 0.4209035
## 26-30.Over 80.Men         103.15649 0.3275026
## 31-35.Over 80.Men         116.13475 0.9369925
## 36 and over.Over 80.Men   126.20485 2.1019046
## Under 18.5.17-19.Women     68.03134 0.4606805
## 18.5-25.17-19.Women        76.43935 0.3416612
## 26-30.17-19.Women          89.96674 0.7154371
## 31-35.17-19.Women         101.14757 0.7803429
## 36 and over.17-19.Women   115.68395 1.7609220
## Under 18.5.20-24.Women     67.96362 0.9040656
## 18.5-25.20-24.Women        77.40681 0.4014266
## 26-30.20-24.Women          88.92693 0.6738174
## 31-35.20-24.Women         101.43041 1.0987250
## 36 and over.20-24.Women   117.98753 1.5368872
## Under 18.5.25-29.Women     69.14817 1.3898224
## 18.5-25.25-29.Women        77.94837 0.4713024
## 26-30.25-29.Women          90.19573 0.5652330
## 31-35.25-29.Women         101.27858 0.8602678
## 36 and over.25-29.Women   116.82811 1.9587027
## Under 18.5.30-34.Women     68.66394 0.7356035
## 18.5-25.30-34.Women        78.27155 0.5336746
## 26-30.30-34.Women          90.26478 0.5740605
## 31-35.30-34.Women          98.55396 0.9099082
## 36 and over.30-34.Women   114.87290 1.0394771
## Under 18.5.35-39.Women     67.20934 1.3825274
## 18.5-25.35-39.Women        78.60426 0.4509455
## 26-30.35-39.Women          90.63450 0.5272125
## 31-35.35-39.Women         100.34224 0.8654658
## 36 and over.35-39.Women   116.99296 1.4227893
## Under 18.5.40-44.Women     71.51631 0.6426218
## 18.5-25.40-44.Women        79.94131 0.5235032
## 26-30.40-44.Women          90.56405 0.6068256
## 31-35.40-44.Women         102.09615 0.6759923
## 36 and over.40-44.Women   117.52126 1.4057873
## Under 18.5.45-49.Women     70.24296 0.9855581
## 18.5-25.45-49.Women        79.63979 0.4548778
## 26-30.45-49.Women          92.18352 0.5759314
## 31-35.45-49.Women         103.65914 0.8191898
## 36 and over.45-49.Women   117.60031 1.2803680
## Under 18.5.50-54.Women     69.24601 1.4975487
## 18.5-25.50-54.Women        80.86597 0.4370633
## 26-30.50-54.Women          93.80180 0.4781783
## 31-35.50-54.Women         103.46758 0.6932605
## 36 and over.50-54.Women   118.27807 1.1074124
## Under 18.5.55-59.Women     68.39667 0.8430218
## 18.5-25.55-59.Women        80.82420 0.7796012
## 26-30.55-59.Women          93.78274 0.7557158
## 31-35.55-59.Women         105.62161 0.8747162
## 36 and over.55-59.Women   118.40536 1.2375098
## Under 18.5.60-64.Women     67.73209 1.4946871
## 18.5-25.60-64.Women        82.70879 0.6791011
## 26-30.60-64.Women          94.91434 0.5694742
## 31-35.60-64.Women         105.00715 0.7035539
## 36 and over.60-64.Women   119.33508 1.0586120
## Under 18.5.65-69.Women     66.83091 3.3774333
## 18.5-25.65-69.Women        83.76852 0.6625182
## 26-30.65-69.Women          95.12858 0.6013239
## 31-35.65-69.Women         105.27202 0.7355761
## 36 and over.65-69.Women   119.25423 0.7716269
## Under 18.5.70-74.Women     72.01154 2.1057105
## 18.5-25.70-74.Women        83.72455 0.7717502
## 26-30.70-74.Women          96.85109 0.9271659
## 31-35.70-74.Women         105.73201 0.6821730
## 36 and over.70-74.Women   118.42304 1.8494010
## Under 18.5.75-79.Women     72.27666 1.4543953
## 18.5-25.75-79.Women        85.08828 0.8401243
## 26-30.75-79.Women          97.14083 0.6872978
## 31-35.75-79.Women         104.69923 1.0146992
## 36 and over.75-79.Women   116.46310 1.4981259
## Under 18.5.Over 80.Women   69.07586 1.4419145
## 18.5-25.Over 80.Women      84.52933 0.6471206
## 26-30.Over 80.Women        96.93708 0.4930077
## 31-35.Over 80.Women       105.40666 0.6441234
## 36 and over.Over 80.Women 115.37191 2.2968202
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOPF, ~Age.Group + Gender, na = TRUE, 
##     svymean))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOPF, ~Age.Group + 
##     Gender, na = TRUE, svymean)))
##                results        se
## 17-19.Men     22.63426 0.2660333
## 20-24.Men     24.64485 0.3115893
## 25-29.Men     26.28288 0.2640241
## 30-34.Men     26.36185 0.2364455
## 35-39.Men     27.17665 0.2858616
## 40-44.Men     28.11467 0.2238751
## 45-49.Men     28.24186 0.2633631
## 50-54.Men     29.01408 0.2746816
## 55-59.Men     29.82390 0.2988272
## 60-64.Men     30.24194 0.3236189
## 65-69.Men     31.16652 0.2451168
## 70-74.Men     30.96424 0.3424775
## 75-79.Men     31.24850 0.3055828
## Over 80.Men   30.76948 0.2319936
## 17-19.Women   35.16876 0.2957482
## 20-24.Women   36.70029 0.3768444
## 25-29.Women   37.28420 0.3408838
## 30-34.Women   38.28933 0.3667912
## 35-39.Women   38.74577 0.3840080
## 40-44.Women   39.11658 0.3191313
## 45-49.Women   40.08398 0.3113287
## 50-54.Women   40.92301 0.2819920
## 55-59.Women   42.23428 0.3891043
## 60-64.Women   42.46001 0.2422301
## 65-69.Women   42.73227 0.2956462
## 70-74.Women   42.21890 0.3610763
## 75-79.Women   42.11111 0.3333930
## Over 80.Women 40.46854 0.2995536
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOPF, ~Age.Group + Gender, na = TRUE, 
##     svyvar))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOPF, ~Age.Group + 
##     Gender, na = TRUE, svyvar)))
##                results       se
## 17-19.Men     50.14313 2.866316
## 20-24.Men     49.02520 2.223799
## 25-29.Men     40.27795 2.324850
## 30-34.Men     35.96430 1.894620
## 35-39.Men     35.57748 1.785797
## 40-44.Men     29.57675 1.741965
## 45-49.Men     31.42844 2.009821
## 50-54.Men     31.31750 1.619104
## 55-59.Men     29.67944 2.442800
## 60-64.Men     27.98811 1.979850
## 65-69.Men     28.40481 1.603103
## 70-74.Men     32.27416 2.983954
## 75-79.Men     24.55182 2.299261
## Over 80.Men   25.48551 1.766761
## 17-19.Women   48.34412 3.215043
## 20-24.Women   51.87077 2.958178
## 25-29.Women   49.75413 3.599063
## 30-34.Women   51.05500 3.034180
## 35-39.Women   49.18443 2.753334
## 40-44.Women   42.18589 2.898097
## 45-49.Women   47.10460 2.972216
## 50-54.Women   37.88170 2.871356
## 55-59.Women   38.47908 2.502006
## 60-64.Women   32.22830 2.343342
## 65-69.Women   33.13407 2.655132
## 70-74.Women   34.11740 2.963002
## 75-79.Women   31.43752 4.169206
## Over 80.Women 33.75126 2.600861
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOPF, ~Age.Group + Gender, na = TRUE, 
##     svyquantile, quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95), 
##     keep.var = TRUE, se = T, ci = T))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOPF, ~Age.Group + 
##     Gender, na = TRUE, svyquantile, quantiles = c(0.05, 0.25, 
##     0.5, 0.75, 0.95), keep.var = TRUE, se = T, ci = T)))
##                     results        se
## 17-19.Men:0.05     14.02068 0.1631904
## 20-24.Men:0.05     14.52284 0.2666032
## 25-29.Men:0.05     16.18000 0.4244534
## 30-34.Men:0.05     16.28064 0.4661662
## 35-39.Men:0.05     17.49358 0.5532458
## 40-44.Men:0.05     18.66053 0.4879690
## 45-49.Men:0.05     18.97482 0.4849083
## 50-54.Men:0.05     19.24941 0.4786821
## 55-59.Men:0.05     20.60647 0.7687073
## 60-64.Men:0.05     21.52000 0.5243413
## 65-69.Men:0.05     22.49348 0.5635891
## 70-74.Men:0.05     21.58013 0.8489295
## 75-79.Men:0.05     23.39979 0.9863876
## Over 80.Men:0.05   21.91987 0.6216889
## 17-19.Women:0.05   25.01783 0.4692852
## 20-24.Women:0.05   25.37170 0.7871277
## 25-29.Women:0.05   24.91373 0.6180139
## 30-34.Women:0.05   25.62293 1.1592820
## 35-39.Women:0.05   26.87648 0.4203742
## 40-44.Women:0.05   26.70000 0.8260136
## 45-49.Women:0.05   27.32400 0.6252655
## 50-54.Women:0.05   29.83379 0.8108042
## 55-59.Women:0.05   29.98866 0.7962906
## 60-64.Women:0.05   32.08179 0.9105858
## 65-69.Women:0.05   32.67765 0.5981664
## 70-74.Women:0.05   31.23694 0.9801550
## 75-79.Women:0.05   30.96692 1.5909615
## Over 80.Women:0.05 29.94864 1.1090123
## 17-19.Men:0.25     16.90000 0.2333490
## 20-24.Men:0.25     19.10000 0.2467252
## 25-29.Men:0.25     21.88230 0.3621212
## 30-34.Men:0.25     22.01621 0.3665720
## 35-39.Men:0.25     23.22091 0.4922161
## 40-44.Men:0.25     24.77276 0.3258529
## 45-49.Men:0.25     24.67365 0.4574354
## 50-54.Men:0.25     25.35491 0.4052020
## 55-59.Men:0.25     26.60249 0.4492341
## 60-64.Men:0.25     26.64000 0.3555123
## 65-69.Men:0.25     27.56000 0.1937276
## 70-74.Men:0.25     27.31158 0.4340555
## 75-79.Men:0.25     27.78144 0.4910776
## Over 80.Men:0.25   27.38000 0.2741030
## 17-19.Women:0.25   30.14000 0.3443604
## 20-24.Women:0.25   31.56646 0.4430049
## 25-29.Women:0.25   32.48000 0.7071285
## 30-34.Women:0.25   33.20000 0.6560114
## 35-39.Women:0.25   33.83198 0.4205113
## 40-44.Women:0.25   34.90217 0.4586845
## 45-49.Women:0.25   35.40501 0.5824665
## 50-54.Women:0.25   37.16000 0.5231864
## 55-59.Women:0.25   38.31482 0.6199665
## 60-64.Women:0.25   38.64245 0.3738779
## 65-69.Women:0.25   39.16000 0.4045800
## 70-74.Women:0.25   38.74153 0.7373495
## 75-79.Women:0.25   39.13679 0.5682373
## Over 80.Women:0.25 37.04294 0.4961399
## 17-19.Men:0.5      20.66000 0.3747849
## 20-24.Men:0.5      23.74867 0.4164495
## 25-29.Men:0.5      26.04566 0.2606456
## 30-34.Men:0.5      26.68356 0.2288235
## 35-39.Men:0.5      26.93355 0.2911092
## 40-44.Men:0.5      28.00000 0.2815797
## 45-49.Men:0.5      28.14000 0.3222499
## 50-54.Men:0.5      29.28000 0.3922663
## 55-59.Men:0.5      29.97028 0.3055326
## 60-64.Men:0.5      30.08000 0.3791861
## 65-69.Men:0.5      31.02336 0.2675779
## 70-74.Men:0.5      30.88058 0.4352439
## 75-79.Men:0.5      31.15180 0.3060767
## Over 80.Men:0.5    30.88000 0.2650145
## 17-19.Women:0.5    34.28658 0.4280256
## 20-24.Women:0.5    36.32228 0.6649902
## 25-29.Women:0.5    37.76711 0.3238385
## 30-34.Women:0.5    38.83627 0.4968163
## 35-39.Women:0.5    39.12000 0.5910776
## 40-44.Women:0.5    39.81559 0.4587310
## 45-49.Women:0.5    40.58000 0.3808043
## 50-54.Women:0.5    41.61654 0.3447494
## 55-59.Women:0.5    42.92032 0.3376618
## 60-64.Women:0.5    43.02219 0.2633932
## 65-69.Women:0.5    43.08000 0.4207205
## 70-74.Women:0.5    42.86000 0.4446604
## 75-79.Women:0.5    42.76508 0.3111720
## Over 80.Women:0.5  41.04611 0.3309705
## 17-19.Men:0.75     27.11031 0.4670280
## 20-24.Men:0.75     29.44000 0.5622650
## 25-29.Men:0.75     30.10954 0.3624387
## 30-34.Men:0.75     30.12607 0.3791387
## 35-39.Men:0.75     31.06288 0.3137112
## 40-44.Men:0.75     31.90545 0.3733267
## 45-49.Men:0.75     31.90715 0.3721638
## 50-54.Men:0.75     32.36515 0.3768058
## 55-59.Men:0.75     33.38000 0.3554947
## 60-64.Men:0.75     34.02543 0.4606745
## 65-69.Men:0.75     34.82308 0.3905283
## 70-74.Men:0.75     34.53623 0.5455058
## 75-79.Men:0.75     34.65991 0.3936375
## Over 80.Men:0.75   34.01811 0.3858129
## 17-19.Women:0.75   39.79441 0.6218171
## 20-24.Women:0.75   41.76226 0.5171455
## 25-29.Women:0.75   42.24547 0.4657743
## 30-34.Women:0.75   43.58899 0.5128872
## 35-39.Women:0.75   43.70753 0.5759279
## 40-44.Women:0.75   43.52673 0.3025080
## 45-49.Women:0.75   45.06135 0.3600967
## 50-54.Women:0.75   45.30000 0.2905118
## 55-59.Women:0.75   46.20027 0.5204788
## 60-64.Women:0.75   46.67141 0.3383925
## 65-69.Women:0.75   46.57323 0.3231248
## 70-74.Women:0.75   46.44000 0.3376649
## 75-79.Women:0.75   45.57324 0.5307812
## Over 80.Women:0.75 44.42283 0.4236540
## 17-19.Men:0.95     36.16000 0.9224050
## 20-24.Men:0.95     37.00073 0.5600533
## 25-29.Men:0.95     37.57984 0.8251035
## 30-34.Men:0.95     36.55506 0.4581204
## 35-39.Men:0.95     37.38391 0.7066229
## 40-44.Men:0.95     37.02826 0.6133111
## 45-49.Men:0.95     38.04241 0.5907135
## 50-54.Men:0.95     38.14085 0.4815592
## 55-59.Men:0.95     38.93772 0.8044845
## 60-64.Men:0.95     38.92416 0.5304992
## 65-69.Men:0.95     39.85824 0.4765754
## 70-74.Men:0.95     40.71322 0.7261693
## 75-79.Men:0.95     39.00116 0.8279273
## Over 80.Men:0.95   38.88896 0.6396777
## 17-19.Women:0.95   48.20000 0.5024277
## 20-24.Women:0.95   49.22080 0.6938227
## 25-29.Women:0.95   48.57026 0.7841573
## 30-34.Women:0.95   49.52688 0.6660882
## 35-39.Women:0.95   50.29977 0.4424290
## 40-44.Women:0.95   49.62157 0.6256631
## 45-49.Women:0.95   50.69530 0.4402624
## 50-54.Women:0.95   50.07378 0.6210419
## 55-59.Women:0.95   51.48036 0.5181849
## 60-64.Women:0.95   50.75792 0.4917691
## 65-69.Women:0.95   51.72508 0.5457791
## 70-74.Women:0.95   50.87307 0.4146517
## 75-79.Women:0.95   50.09103 0.5813399
## Over 80.Women:0.95 48.99255 0.6150032
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + Age.Group + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + 
##     Age.Group + Gender, na = TRUE, svymean)))
##                            results        se
## Under 18.5.17-19.Men      15.73465 0.4507527
## 18.5-25.17-19.Men         18.86657 0.1933846
## 26-30.17-19.Men           26.11311 0.3703496
## 31-35.17-19.Men           32.00163 0.4890500
## 36 and over.17-19.Men     37.08344 0.5471586
## Under 18.5.20-24.Men      16.23929 0.5250669
## 18.5-25.20-24.Men         20.00922 0.2273880
## 26-30.20-24.Men           26.25114 0.3853843
## 31-35.20-24.Men           31.10966 0.5071526
## 36 and over.20-24.Men     36.97270 0.5280719
## Under 18.5.25-29.Men      15.67754 0.5406840
## 18.5-25.25-29.Men         21.68437 0.2702246
## 26-30.25-29.Men           26.87191 0.2782017
## 31-35.25-29.Men           31.11532 0.3699343
## 36 and over.25-29.Men     37.28002 0.4709883
## Under 18.5.30-34.Men      16.98321 1.3031802
## 18.5-25.30-34.Men         21.54765 0.3410600
## 26-30.30-34.Men           27.03160 0.2280380
## 31-35.30-34.Men           30.86226 0.4678854
## 36 and over.30-34.Men     36.05657 0.5958456
## Under 18.5.35-39.Men      17.02993 1.1428383
## 18.5-25.35-39.Men         22.22573 0.3890290
## 26-30.35-39.Men           27.16232 0.3068192
## 31-35.35-39.Men           30.91090 0.3169878
## 36 and over.35-39.Men     35.92398 0.5661108
## Under 18.5.40-44.Men      16.21487 1.3888828
## 18.5-25.40-44.Men         22.89632 0.3415968
## 26-30.40-44.Men           27.39831 0.2194374
## 31-35.40-44.Men           31.13595 0.2942543
## 36 and over.40-44.Men     35.78116 0.4643813
## Under 18.5.45-49.Men      16.21784 0.6516569
## 18.5-25.45-49.Men         22.68177 0.4752111
## 26-30.45-49.Men           27.65718 0.2506235
## 31-35.45-49.Men           31.74313 0.3424752
## 36 and over.45-49.Men     36.44526 0.5573145
## Under 18.5.50-54.Men      18.40121 1.1825122
## 18.5-25.50-54.Men         23.67883 0.4133307
## 26-30.50-54.Men           28.15034 0.2788936
## 31-35.50-54.Men           31.90632 0.3848255
## 36 and over.50-54.Men     36.51689 0.3498893
## Under 18.5.55-59.Men      20.50443 1.6201221
## 18.5-25.55-59.Men         24.99417 0.4290591
## 26-30.55-59.Men           29.05485 0.3071528
## 31-35.55-59.Men           32.37030 0.4108707
## 36 and over.55-59.Men     38.00753 0.6186612
## Under 18.5.60-64.Men      17.08199 1.1846178
## 18.5-25.60-64.Men         25.13270 0.4150290
## 26-30.60-64.Men           29.32819 0.2951990
## 31-35.60-64.Men           33.10378 0.3384544
## 36 and over.60-64.Men     37.33427 0.4115167
## Under 18.5.65-69.Men      17.73870 1.0472858
## 18.5-25.65-69.Men         25.99618 0.4466313
## 26-30.65-69.Men           30.31134 0.1889768
## 31-35.65-69.Men           34.20158 0.4252815
## 36 and over.65-69.Men     37.66484 0.5293741
## Under 18.5.70-74.Men      23.21452 1.7584789
## 18.5-25.70-74.Men         25.54576 0.5018266
## 26-30.70-74.Men           30.87706 0.2545368
## 31-35.70-74.Men           35.38295 0.5228856
## 36 and over.70-74.Men     40.17551 0.8046182
## Under 18.5.75-79.Men      16.49345 1.4447807
## 18.5-25.75-79.Men         27.51410 0.5569083
## 26-30.75-79.Men           31.21802 0.3517536
## 31-35.75-79.Men           35.80896 0.4478400
## 36 and over.75-79.Men     37.15551 0.9902299
## Under 18.5.Over 80.Men    21.83929 2.2782635
## 18.5-25.Over 80.Men       27.79047 0.3170939
## 26-30.Over 80.Men         31.91233 0.2746580
## 31-35.Over 80.Men         35.95829 0.4685920
## 36 and over.Over 80.Men   39.05557 1.0084494
## Under 18.5.17-19.Women    26.65024 0.3983918
## 18.5-25.17-19.Women       32.07084 0.2508937
## 26-30.17-19.Women         38.76162 0.3505124
## 31-35.17-19.Women         43.41947 0.5057549
## 36 and over.17-19.Women   47.89299 0.4073310
## Under 18.5.20-24.Women    26.41293 0.8240736
## 18.5-25.20-24.Women       32.43387 0.2868426
## 26-30.20-24.Women         39.04349 0.3487893
## 31-35.20-24.Women         43.64266 0.3913797
## 36 and over.20-24.Women   47.98942 0.5987831
## Under 18.5.25-29.Women    25.96717 0.6879963
## 18.5-25.25-29.Women       32.77698 0.3445953
## 26-30.25-29.Women         39.04413 0.3408102
## 31-35.25-29.Women         43.08062 0.4023959
## 36 and over.25-29.Women   47.66750 0.5770909
## Under 18.5.30-34.Women    26.79345 1.1851503
## 18.5-25.30-34.Women       32.81824 0.3952607
## 26-30.30-34.Women         39.50874 0.3568595
## 31-35.30-34.Women         43.29207 0.3126553
## 36 and over.30-34.Women   47.06881 0.3716687
## Under 18.5.35-39.Women    25.77416 1.8998274
## 18.5-25.35-39.Women       33.30810 0.2701370
## 26-30.35-39.Women         39.50903 0.3560858
## 31-35.35-39.Women         43.23123 0.4267856
## 36 and over.35-39.Women   47.65263 0.4150786
## Under 18.5.40-44.Women    25.66285 0.5896893
## 18.5-25.40-44.Women       33.79425 0.3580718
## 26-30.40-44.Women         39.76392 0.2938982
## 31-35.40-44.Women         43.11995 0.2934047
## 36 and over.40-44.Women   46.76084 0.4095174
## Under 18.5.45-49.Women    27.36320 1.1521280
## 18.5-25.45-49.Women       33.76669 0.4038846
## 26-30.45-49.Women         40.42850 0.2556963
## 31-35.45-49.Women         43.48226 0.3935422
## 36 and over.45-49.Women   47.91837 0.3243785
## Under 18.5.50-54.Women    27.38976 1.7639615
## 18.5-25.50-54.Women       35.23468 0.4360582
## 26-30.50-54.Women         41.52525 0.3041680
## 31-35.50-54.Women         44.07740 0.2966747
## 36 and over.50-54.Women   47.49388 0.3609187
## Under 18.5.55-59.Women    27.09097 1.2294068
## 18.5-25.55-59.Women       36.04799 0.5544781
## 26-30.55-59.Women         41.91659 0.2912774
## 31-35.55-59.Women         44.85528 0.3688391
## 36 and over.55-59.Women   48.99118 0.3528748
## Under 18.5.60-64.Women    24.19384 3.6622989
## 18.5-25.60-64.Women       36.85818 0.4506760
## 26-30.60-64.Women         41.97248 0.3276529
## 31-35.60-64.Women         45.07833 0.2430850
## 36 and over.60-64.Women   48.72931 0.3502399
## Under 18.5.65-69.Women    25.73170 1.8291397
## 18.5-25.65-69.Women       37.36764 0.4053649
## 26-30.65-69.Women         42.12033 0.2831004
## 31-35.65-69.Women         45.61526 0.3825729
## 36 and over.65-69.Women   49.04343 0.3296924
## Under 18.5.70-74.Women    29.72784 1.0517751
## 18.5-25.70-74.Women       37.08766 0.3927909
## 26-30.70-74.Women         42.76425 0.4858565
## 31-35.70-74.Women         45.22728 0.3869709
## 36 and over.70-74.Women   48.89426 0.4781580
## Under 18.5.75-79.Women    26.72136 2.4703933
## 18.5-25.75-79.Women       38.00570 0.5876820
## 26-30.75-79.Women         42.51874 0.3648294
## 31-35.75-79.Women         45.08477 0.5878246
## 36 and over.75-79.Women   49.03266 0.5010993
## Under 18.5.Over 80.Women  28.59596 1.8052059
## 18.5-25.Over 80.Women     37.33760 0.4345367
## 26-30.Over 80.Women       42.12256 0.3071662
## 31-35.Over 80.Women       45.07939 0.4931797
## 36 and over.Over 80.Women 47.83976 0.8749159
## Multiple imputation results:
##       with(nhc_all, svyby(~TOTLEANH2, ~BMI.Group + Age.Group + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~TOTLEANH2, ~BMI.Group + 
##     Age.Group + Gender, na = TRUE, svymean)))
##                            results         se
## Under 18.5.17-19.Men      14.34831 0.09324549
## 18.5-25.17-19.Men         16.87768 0.05702826
## 26-30.17-19.Men           19.23751 0.08848227
## 31-35.17-19.Men           20.95953 0.16565792
## 36 and over.17-19.Men     23.88052 0.29779440
## Under 18.5.20-24.Men      14.09554 0.11833470
## 18.5-25.20-24.Men         17.09811 0.06205393
## 26-30.20-24.Men           19.34792 0.09735518
## 31-35.20-24.Men           21.43289 0.15907198
## 36 and over.20-24.Men     25.09021 0.52677895
## Under 18.5.25-29.Men      14.11747 0.18034377
## 18.5-25.25-29.Men         17.09735 0.08762647
## 26-30.25-29.Men           19.18938 0.08003100
## 31-35.25-29.Men           21.44119 0.12522078
## 36 and over.25-29.Men     24.97067 0.28148920
## Under 18.5.30-34.Men      14.16020 0.34761824
## 18.5-25.30-34.Men         17.18292 0.06910879
## 26-30.30-34.Men           19.40112 0.07612244
## 31-35.30-34.Men           21.50430 0.15296492
## 36 and over.30-34.Men     25.11650 0.46697734
## Under 18.5.35-39.Men      14.68329 0.23760718
## 18.5-25.35-39.Men         17.09043 0.09489124
## 26-30.35-39.Men           19.31791 0.08295714
## 31-35.35-39.Men           21.48799 0.11499063
## 36 and over.35-39.Men     24.88621 0.43905034
## Under 18.5.40-44.Men      14.19047 0.31388599
## 18.5-25.40-44.Men         17.02975 0.09059111
## 26-30.40-44.Men           19.23172 0.06493167
## 31-35.40-44.Men           21.49045 0.12744536
## 36 and over.40-44.Men     24.44705 0.28463578
## Under 18.5.45-49.Men      13.30332 0.28674527
## 18.5-25.45-49.Men         17.00412 0.12600767
## 26-30.45-49.Men           19.23206 0.07664280
## 31-35.45-49.Men           21.01557 0.09766395
## 36 and over.45-49.Men     24.82509 0.51921465
## Under 18.5.50-54.Men      13.72862 0.45704930
## 18.5-25.50-54.Men         16.62829 0.13093685
## 26-30.50-54.Men           19.00158 0.09052705
## 31-35.50-54.Men           21.01752 0.12903009
## 36 and over.50-54.Men     23.82277 0.18958115
## Under 18.5.55-59.Men      13.49914 0.39898644
## 18.5-25.55-59.Men         16.43365 0.12009401
## 26-30.55-59.Men           18.78961 0.11741819
## 31-35.55-59.Men           20.92247 0.12528121
## 36 and over.55-59.Men     23.74481 0.33611554
## Under 18.5.60-64.Men      14.20094 0.30651425
## 18.5-25.60-64.Men         16.46554 0.13645687
## 26-30.60-64.Men           18.80660 0.11108040
## 31-35.60-64.Men           20.82609 0.11564187
## 36 and over.60-64.Men     23.64447 0.29234879
## Under 18.5.65-69.Men      13.09273 0.40871340
## 18.5-25.65-69.Men         16.22897 0.16097870
## 26-30.65-69.Men           18.42299 0.08678838
## 31-35.65-69.Men           20.29639 0.12604339
## 36 and over.65-69.Men     23.09945 0.23830858
## Under 18.5.70-74.Men      13.16817 0.38624905
## 18.5-25.70-74.Men         16.33893 0.09930974
## 26-30.70-74.Men           18.28186 0.10462560
## 31-35.70-74.Men           20.06886 0.15948283
## 36 and over.70-74.Men     22.37880 0.30718308
## Under 18.5.75-79.Men      13.80566 0.32678687
## 18.5-25.75-79.Men         15.89434 0.14517249
## 26-30.75-79.Men           18.11431 0.10730487
## 31-35.75-79.Men           19.82563 0.16145091
## 36 and over.75-79.Men     22.64721 0.41276797
## Under 18.5.Over 80.Men    12.71320 0.47875401
## 18.5-25.Over 80.Men       15.67095 0.06516348
## 26-30.Over 80.Men         17.73169 0.08918354
## 31-35.Over 80.Men         19.64951 0.19561727
## 36 and over.Over 80.Men   21.99061 0.58926889
## Under 18.5.17-19.Women    12.32138 0.09300042
## 18.5-25.17-19.Women       14.03642 0.05508032
## 26-30.17-19.Women         15.93308 0.07579449
## 31-35.17-19.Women         17.65640 0.11075435
## 36 and over.17-19.Women   20.57453 0.27424830
## Under 18.5.20-24.Women    12.13889 0.17840290
## 18.5-25.20-24.Women       14.18667 0.08349890
## 26-30.20-24.Women         15.93872 0.09598678
## 31-35.20-24.Women         17.41582 0.16966707
## 36 and over.20-24.Women   20.35120 0.26058654
## Under 18.5.25-29.Women    12.27965 0.14518895
## 18.5-25.25-29.Women       14.15782 0.07770767
## 26-30.25-29.Women         15.96551 0.11358784
## 31-35.25-29.Women         17.81343 0.12346631
## 36 and over.25-29.Women   20.77467 0.25533963
## Under 18.5.30-34.Women    12.36661 0.20863891
## 18.5-25.30-34.Women       14.23666 0.07749112
## 26-30.30-34.Women         15.86433 0.10743800
## 31-35.30-34.Women         17.57569 0.11920396
## 36 and over.30-34.Women   20.35942 0.19753401
## Under 18.5.35-39.Women    12.37324 0.23305038
## 18.5-25.35-39.Women       14.07537 0.08030149
## 26-30.35-39.Women         15.75014 0.10684442
## 31-35.35-39.Women         17.56857 0.13979662
## 36 and over.35-39.Women   20.52469 0.23634499
## Under 18.5.40-44.Women    12.56792 0.23775899
## 18.5-25.40-44.Women       14.13841 0.07901834
## 26-30.40-44.Women         15.79188 0.09157498
## 31-35.40-44.Women         17.58837 0.09935920
## 36 and over.40-44.Women   20.93772 0.24523957
## Under 18.5.45-49.Women    12.23745 0.21334239
## 18.5-25.45-49.Women       14.07299 0.07445876
## 26-30.45-49.Women         15.55799 0.09018330
## 31-35.45-49.Women         17.61859 0.13875025
## 36 and over.45-49.Women   20.51341 0.20974050
## Under 18.5.50-54.Women    12.10242 0.33825983
## 18.5-25.50-54.Women       13.93079 0.09136187
## 26-30.50-54.Women         15.54730 0.08178125
## 31-35.50-54.Women         17.48187 0.09579101
## 36 and over.50-54.Women   20.15299 0.20461691
## Under 18.5.55-59.Women    12.51462 0.38470257
## 18.5-25.55-59.Women       13.67045 0.11195736
## 26-30.55-59.Women         15.26200 0.09608589
## 31-35.55-59.Women         17.25049 0.11435626
## 36 and over.55-59.Women   20.11133 0.22312640
## Under 18.5.60-64.Women    12.29194 0.37008241
## 18.5-25.60-64.Women       13.56121 0.10179112
## 26-30.60-64.Women         15.23968 0.08503346
## 31-35.60-64.Women         17.00099 0.11132263
## 36 and over.60-64.Women   19.84320 0.18184679
## Under 18.5.65-69.Women    12.40077 0.30152517
## 18.5-25.65-69.Women       13.67702 0.09930044
## 26-30.65-69.Women         15.23043 0.10232976
## 31-35.65-69.Women         16.81589 0.11638984
## 36 and over.65-69.Women   19.56158 0.20114550
## Under 18.5.70-74.Women    11.77749 0.14442573
## 18.5-25.70-74.Women       13.53587 0.09977806
## 26-30.70-74.Women         15.10170 0.10961982
## 31-35.70-74.Women         16.84941 0.10503382
## 36 and over.70-74.Women   19.19368 0.25859533
## Under 18.5.75-79.Women    12.56585 0.35285639
## 18.5-25.75-79.Women       13.43510 0.09441970
## 26-30.75-79.Women         15.05436 0.11266903
## 31-35.75-79.Women         16.82659 0.17441761
## 36 and over.75-79.Women   18.99413 0.23661123
## Under 18.5.Over 80.Women  12.26802 0.23795322
## 18.5-25.Over 80.Women     13.49292 0.09396660
## 26-30.Over 80.Women       15.18013 0.07429699
## 31-35.Over 80.Women       16.84888 0.13907604
## 36 and over.Over 80.Women 19.14163 0.31361488
## Multiple imputation results:
##       with(nhc_all, svyby(~WHRATIO, ~BMI.Group + Age.Group + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~WHRATIO, ~BMI.Group + 
##     Age.Group + Gender, na = TRUE, svymean)))
##                             results          se
## Under 18.5.17-19.Men      0.3984966 0.002881321
## 18.5-25.17-19.Men         0.4409816 0.001398023
## 26-30.17-19.Men           0.5226767 0.002139614
## 31-35.17-19.Men           0.5945703 0.003800357
## 36 and over.17-19.Men     0.6834812 0.006278701
## Under 18.5.20-24.Men      0.3973772 0.003758393
## 18.5-25.20-24.Men         0.4571188 0.001711868
## 26-30.20-24.Men           0.5296209 0.003103266
## 31-35.20-24.Men           0.6018835 0.003664787
## 36 and over.20-24.Men     0.7132557 0.010221386
## Under 18.5.25-29.Men      0.4070831 0.005817502
## 18.5-25.25-29.Men         0.4714251 0.001847519
## 26-30.25-29.Men           0.5393976 0.002301248
## 31-35.25-29.Men           0.6028365 0.003056028
## 36 and over.25-29.Men     0.7279531 0.009525250
## Under 18.5.30-34.Men      0.4015096 0.005651780
## 18.5-25.30-34.Men         0.4797099 0.002974578
## 26-30.30-34.Men           0.5480114 0.002137190
## 31-35.30-34.Men           0.6074185 0.004428405
## 36 and over.30-34.Men     0.7117793 0.011645674
## Under 18.5.35-39.Men      0.4207906 0.006046308
## 18.5-25.35-39.Men         0.4843660 0.002448650
## 26-30.35-39.Men           0.5497835 0.002322795
## 31-35.35-39.Men           0.6165792 0.002678166
## 36 and over.35-39.Men     0.7167150 0.011372770
## Under 18.5.40-44.Men      0.4134332 0.007219700
## 18.5-25.40-44.Men         0.4889726 0.002159322
## 26-30.40-44.Men           0.5517405 0.002352331
## 31-35.40-44.Men           0.6207323 0.003173391
## 36 and over.40-44.Men     0.7130867 0.007783878
## Under 18.5.45-49.Men      0.4055214 0.015910521
## 18.5-25.45-49.Men         0.4915637 0.003090772
## 26-30.45-49.Men           0.5640988 0.002027485
## 31-35.45-49.Men           0.6255442 0.002809765
## 36 and over.45-49.Men     0.7342015 0.012290808
## Under 18.5.50-54.Men      0.4255695 0.008127732
## 18.5-25.50-54.Men         0.5003934 0.002984262
## 26-30.50-54.Men           0.5654432 0.001959200
## 31-35.50-54.Men           0.6293325 0.003264874
## 36 and over.50-54.Men     0.7143722 0.005286939
## Under 18.5.55-59.Men      0.4358298 0.007868687
## 18.5-25.55-59.Men         0.5100409 0.004011422
## 26-30.55-59.Men           0.5739614 0.002575252
## 31-35.55-59.Men           0.6406391 0.002937792
## 36 and over.55-59.Men     0.7496827 0.011149809
## Under 18.5.60-64.Men      0.4322467 0.004000897
## 18.5-25.60-64.Men         0.5136721 0.002373754
## 26-30.60-64.Men           0.5828547 0.002306355
## 31-35.60-64.Men           0.6508029 0.002752332
## 36 and over.60-64.Men     0.7359649 0.007626167
## Under 18.5.65-69.Men      0.4240322 0.008047478
## 18.5-25.65-69.Men         0.5235763 0.003095647
## 26-30.65-69.Men           0.5922231 0.002572474
## 31-35.65-69.Men           0.6543595 0.004302752
## 36 and over.65-69.Men     0.7319389 0.005325657
## Under 18.5.70-74.Men      0.4692159 0.008672045
## 18.5-25.70-74.Men         0.5221578 0.003741226
## 26-30.70-74.Men           0.5972973 0.002469399
## 31-35.70-74.Men           0.6604858 0.004637149
## 36 and over.70-74.Men     0.7579582 0.012031851
## Under 18.5.75-79.Men      0.4319101 0.022362008
## 18.5-25.75-79.Men         0.5372985 0.003675895
## 26-30.75-79.Men           0.6015823 0.003257729
## 31-35.75-79.Men           0.6642824 0.004662526
## 36 and over.75-79.Men     0.7307279 0.012031568
## Under 18.5.Over 80.Men    0.4376635 0.013256925
## 18.5-25.Over 80.Men       0.5400620 0.002354912
## 26-30.Over 80.Men         0.6070902 0.002310217
## 31-35.Over 80.Men         0.6724158 0.006080407
## 36 and over.Over 80.Men   0.7531562 0.014856153
## Under 18.5.17-19.Women    0.4169379 0.002807607
## 18.5-25.17-19.Women       0.4691344 0.001988966
## 26-30.17-19.Women         0.5509142 0.004127687
## 31-35.17-19.Women         0.6164465 0.004350320
## 36 and over.17-19.Women   0.7109713 0.009674851
## Under 18.5.20-24.Women    0.4160489 0.005767242
## 18.5-25.20-24.Women       0.4748574 0.002369217
## 26-30.20-24.Women         0.5463726 0.003897538
## 31-35.20-24.Women         0.6273439 0.007171943
## 36 and over.20-24.Women   0.7229744 0.008306988
## Under 18.5.25-29.Women    0.4190490 0.006837600
## 18.5-25.25-29.Women       0.4775536 0.002618236
## 26-30.25-29.Women         0.5508013 0.003322843
## 31-35.25-29.Women         0.6242511 0.005430168
## 36 and over.25-29.Women   0.7162364 0.011107962
## Under 18.5.30-34.Women    0.4163913 0.005961016
## 18.5-25.30-34.Women       0.4775656 0.003035502
## 26-30.30-34.Women         0.5551574 0.002400382
## 31-35.30-34.Women         0.6112117 0.005526435
## 36 and over.30-34.Women   0.7027236 0.006672518
## Under 18.5.35-39.Women    0.4213300 0.007789811
## 18.5-25.35-39.Women       0.4801206 0.002800694
## 26-30.35-39.Women         0.5556045 0.003039456
## 31-35.35-39.Women         0.6229062 0.004483346
## 36 and over.35-39.Women   0.7195230 0.008250861
## Under 18.5.40-44.Women    0.4324449 0.003516943
## 18.5-25.40-44.Women       0.4880790 0.003557898
## 26-30.40-44.Women         0.5564074 0.003334124
## 31-35.40-44.Women         0.6270651 0.003566713
## 36 and over.40-44.Women   0.7195701 0.008170893
## Under 18.5.45-49.Women    0.4283870 0.006107028
## 18.5-25.45-49.Women       0.4879708 0.002544230
## 26-30.45-49.Women         0.5655598 0.003360282
## 31-35.45-49.Women         0.6345233 0.004469850
## 36 and over.45-49.Women   0.7243113 0.007272505
## Under 18.5.50-54.Women    0.4239530 0.011236114
## 18.5-25.50-54.Women       0.4955793 0.002716820
## 26-30.50-54.Women         0.5804340 0.002862683
## 31-35.50-54.Women         0.6426012 0.004288085
## 36 and over.50-54.Women   0.7282654 0.006283043
## Under 18.5.55-59.Women    0.4423281 0.004850685
## 18.5-25.55-59.Women       0.4978236 0.004871125
## 26-30.55-59.Women         0.5766227 0.004796855
## 31-35.55-59.Women         0.6530112 0.004960039
## 36 and over.55-59.Women   0.7347946 0.008448156
## Under 18.5.60-64.Women    0.4273329 0.005837530
## 18.5-25.60-64.Women       0.5084911 0.003707411
## 26-30.60-64.Women         0.5868222 0.003060316
## 31-35.60-64.Women         0.6529737 0.004198167
## 36 and over.60-64.Women   0.7363392 0.006170931
## Under 18.5.65-69.Women    0.4206361 0.010809230
## 18.5-25.65-69.Women       0.5234284 0.004290669
## 26-30.65-69.Women         0.5900586 0.003642881
## 31-35.65-69.Women         0.6595351 0.004843789
## 36 and over.65-69.Women   0.7423080 0.005606810
## Under 18.5.70-74.Women    0.4589118 0.011274421
## 18.5-25.70-74.Women       0.5252136 0.005059840
## 26-30.70-74.Women         0.6083435 0.005386057
## 31-35.70-74.Women         0.6707441 0.003600362
## 36 and over.70-74.Women   0.7494196 0.009743614
## Under 18.5.75-79.Women    0.4463343 0.006097082
## 18.5-25.75-79.Women       0.5307452 0.005546982
## 26-30.75-79.Women         0.6115258 0.004805592
## 31-35.75-79.Women         0.6616960 0.006609453
## 36 and over.75-79.Women   0.7362129 0.009832806
## Under 18.5.Over 80.Women  0.4330611 0.009631482
## 18.5-25.Over 80.Women     0.5433682 0.003987085
## 26-30.Over 80.Women       0.6211068 0.003019416
## 31-35.Over 80.Women       0.6771605 0.004390929
## 36 and over.Over 80.Women 0.7384849 0.012928901
## Multiple imputation results:
##       with(nhc_all, svyby(~RALEANH2, ~BMI.Group + Age.Group + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~RALEANH2, ~BMI.Group + 
##     Age.Group + Gender, na = TRUE, svymean)))
##                             results        se
## Under 18.5.17-19.Men       902.2532 10.155340
## 18.5-25.17-19.Men         1095.5254  6.904152
## 26-30.17-19.Men           1245.4267 10.807655
## 31-35.17-19.Men           1332.6523 17.957507
## 36 and over.17-19.Men     1505.0202 27.127496
## Under 18.5.20-24.Men       868.4373 16.598880
## 18.5-25.20-24.Men         1126.5614  7.620089
## 26-30.20-24.Men           1276.3202 11.142923
## 31-35.20-24.Men           1406.8535 21.011702
## 36 and over.20-24.Men     1598.3835 39.087121
## Under 18.5.25-29.Men       890.3169 25.142590
## 18.5-25.25-29.Men         1129.7929  9.495058
## 26-30.25-29.Men           1287.6748  9.487874
## 31-35.25-29.Men           1418.1510 15.920919
## 36 and over.25-29.Men     1578.2865 35.347802
## Under 18.5.30-34.Men       939.5958 47.317213
## 18.5-25.30-34.Men         1147.4989  9.464346
## 26-30.30-34.Men           1292.4729 10.185316
## 31-35.30-34.Men           1443.5842 16.556867
## 36 and over.30-34.Men     1629.8223 38.146583
## Under 18.5.35-39.Men       901.1337 24.596243
## 18.5-25.35-39.Men         1135.5641 10.688120
## 26-30.35-39.Men           1294.5145 12.787157
## 31-35.35-39.Men           1429.6124 14.020460
## 36 and over.35-39.Men     1614.5679 29.961143
## Under 18.5.40-44.Men       939.1302 41.373516
## 18.5-25.40-44.Men         1110.2926 10.781285
## 26-30.40-44.Men           1286.7200  8.519431
## 31-35.40-44.Men           1415.8214 13.514168
## 36 and over.40-44.Men     1588.8369 26.921509
## Under 18.5.45-49.Men       842.2843 21.313844
## 18.5-25.45-49.Men         1118.7540 13.462362
## 26-30.45-49.Men           1280.7213 10.034835
## 31-35.45-49.Men           1380.0575 15.739622
## 36 and over.45-49.Men     1589.6714 34.621494
## Under 18.5.50-54.Men       876.0000 44.343963
## 18.5-25.50-54.Men         1063.6438 12.868929
## 26-30.50-54.Men           1242.6062 10.377306
## 31-35.50-54.Men           1363.4847 17.540685
## 36 and over.50-54.Men     1512.0210 20.504041
## Under 18.5.55-59.Men       819.3492 38.479458
## 18.5-25.55-59.Men         1050.3198 14.960478
## 26-30.55-59.Men           1217.2021 11.141190
## 31-35.55-59.Men           1342.9767 12.827216
## 36 and over.55-59.Men     1482.8175 26.738665
## Under 18.5.60-64.Men       904.2693 36.856698
## 18.5-25.60-64.Men         1030.2480 12.827307
## 26-30.60-64.Men           1198.2883 10.694208
## 31-35.60-64.Men           1325.5213 13.284031
## 36 and over.60-64.Men     1489.2299 25.672006
## Under 18.5.65-69.Men       896.1190 49.025422
## 18.5-25.65-69.Men         1014.9848 15.129870
## 26-30.65-69.Men           1149.1111 10.161869
## 31-35.65-69.Men           1250.2623 13.885645
## 36 and over.65-69.Men     1405.0577 22.662118
## Under 18.5.70-74.Men       811.6879 26.675750
## 18.5-25.70-74.Men         1004.5753  9.394083
## 26-30.70-74.Men           1134.3799 12.902645
## 31-35.70-74.Men           1223.9200 18.826786
## 36 and over.70-74.Men     1331.3798 30.492910
## Under 18.5.75-79.Men       928.5114 45.889582
## 18.5-25.75-79.Men          960.5220 19.025305
## 26-30.75-79.Men           1113.4330 12.783845
## 31-35.75-79.Men           1183.1601 21.085871
## 36 and over.75-79.Men     1373.5688 52.177886
## Under 18.5.Over 80.Men     741.6107 43.277415
## 18.5-25.Over 80.Men        920.7766  8.408617
## 26-30.Over 80.Men         1048.8228  9.109095
## 31-35.Over 80.Men         1141.3515 20.073109
## 36 and over.Over 80.Men   1265.9032 30.743480
## Under 18.5.17-19.Women     646.7637  9.787347
## 18.5-25.17-19.Women        733.1666  4.964662
## 26-30.17-19.Women          838.8701  7.888221
## 31-35.17-19.Women          944.0528 10.823533
## 36 and over.17-19.Women   1107.6974 17.653132
## Under 18.5.20-24.Women     625.5727 13.560613
## 18.5-25.20-24.Women        736.9966  6.607966
## 26-30.20-24.Women          853.1052  9.787407
## 31-35.20-24.Women          920.7139 18.337416
## 36 and over.20-24.Women   1081.1484 21.366008
## Under 18.5.25-29.Women     664.8396 13.307387
## 18.5-25.25-29.Women        730.3943  8.116419
## 26-30.25-29.Women          840.1309  9.549017
## 31-35.25-29.Women          954.8131 13.156083
## 36 and over.25-29.Women   1109.8564 18.905827
## Under 18.5.30-34.Women     640.4755 21.059258
## 18.5-25.30-34.Women        742.9819  7.566305
## 26-30.30-34.Women          837.1052 10.562220
## 31-35.30-34.Women          927.9410 10.654580
## 36 and over.30-34.Women   1059.2424 17.510658
## Under 18.5.35-39.Women     680.9595 15.229170
## 18.5-25.35-39.Women        737.4533  9.826455
## 26-30.35-39.Women          831.4220 10.038350
## 31-35.35-39.Women          947.1440 15.198848
## 36 and over.35-39.Women   1086.8679 17.078039
## Under 18.5.40-44.Women     654.3274 15.309425
## 18.5-25.40-44.Women        732.5673  5.370477
## 26-30.40-44.Women          841.3664  9.917418
## 31-35.40-44.Women          938.5779 12.742241
## 36 and over.40-44.Women   1113.9814 21.369330
## Under 18.5.45-49.Women     646.3731 26.391673
## 18.5-25.45-49.Women        734.6684  7.647533
## 26-30.45-49.Women          822.4282  8.766956
## 31-35.45-49.Women          940.0723 12.493770
## 36 and over.45-49.Women   1077.4962 17.518477
## Under 18.5.50-54.Women     635.0416 34.226557
## 18.5-25.50-54.Women        716.5947  7.155887
## 26-30.50-54.Women          809.5852  8.008362
## 31-35.50-54.Women          913.5487 10.427031
## 36 and over.50-54.Women   1057.3658 14.262610
## Under 18.5.55-59.Women     706.4626  9.644690
## 18.5-25.55-59.Women        703.7217 10.917836
## 26-30.55-59.Women          799.7886 10.744181
## 31-35.55-59.Women          913.6362 12.215059
## 36 and over.55-59.Women   1032.5673 17.587326
## Under 18.5.60-64.Women     617.9123 12.537367
## 18.5-25.60-64.Women        697.5902  8.625430
## 26-30.60-64.Women          782.8276  9.849148
## 31-35.60-64.Women          896.9846 14.203630
## 36 and over.60-64.Women   1034.7592 16.292280
## Under 18.5.65-69.Women     653.3302 28.136640
## 18.5-25.65-69.Women        706.7095  9.053040
## 26-30.65-69.Women          778.8077  8.856030
## 31-35.65-69.Women          857.9585 13.484518
## 36 and over.65-69.Women   1010.4967 18.557533
## Under 18.5.70-74.Women     628.7195 12.043957
## 18.5-25.70-74.Women        697.3904  8.967405
## 26-30.70-74.Women          778.0764  8.908727
## 31-35.70-74.Women          880.7671 13.032561
## 36 and over.70-74.Women    993.1256 22.846223
## Under 18.5.75-79.Women     639.3546 36.859944
## 18.5-25.75-79.Women        691.5005 10.607516
## 26-30.75-79.Women          750.7653 13.450404
## 31-35.75-79.Women          869.4390 19.331542
## 36 and over.75-79.Women    966.8471 26.173804
## Under 18.5.Over 80.Women   631.7664 25.616035
## 18.5-25.Over 80.Women      686.3762  9.625247
## 26-30.Over 80.Women        756.0610  9.848658
## 31-35.Over 80.Women        827.9587 16.110001
## 36 and over.Over 80.Women  941.9910 23.695581
## Multiple imputation results:
##       with(nhc_all, svyby(~LALEANH2, ~BMI.Group + Age.Group + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~LALEANH2, ~BMI.Group + 
##     Age.Group + Gender, na = TRUE, svymean)))
##                             results        se
## Under 18.5.17-19.Men       857.8388  9.545570
## 18.5-25.17-19.Men         1039.0126  6.435894
## 26-30.17-19.Men           1183.4158 10.066723
## 31-35.17-19.Men           1263.1244 16.615217
## 36 and over.17-19.Men     1450.9682 25.615055
## Under 18.5.20-24.Men       837.9300 18.399191
## 18.5-25.20-24.Men         1064.2976  8.127188
## 26-30.20-24.Men           1213.6030 11.048761
## 31-35.20-24.Men           1354.9156 18.457525
## 36 and over.20-24.Men     1550.2598 39.778459
## Under 18.5.25-29.Men       844.2543 30.160138
## 18.5-25.25-29.Men         1076.5608  9.788636
## 26-30.25-29.Men           1230.0122 10.866694
## 31-35.25-29.Men           1369.6921 16.183033
## 36 and over.25-29.Men     1533.5368 37.397479
## Under 18.5.30-34.Men       867.2907 50.375339
## 18.5-25.30-34.Men         1096.7990  9.446311
## 26-30.30-34.Men           1246.1687  9.106420
## 31-35.30-34.Men           1375.1653 16.062095
## 36 and over.30-34.Men     1570.9767 41.997726
## Under 18.5.35-39.Men       833.5299 19.578682
## 18.5-25.35-39.Men         1084.1245 10.056851
## 26-30.35-39.Men           1239.8217 12.152269
## 31-35.35-39.Men           1375.0565 14.131811
## 36 and over.35-39.Men     1571.2001 32.190005
## Under 18.5.40-44.Men       905.1814 45.400862
## 18.5-25.40-44.Men         1071.4254 10.187030
## 26-30.40-44.Men           1234.7843  8.717696
## 31-35.40-44.Men           1374.9869 15.452277
## 36 and over.40-44.Men     1541.4340 26.010268
## Under 18.5.45-49.Men       796.0043 12.821349
## 18.5-25.45-49.Men         1061.7516 13.223148
## 26-30.45-49.Men           1226.6705 10.036702
## 31-35.45-49.Men           1322.2905 15.625627
## 36 and over.45-49.Men     1544.7150 40.741536
## Under 18.5.50-54.Men       847.5363 34.004277
## 18.5-25.50-54.Men         1016.7381 12.306266
## 26-30.50-54.Men           1195.4493  9.727915
## 31-35.50-54.Men           1317.9241 15.029084
## 36 and over.50-54.Men     1480.5479 17.746317
## Under 18.5.55-59.Men       799.6927 43.975541
## 18.5-25.55-59.Men         1003.7995 13.864161
## 26-30.55-59.Men           1158.3446 11.816033
## 31-35.55-59.Men           1296.1320 13.680992
## 36 and over.55-59.Men     1425.6818 28.814820
## Under 18.5.60-64.Men       836.5880 36.948725
## 18.5-25.60-64.Men          987.7020 13.612347
## 26-30.60-64.Men           1145.3879 11.069011
## 31-35.60-64.Men           1277.7144 15.374156
## 36 and over.60-64.Men     1450.8616 26.580610
## Under 18.5.65-69.Men       798.3684 75.775930
## 18.5-25.65-69.Men          974.2526 15.522624
## 26-30.65-69.Men           1104.2871  9.497744
## 31-35.65-69.Men           1206.6002 15.742094
## 36 and over.65-69.Men     1379.2788 22.058375
## Under 18.5.70-74.Men       795.0167 30.440070
## 18.5-25.70-74.Men          948.7070 11.150500
## 26-30.70-74.Men           1083.4015 12.568709
## 31-35.70-74.Men           1176.2801 20.082037
## 36 and over.70-74.Men     1261.9665 32.020201
## Under 18.5.75-79.Men       841.1736 31.743314
## 18.5-25.75-79.Men          926.8365 18.394477
## 26-30.75-79.Men           1073.3092 15.617142
## 31-35.75-79.Men           1155.5534 20.603001
## 36 and over.75-79.Men     1347.9034 32.280232
## Under 18.5.Over 80.Men     705.7823 26.674893
## 18.5-25.Over 80.Men        874.1556  8.895511
## 26-30.Over 80.Men          998.0591  9.603968
## 31-35.Over 80.Men         1084.8964 18.494990
## 36 and over.Over 80.Men   1212.4821 46.416325
## Under 18.5.17-19.Women     608.0165  9.565186
## 18.5-25.17-19.Women        692.8709  5.020494
## 26-30.17-19.Women          794.0354  7.767042
## 31-35.17-19.Women          905.5960 10.272602
## 36 and over.17-19.Women   1068.5928 21.223259
## Under 18.5.20-24.Women     580.5616 17.564307
## 18.5-25.20-24.Women        694.8403  6.268368
## 26-30.20-24.Women          804.1114  8.944232
## 31-35.20-24.Women          886.8582 17.125449
## 36 and over.20-24.Women   1043.1105 21.237083
## Under 18.5.25-29.Women     629.8199 15.253437
## 18.5-25.25-29.Women        690.7734  7.822685
## 26-30.25-29.Women          805.5393 12.055319
## 31-35.25-29.Women          910.9169 13.471531
## 36 and over.25-29.Women   1069.3444 21.630751
## Under 18.5.30-34.Women     605.3011 23.894263
## 18.5-25.30-34.Women        698.7239  6.531829
## 26-30.30-34.Women          793.1287  9.947349
## 31-35.30-34.Women          890.3975 10.819315
## 36 and over.30-34.Women   1024.5975 17.780820
## Under 18.5.35-39.Women     611.8746 20.137067
## 18.5-25.35-39.Women        692.6310  9.608194
## 26-30.35-39.Women          787.0892  9.666963
## 31-35.35-39.Women          897.5912 11.496782
## 36 and over.35-39.Women   1054.8180 17.433423
## Under 18.5.40-44.Women     607.3923 16.440147
## 18.5-25.40-44.Women        689.0865  5.773303
## 26-30.40-44.Women          796.4435  8.924319
## 31-35.40-44.Women          889.3975 11.882550
## 36 and over.40-44.Women   1070.1780 21.038775
## Under 18.5.45-49.Women     619.9381 24.688212
## 18.5-25.45-49.Women        687.6427  7.615782
## 26-30.45-49.Women          777.7711  9.328571
## 31-35.45-49.Women          898.6734 12.715643
## 36 and over.45-49.Women   1048.1408 18.261450
## Under 18.5.50-54.Women     588.0167 29.016787
## 18.5-25.50-54.Women        682.6559  7.113089
## 26-30.50-54.Women          765.0834  7.945199
## 31-35.50-54.Women          879.6747  9.975399
## 36 and over.50-54.Women   1017.2950 15.051955
## Under 18.5.55-59.Women     652.0214 11.260315
## 18.5-25.55-59.Women        667.5630 10.352466
## 26-30.55-59.Women          760.4413  8.195179
## 31-35.55-59.Women          883.4914 12.084468
## 36 and over.55-59.Women   1016.4109 18.144417
## Under 18.5.60-64.Women     586.4738 51.772383
## 18.5-25.60-64.Women        658.3102  8.110082
## 26-30.60-64.Women          750.9185  9.369375
## 31-35.60-64.Women          852.8347 13.694292
## 36 and over.60-64.Women   1009.4724 17.013526
## Under 18.5.65-69.Women     604.2587 27.541214
## 18.5-25.65-69.Women        663.2220  9.038433
## 26-30.65-69.Women          739.3348 10.413286
## 31-35.65-69.Women          832.9343 10.866340
## 36 and over.65-69.Women    969.1454 15.605309
## Under 18.5.70-74.Women     572.9292 11.956339
## 18.5-25.70-74.Women        661.7472  9.000418
## 26-30.70-74.Women          743.0604  8.382014
## 31-35.70-74.Women          840.9566 11.584468
## 36 and over.70-74.Women    971.9392 25.669321
## Under 18.5.75-79.Women     628.1206 33.468907
## 18.5-25.75-79.Women        643.1583 11.495311
## 26-30.75-79.Women          708.9922 11.632746
## 31-35.75-79.Women          835.9256 18.200009
## 36 and over.75-79.Women    957.6617 24.176587
## Under 18.5.Over 80.Women   605.1687 16.914298
## 18.5-25.Over 80.Women      645.6543  7.876179
## 26-30.Over 80.Women        732.8951  8.848141
## 31-35.Over 80.Women        796.3521 17.467471
## 36 and over.Over 80.Women  914.9342 26.820425
## Multiple imputation results:
##       with(nhc_all, svyby(~RLLEANH2, ~BMI.Group + Age.Group + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~RLLEANH2, ~BMI.Group + 
##     Age.Group + Gender, na = TRUE, svymean)))
##                            results        se
## Under 18.5.17-19.Men      2373.808  33.72851
## 18.5-25.17-19.Men         2849.344  13.95307
## 26-30.17-19.Men           3258.923  17.11929
## 31-35.17-19.Men           3553.758  38.09140
## 36 and over.17-19.Men     4110.644  68.95553
## Under 18.5.20-24.Men      2340.495  27.88612
## 18.5-25.20-24.Men         2822.866  15.68086
## 26-30.20-24.Men           3199.334  22.61614
## 31-35.20-24.Men           3549.423  29.92854
## 36 and over.20-24.Men     4276.138 114.34493
## Under 18.5.25-29.Men      2272.454  37.24749
## 18.5-25.25-29.Men         2785.394  20.23055
## 26-30.25-29.Men           3143.554  18.44335
## 31-35.25-29.Men           3560.851  27.70248
## 36 and over.25-29.Men     4219.319  65.24518
## Under 18.5.30-34.Men      2259.587  76.65042
## 18.5-25.30-34.Men         2784.291  20.18442
## 26-30.30-34.Men           3163.928  15.66689
## 31-35.30-34.Men           3498.632  36.97783
## 36 and over.30-34.Men     4218.942 103.52356
## Under 18.5.35-39.Men      2455.128 104.72551
## 18.5-25.35-39.Men         2754.193  25.40653
## 26-30.35-39.Men           3136.084  17.58674
## 31-35.35-39.Men           3456.578  25.02840
## 36 and over.35-39.Men     4078.319  95.18313
## Under 18.5.40-44.Men      2321.391  69.36526
## 18.5-25.40-44.Men         2759.032  24.16924
## 26-30.40-44.Men           3085.922  18.04292
## 31-35.40-44.Men           3443.133  31.32527
## 36 and over.40-44.Men     3938.890  60.39687
## Under 18.5.45-49.Men      1984.340  69.60387
## 18.5-25.45-49.Men         2735.324  25.13480
## 26-30.45-49.Men           3060.681  19.40611
## 31-35.45-49.Men           3343.285  26.71286
## 36 and over.45-49.Men     3967.600  94.50230
## Under 18.5.50-54.Men      2112.655 112.54609
## 18.5-25.50-54.Men         2636.744  26.74351
## 26-30.50-54.Men           3016.210  20.57867
## 31-35.50-54.Men           3320.160  29.38880
## 36 and over.50-54.Men     3780.609  45.54410
## Under 18.5.55-59.Men      2200.292  75.06128
## 18.5-25.55-59.Men         2597.205  29.28507
## 26-30.55-59.Men           2963.438  23.18570
## 31-35.55-59.Men           3270.844  37.66624
## 36 and over.55-59.Men     3743.503  66.49442
## Under 18.5.60-64.Men      2286.113  92.16188
## 18.5-25.60-64.Men         2570.592  27.94006
## 26-30.60-64.Men           2952.693  24.96621
## 31-35.60-64.Men           3227.743  27.32951
## 36 and over.60-64.Men     3708.648  63.18615
## Under 18.5.65-69.Men      2011.231 125.48726
## 18.5-25.65-69.Men         2551.922  36.03587
## 26-30.65-69.Men           2870.760  18.26817
## 31-35.65-69.Men           3154.127  30.32723
## 36 and over.65-69.Men     3550.560  44.14833
## Under 18.5.70-74.Men      1939.770 110.96541
## 18.5-25.70-74.Men         2542.556  20.77112
## 26-30.70-74.Men           2818.002  26.30640
## 31-35.70-74.Men           3119.615  36.43456
## 36 and over.70-74.Men     3405.440  86.55695
## Under 18.5.75-79.Men      2082.185  74.78803
## 18.5-25.75-79.Men         2455.496  34.13812
## 26-30.75-79.Men           2824.368  23.51762
## 31-35.75-79.Men           3071.548  36.63080
## 36 and over.75-79.Men     3621.716  87.14210
## Under 18.5.Over 80.Men    1988.187 121.87491
## 18.5-25.Over 80.Men       2405.564  18.47854
## 26-30.Over 80.Men         2731.838  18.38589
## 31-35.Over 80.Men         3055.952  44.70655
## 36 and over.Over 80.Men   3445.446 149.06949
## Under 18.5.17-19.Women    1965.731  21.47435
## 18.5-25.17-19.Women       2296.621  11.58288
## 26-30.17-19.Women         2695.303  16.14573
## 31-35.17-19.Women         3054.272  30.16767
## 36 and over.17-19.Women   3655.644  64.60808
## Under 18.5.20-24.Women    1900.159  45.71528
## 18.5-25.20-24.Women       2312.884  19.05754
## 26-30.20-24.Women         2638.778  24.82515
## 31-35.20-24.Women         2923.765  41.90520
## 36 and over.20-24.Women   3519.345  59.96402
## Under 18.5.25-29.Women    1934.039  40.06873
## 18.5-25.25-29.Women       2295.305  20.38695
## 26-30.25-29.Women         2626.602  24.29286
## 31-35.25-29.Women         2991.550  30.06202
## 36 and over.25-29.Women   3586.524  56.31343
## Under 18.5.30-34.Women    1942.390  50.99399
## 18.5-25.30-34.Women       2297.828  16.27500
## 26-30.30-34.Women         2587.081  24.63127
## 31-35.30-34.Women         2927.707  25.82063
## 36 and over.30-34.Women   3498.960  42.38781
## Under 18.5.35-39.Women    1853.246  68.47853
## 18.5-25.35-39.Women       2259.504  20.26075
## 26-30.35-39.Women         2554.473  24.95747
## 31-35.35-39.Women         2857.373  33.43786
## 36 and over.35-39.Women   3494.054  50.63304
## Under 18.5.40-44.Women    1911.736  57.84822
## 18.5-25.40-44.Women       2228.463  22.21882
## 26-30.40-44.Women         2540.695  16.87876
## 31-35.40-44.Women         2874.968  24.65661
## 36 and over.40-44.Women   3511.389  45.66203
## Under 18.5.45-49.Women    1895.230  53.54643
## 18.5-25.45-49.Women       2202.728  21.00647
## 26-30.45-49.Women         2483.793  21.39026
## 31-35.45-49.Women         2852.021  31.34034
## 36 and over.45-49.Women   3449.389  43.71758
## Under 18.5.50-54.Women    1820.387  88.02606
## 18.5-25.50-54.Women       2156.883  25.09116
## 26-30.50-54.Women         2453.156  14.73415
## 31-35.50-54.Women         2771.471  26.39734
## 36 and over.50-54.Women   3288.544  46.74194
## Under 18.5.55-59.Women    1944.189 146.03373
## 18.5-25.55-59.Women       2104.715  24.32932
## 26-30.55-59.Women         2391.030  24.44870
## 31-35.55-59.Women         2706.163  37.76286
## 36 and over.55-59.Women   3319.586  50.23812
## Under 18.5.60-64.Women    2018.677 140.31110
## 18.5-25.60-64.Women       2074.853  22.44787
## 26-30.60-64.Women         2386.899  21.57738
## 31-35.60-64.Women         2665.722  24.77366
## 36 and over.60-64.Women   3288.685  38.54314
## Under 18.5.65-69.Women    1923.024 119.73982
## 18.5-25.65-69.Women       2081.859  24.67998
## 26-30.65-69.Women         2365.667  23.27448
## 31-35.65-69.Women         2641.739  26.60555
## 36 and over.65-69.Women   3215.263  51.27665
## Under 18.5.70-74.Women    1696.228  59.80173
## 18.5-25.70-74.Women       2043.601  21.34135
## 26-30.70-74.Women         2335.493  25.45292
## 31-35.70-74.Women         2651.441  26.60358
## 36 and over.70-74.Women   3106.325  46.02973
## Under 18.5.75-79.Women    1919.448  85.03953
## 18.5-25.75-79.Women       2059.162  22.31726
## 26-30.75-79.Women         2306.238  24.58262
## 31-35.75-79.Women         2683.740  40.15781
## 36 and over.75-79.Women   3089.920  72.99048
## Under 18.5.Over 80.Women  1911.589  59.91553
## 18.5-25.Over 80.Women     2056.282  22.43259
## 26-30.Over 80.Women       2344.790  16.94276
## 31-35.Over 80.Women       2629.904  34.14187
## 36 and over.Over 80.Women 3296.385 119.63646
## Multiple imputation results:
##       with(nhc_all, svyby(~LLLEANH2, ~BMI.Group + Age.Group + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~LLLEANH2, ~BMI.Group + 
##     Age.Group + Gender, na = TRUE, svymean)))
##                            results        se
## Under 18.5.17-19.Men      2350.153  36.84369
## 18.5-25.17-19.Men         2800.092  13.27288
## 26-30.17-19.Men           3207.957  16.41918
## 31-35.17-19.Men           3489.043  37.79154
## 36 and over.17-19.Men     4080.846  66.69529
## Under 18.5.20-24.Men      2322.429  29.10689
## 18.5-25.20-24.Men         2781.142  16.02371
## 26-30.20-24.Men           3151.751  23.61237
## 31-35.20-24.Men           3490.546  29.35418
## 36 and over.20-24.Men     4205.091 105.68622
## Under 18.5.25-29.Men      2248.853  29.83673
## 18.5-25.25-29.Men         2738.054  20.87086
## 26-30.25-29.Men           3085.982  18.03234
## 31-35.25-29.Men           3521.355  27.46530
## 36 and over.25-29.Men     4135.974  58.12628
## Under 18.5.30-34.Men      2223.584  74.66109
## 18.5-25.30-34.Men         2728.597  21.51052
## 26-30.30-34.Men           3116.399  14.62207
## 31-35.30-34.Men           3459.203  32.65692
## 36 and over.30-34.Men     4136.242  90.93103
## Under 18.5.35-39.Men      2442.656  92.27046
## 18.5-25.35-39.Men         2708.433  24.15974
## 26-30.35-39.Men           3087.920  18.42897
## 31-35.35-39.Men           3424.370  23.36573
## 36 and over.35-39.Men     4009.834  91.24625
## Under 18.5.40-44.Men      2276.116  76.24649
## 18.5-25.40-44.Men         2712.404  24.11557
## 26-30.40-44.Men           3048.598  18.52104
## 31-35.40-44.Men           3413.363  28.10035
## 36 and over.40-44.Men     3879.448  56.02048
## Under 18.5.45-49.Men      2039.019  16.07502
## 18.5-25.45-49.Men         2678.422  25.20111
## 26-30.45-49.Men           3014.877  20.17379
## 31-35.45-49.Men           3291.086  28.15585
## 36 and over.45-49.Men     3936.817  89.90867
## Under 18.5.50-54.Men      2070.966 131.00110
## 18.5-25.50-54.Men         2596.839  25.45322
## 26-30.50-54.Men           2977.299  18.53021
## 31-35.50-54.Men           3281.051  27.53716
## 36 and over.50-54.Men     3706.982  42.72074
## Under 18.5.55-59.Men      2141.960  90.50557
## 18.5-25.55-59.Men         2563.881  28.45431
## 26-30.55-59.Men           2924.623  23.23770
## 31-35.55-59.Men           3230.490  32.21203
## 36 and over.55-59.Men     3687.144  61.98748
## Under 18.5.60-64.Men      2223.670  53.64325
## 18.5-25.60-64.Men         2533.656  29.76645
## 26-30.60-64.Men           2900.147  22.72307
## 31-35.60-64.Men           3187.651  23.58508
## 36 and over.60-64.Men     3639.671  60.20263
## Under 18.5.65-69.Men      1978.278 119.55043
## 18.5-25.65-69.Men         2500.472  37.25460
## 26-30.65-69.Men           2836.753  18.87281
## 31-35.65-69.Men           3094.730  27.20908
## 36 and over.65-69.Men     3572.380  51.26383
## Under 18.5.70-74.Men      1906.301 181.45531
## 18.5-25.70-74.Men         2483.895  21.32891
## 26-30.70-74.Men           2773.681  26.67089
## 31-35.70-74.Men           3082.618  37.80219
## 36 and over.70-74.Men     3420.457  96.18830
## Under 18.5.75-79.Men      2113.429  84.94090
## 18.5-25.75-79.Men         2386.520  29.75111
## 26-30.75-79.Men           2777.542  21.24319
## 31-35.75-79.Men           3062.566  36.24769
## 36 and over.75-79.Men     3617.141  91.46448
## Under 18.5.Over 80.Men    1961.661 113.74472
## 18.5-25.Over 80.Men       2362.186  18.58361
## 26-30.Over 80.Men         2717.604  19.48712
## 31-35.Over 80.Men         3048.600  48.75948
## 36 and over.Over 80.Men   3344.289 130.70094
## Under 18.5.17-19.Women    1943.891  21.83018
## 18.5-25.17-19.Women       2263.349  11.82126
## 26-30.17-19.Women         2647.036  16.62343
## 31-35.17-19.Women         3008.596  28.71378
## 36 and over.17-19.Women   3596.911  62.08829
## Under 18.5.20-24.Women    1866.785  47.99875
## 18.5-25.20-24.Women       2274.380  19.40400
## 26-30.20-24.Women         2594.893  23.99174
## 31-35.20-24.Women         2899.645  38.64578
## 36 and over.20-24.Women   3465.767  57.27795
## Under 18.5.25-29.Women    1866.486  38.17255
## 18.5-25.25-29.Women       2263.358  19.98602
## 26-30.25-29.Women         2597.019  27.84305
## 31-35.25-29.Women         2948.661  30.85253
## 36 and over.25-29.Women   3545.233  49.44479
## Under 18.5.30-34.Women    1901.294  45.09585
## 18.5-25.30-34.Women       2247.210  16.16098
## 26-30.30-34.Women         2544.613  24.83687
## 31-35.30-34.Women         2890.133  27.23412
## 36 and over.30-34.Women   3475.975  42.40403
## Under 18.5.35-39.Women    1842.993  69.44202
## 18.5-25.35-39.Women       2223.555  18.36666
## 26-30.35-39.Women         2521.440  25.21538
## 31-35.35-39.Women         2814.445  30.89789
## 36 and over.35-39.Women   3446.184  52.46191
## Under 18.5.40-44.Women    1919.745  62.63826
## 18.5-25.40-44.Women       2198.624  21.16001
## 26-30.40-44.Women         2505.470  17.26148
## 31-35.40-44.Women         2843.074  24.73268
## 36 and over.40-44.Women   3463.541  48.04165
## Under 18.5.45-49.Women    1882.546  61.03496
## 18.5-25.45-49.Women       2171.752  19.95786
## 26-30.45-49.Women         2450.856  23.62189
## 31-35.45-49.Women         2811.585  29.50678
## 36 and over.45-49.Women   3406.140  43.64962
## Under 18.5.50-54.Women    1830.361  86.42001
## 18.5-25.50-54.Women       2121.602  21.68461
## 26-30.50-54.Women         2420.848  16.82577
## 31-35.50-54.Women         2711.866  26.92178
## 36 and over.50-54.Women   3241.857  49.12806
## Under 18.5.55-59.Women    1847.961 160.97197
## 18.5-25.55-59.Women       2054.453  25.37685
## 26-30.55-59.Women         2344.303  25.03780
## 31-35.55-59.Women         2682.837  33.47038
## 36 and over.55-59.Women   3277.124  50.94305
## Under 18.5.60-64.Women    1947.885 193.27271
## 18.5-25.60-64.Women       2048.284  21.22905
## 26-30.60-64.Women         2345.709  20.32156
## 31-35.60-64.Women         2633.073  25.37714
## 36 and over.60-64.Women   3262.765  36.55910
## Under 18.5.65-69.Women    1768.672 116.96275
## 18.5-25.65-69.Women       2042.971  24.66015
## 26-30.65-69.Women         2328.852  21.66931
## 31-35.65-69.Women         2616.956  25.71532
## 36 and over.65-69.Women   3212.298  49.68498
## Under 18.5.70-74.Women    1659.845  59.91614
## 18.5-25.70-74.Women       1992.000  22.37788
## 26-30.70-74.Women         2298.950  27.72682
## 31-35.70-74.Women         2597.844  29.09336
## 36 and over.70-74.Women   3069.865  53.89291
## Under 18.5.75-79.Women    1850.166 101.58011
## 18.5-25.75-79.Women       2007.757  27.23694
## 26-30.75-79.Women         2285.319  22.17181
## 31-35.75-79.Women         2667.641  49.16285
## 36 and over.75-79.Women   3089.058  71.35488
## Under 18.5.Over 80.Women  1806.090  47.23532
## 18.5-25.Over 80.Women     2019.814  21.73086
## 26-30.Over 80.Women       2323.601  17.15005
## 31-35.Over 80.Women       2602.393  31.14577
## 36 and over.Over 80.Women 3266.305 149.74626
## Multiple imputation results:
##       with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + Age.Group2 + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~DXDTOPF, ~BMI.Group + 
##     Age.Group2 + Gender, na = TRUE, svymean)))
##                            results        se
## Under 18.5.17-29.Men      15.92597 0.2880911
## 18.5-25.17-29.Men         20.16221 0.1350881
## 26-30.17-29.Men           26.51774 0.1857842
## 31-35.17-29.Men           31.26481 0.2937423
## 36 and over.17-29.Men     37.13195 0.2825926
## Under 18.5.30-39.Men      17.00404 0.8905113
## 18.5-25.30-39.Men         21.87514 0.2549725
## 26-30.30-39.Men           27.09983 0.1898124
## 31-35.30-39.Men           30.88955 0.2654829
## 36 and over.30-39.Men     35.98202 0.4166836
## Under 18.5.40-49.Men      16.21545 1.1365183
## 18.5-25.40-49.Men         22.79274 0.2742798
## 26-30.40-49.Men           27.53098 0.1704249
## 31-35.40-49.Men           31.40377 0.2342873
## 36 and over.40-49.Men     36.10276 0.3745531
## Under 18.5.50-59.Men      19.39257 1.0632240
## 18.5-25.50-59.Men         24.23040 0.3262502
## 26-30.50-59.Men           28.50327 0.2270554
## 31-35.50-59.Men           32.11418 0.2621986
## 36 and over.50-59.Men     37.04016 0.3443565
## Under 18.5.60-69.Men      17.31624 0.8761308
## 18.5-25.60-69.Men         25.53662 0.3195867
## 26-30.60-69.Men           29.82102 0.1818538
## 31-35.60-69.Men           33.56595 0.2626835
## 36 and over.60-69.Men     37.50991 0.3274938
## Under 18.5.70-79.Men      21.37736 1.6579852
## 18.5-25.70-79.Men         26.38905 0.3508113
## 26-30.70-79.Men           31.02863 0.2330131
## 31-35.70-79.Men           35.56106 0.4205657
## 36 and over.70-79.Men     39.29516 0.7288182
## Under 18.5.Over 80.Men    21.83929 2.2782635
## 18.5-25.Over 80.Men       27.79047 0.3170939
## 26-30.Over 80.Men         31.91233 0.2746580
## 31-35.Over 80.Men         35.95829 0.4685920
## 36 and over.Over 80.Men   39.05557 1.0084494
## Under 18.5.17-29.Women    26.34154 0.3964190
## 18.5-25.17-29.Women       32.43661 0.1826140
## 26-30.17-29.Women         38.98581 0.2054122
## 31-35.17-29.Women         43.35662 0.2644618
## 36 and over.17-29.Women   47.85575 0.3880336
## Under 18.5.30-39.Women    26.39055 1.0181271
## 18.5-25.30-39.Women       33.07120 0.2415657
## 26-30.30-39.Women         39.50890 0.2554525
## 31-35.30-39.Women         43.26245 0.2883490
## 36 and over.30-39.Women   47.37787 0.2522193
## Under 18.5.40-49.Women    26.48777 0.7438327
## 18.5-25.40-49.Women       33.78077 0.2751313
## 26-30.40-49.Women         40.09134 0.1938172
## 31-35.40-49.Women         43.29849 0.2553757
## 36 and over.40-49.Women   47.43002 0.2820883
## Under 18.5.50-59.Women    27.36197 1.6053391
## 18.5-25.50-59.Women       35.55999 0.3620473
## 26-30.50-59.Women         41.68079 0.2354801
## 31-35.50-59.Women         44.38882 0.2173313
## 36 and over.50-59.Women   48.18971 0.2787760
## Under 18.5.60-69.Women    25.28404 1.7057731
## 18.5-25.60-69.Women       37.09267 0.3101707
## 26-30.60-69.Women         42.04228 0.2141829
## 31-35.60-69.Women         45.32612 0.2311031
## 36 and over.60-69.Women   48.87854 0.2272309
## Under 18.5.70-79.Women    28.58608 1.0990563
## 18.5-25.70-79.Women       37.48806 0.3770101
## 26-30.70-79.Women         42.64121 0.3165314
## 31-35.70-79.Women         45.17346 0.3583882
## 36 and over.70-79.Women   48.95483 0.3398502
## Under 18.5.Over 80.Women  28.59596 1.8052059
## 18.5-25.Over 80.Women     37.33760 0.4345367
## 26-30.Over 80.Women       42.12256 0.3071662
## 31-35.Over 80.Women       45.07939 0.4931797
## 36 and over.Over 80.Women 47.83976 0.8749159
## Multiple imputation results:
##       with(nhc_all, svyby(~TOTLEANH2, ~BMI.Group + Age.Group2 + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~TOTLEANH2, ~BMI.Group + 
##     Age.Group2 + Gender, na = TRUE, svymean)))
##                            results         se
## Under 18.5.17-29.Men      14.18993 0.06620679
## 18.5-25.17-29.Men         17.03047 0.04004614
## 26-30.17-29.Men           19.25454 0.05431048
## 31-35.17-29.Men           21.35487 0.09969056
## 36 and over.17-29.Men     24.81654 0.17940967
## Under 18.5.30-39.Men      14.39347 0.25142194
## 18.5-25.30-39.Men         17.13825 0.06255668
## 26-30.30-39.Men           19.35769 0.05924171
## 31-35.30-39.Men           21.49515 0.08314862
## 36 and over.30-39.Men     24.98702 0.33232299
## Under 18.5.40-49.Men      14.01790 0.27411439
## 18.5-25.40-49.Men         17.01738 0.08077877
## 26-30.40-49.Men           19.23190 0.05672116
## 31-35.40-49.Men           21.28099 0.08887941
## 36 and over.40-49.Men     24.63012 0.31377043
## Under 18.5.50-59.Men      13.62046 0.29834080
## 18.5-25.50-59.Men         16.54667 0.09440543
## 26-30.50-59.Men           18.91887 0.07759519
## 31-35.50-59.Men           20.97494 0.07400680
## 36 and over.50-59.Men     23.79540 0.17325527
## Under 18.5.60-69.Men      13.80563 0.36498424
## 18.5-25.60-69.Men         16.35488 0.11339339
## 26-30.60-69.Men           18.61431 0.06962916
## 31-35.60-69.Men           20.60309 0.09012827
## 36 and over.60-69.Men     23.35489 0.20169354
## Under 18.5.70-79.Men      13.34242 0.30260729
## 18.5-25.70-79.Men         16.14846 0.08016229
## 26-30.70-79.Men           18.20738 0.08313514
## 31-35.70-79.Men           19.96716 0.13211376
## 36 and over.70-79.Men     22.45705 0.28037480
## Under 18.5.Over 80.Men    12.71320 0.47875401
## 18.5-25.Over 80.Men       15.67095 0.06516348
## 26-30.Over 80.Men         17.73169 0.08918354
## 31-35.Over 80.Men         19.64951 0.19561727
## 36 and over.Over 80.Men   21.99061 0.58926889
## Under 18.5.17-29.Women    12.24173 0.09128891
## 18.5-25.17-29.Women       14.13676 0.04349584
## 26-30.17-29.Women         15.94785 0.06096156
## 31-35.17-29.Women         17.63195 0.09260492
## 36 and over.17-29.Women   20.54418 0.17237104
## Under 18.5.30-39.Women    12.36923 0.15672174
## 18.5-25.30-39.Women       14.15337 0.04841495
## 26-30.30-39.Women         15.80121 0.08162463
## 31-35.30-39.Women         17.57222 0.09218202
## 36 and over.30-39.Women   20.44691 0.14721283
## Under 18.5.40-49.Women    12.40759 0.18149430
## 18.5-25.40-49.Women       14.10641 0.05547401
## 26-30.40-49.Women         15.67664 0.06054191
## 31-35.40-49.Women         17.60326 0.08285978
## 36 and over.40-49.Women   20.69242 0.16301033
## Under 18.5.50-59.Women    12.14076 0.30749334
## 18.5-25.50-59.Women       13.82666 0.07071320
## 26-30.50-59.Women         15.43390 0.06508160
## 31-35.50-59.Women         17.38923 0.06875895
## 36 and over.50-59.Women   20.13363 0.15118564
## Under 18.5.60-69.Women    12.36909 0.24049902
## 18.5-25.60-69.Women       13.61451 0.07230279
## 26-30.60-69.Women         15.23531 0.06857433
## 31-35.60-69.Women         16.91557 0.08611172
## 36 and over.60-69.Women   19.70941 0.13307205
## Under 18.5.70-79.Women    12.07689 0.19461417
## 18.5-25.70-79.Women       13.49192 0.06758383
## 26-30.70-79.Women         15.07798 0.07823139
## 31-35.70-79.Women         16.84079 0.10249077
## 36 and over.70-79.Women   19.10634 0.17362320
## Under 18.5.Over 80.Women  12.26802 0.23795322
## 18.5-25.Over 80.Women     13.49292 0.09396660
## 26-30.Over 80.Women       15.18013 0.07429699
## 31-35.Over 80.Women       16.84888 0.13907604
## 36 and over.Over 80.Women 19.14163 0.31361488
## Multiple imputation results:
##       with(nhc_all, svyby(~WHRATIO, ~BMI.Group + Age.Group2 + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~WHRATIO, ~BMI.Group + 
##     Age.Group2 + Gender, na = TRUE, svymean)))
##                             results          se
## Under 18.5.17-29.Men      0.4001118 0.002485802
## 18.5-25.17-29.Men         0.4564718 0.001067242
## 26-30.17-29.Men           0.5330169 0.001606299
## 31-35.17-29.Men           0.6009577 0.002233341
## 36 and over.17-29.Men     0.7143128 0.005330513
## Under 18.5.30-39.Men      0.4101081 0.005311050
## 18.5-25.30-39.Men         0.4819382 0.002131547
## 26-30.30-39.Men           0.5489352 0.001684260
## 31-35.30-39.Men           0.6125958 0.002928598
## 36 and over.30-39.Men     0.7146035 0.008696827
## Under 18.5.40-49.Men      0.4116873 0.006706126
## 18.5-25.40-49.Men         0.4902322 0.001866726
## 26-30.40-49.Men           0.5580544 0.001629438
## 31-35.40-49.Men           0.6228596 0.002098653
## 36 and over.40-49.Men     0.7232868 0.007500328
## Under 18.5.50-59.Men      0.4303823 0.006720898
## 18.5-25.50-59.Men         0.5043982 0.002250269
## 26-30.50-59.Men           0.5687621 0.001852720
## 31-35.50-59.Men           0.6344142 0.002224896
## 36 and over.50-59.Men     0.7267989 0.005615645
## Under 18.5.60-69.Men      0.4293165 0.005162250
## 18.5-25.60-69.Men         0.5182492 0.001918554
## 26-30.60-69.Men           0.5875297 0.001770305
## 31-35.60-69.Men           0.6522941 0.002164307
## 36 and over.60-69.Men     0.7339121 0.004736224
## Under 18.5.70-79.Men      0.4590186 0.009121708
## 18.5-25.70-79.Men         0.5284346 0.003100723
## 26-30.70-79.Men           0.5991768 0.001771581
## 31-35.70-79.Men           0.6620595 0.003473638
## 36 and over.70-79.Men     0.7504025 0.009528780
## Under 18.5.Over 80.Men    0.4376635 0.013256925
## 18.5-25.Over 80.Men       0.5400620 0.002354912
## 26-30.Over 80.Men         0.6070902 0.002310217
## 31-35.Over 80.Men         0.6724158 0.006080407
## 36 and over.Over 80.Men   0.7531562 0.014856153
## Under 18.5.17-29.Women    0.4173048 0.003195112
## 18.5-25.17-29.Women       0.4740916 0.001442081
## 26-30.17-29.Women         0.5490019 0.002241852
## 31-35.17-29.Women         0.6241723 0.004198810
## 36 and over.17-29.Women   0.7183992 0.005788710
## Under 18.5.30-39.Women    0.4183434 0.003531828
## 18.5-25.30-39.Women       0.4788840 0.002384013
## 26-30.30-39.Women         0.5554050 0.002076413
## 31-35.30-39.Women         0.6168386 0.003738097
## 36 and over.30-39.Women   0.7115330 0.004342369
## Under 18.5.40-49.Women    0.4304762 0.003399723
## 18.5-25.40-49.Women       0.4880264 0.002172367
## 26-30.40-49.Women         0.5608969 0.002426273
## 31-35.40-49.Women         0.6307340 0.002416063
## 36 and over.40-49.Women   0.7222901 0.005566249
## Under 18.5.50-59.Women    0.4256618 0.010224711
## 18.5-25.50-59.Women       0.4964770 0.002622391
## 26-30.50-59.Women         0.5789162 0.002547487
## 31-35.50-59.Women         0.6467752 0.003187396
## 36 and over.50-59.Women   0.7313280 0.005578684
## Under 18.5.60-69.Women    0.4229463 0.007332110
## 18.5-25.60-69.Women       0.5153120 0.002798640
## 26-30.60-69.Women         0.5883299 0.002623972
## 31-35.60-69.Women         0.6560048 0.002804911
## 36 and over.60-69.Women   0.7391187 0.004337805
## Under 18.5.70-79.Women    0.4543716 0.007868627
## 18.5-25.70-79.Women       0.5276236 0.004132627
## 26-30.70-79.Women         0.6099302 0.003414640
## 31-35.70-79.Women         0.6673968 0.003501497
## 36 and over.70-79.Women   0.7436238 0.006910621
## Under 18.5.Over 80.Women  0.4330611 0.009631482
## 18.5-25.Over 80.Women     0.5433682 0.003987085
## 26-30.Over 80.Women       0.6211068 0.003019416
## 31-35.Over 80.Women       0.6771605 0.004390929
## 36 and over.Over 80.Women 0.7384849 0.012928901
## Multiple imputation results:
##       with(nhc_all, svyby(~RALEANH2, ~BMI.Group + Age.Group2 + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~RALEANH2, ~BMI.Group + 
##     Age.Group2 + Gender, na = TRUE, svymean)))
##                             results        se
## Under 18.5.17-29.Men       885.6327 10.227848
## 18.5-25.17-29.Men         1118.0398  5.200218
## 26-30.17-29.Men           1276.2703  6.508599
## 31-35.17-29.Men           1398.4516 12.601970
## 36 and over.17-29.Men     1572.3397 22.131431
## Under 18.5.30-39.Men       922.4434 27.567676
## 18.5-25.30-39.Men         1141.7347  7.301046
## 26-30.30-39.Men           1293.5385  9.175084
## 31-35.30-39.Men           1435.7446  9.722775
## 36 and over.30-39.Men     1621.2453 25.159311
## Under 18.5.40-49.Men       920.2909 32.648256
## 18.5-25.40-49.Men         1114.3774  8.535421
## 26-30.40-49.Men           1283.6457  7.183284
## 31-35.40-49.Men           1400.0464 10.873004
## 36 and over.40-49.Men     1589.2410 21.716504
## Under 18.5.50-59.Men       849.2973 34.125586
## 18.5-25.50-59.Men         1058.0566  9.602666
## 26-30.50-59.Men           1232.6937  8.673818
## 31-35.50-59.Men           1354.2974  9.591336
## 36 and over.50-59.Men     1501.7695 15.871882
## Under 18.5.60-69.Men       901.3620 29.948394
## 18.5-25.60-69.Men         1023.1081 10.061362
## 26-30.60-69.Men           1173.6370  7.641276
## 31-35.60-69.Men           1293.8377 10.230686
## 36 and over.60-69.Men     1444.5072 17.022443
## Under 18.5.70-79.Men       843.6208 23.591163
## 18.5-25.70-79.Men          985.7018  9.570538
## 26-30.70-79.Men           1125.0683 11.064245
## 31-35.70-79.Men           1206.8781 16.598105
## 36 and over.70-79.Men     1343.6781 28.006193
## Under 18.5.Over 80.Men     741.6107 43.277415
## 18.5-25.Over 80.Men        920.7766  8.408617
## 26-30.Over 80.Men         1048.8228  9.109095
## 31-35.Over 80.Men         1141.3515 20.073109
## 36 and over.Over 80.Men   1265.9032 30.743480
## Under 18.5.17-29.Women     644.9918  8.283550
## 18.5-25.17-29.Women        733.9717  4.241143
## 26-30.17-29.Women          845.1983  6.591546
## 31-35.17-29.Women          939.7006 10.811436
## 36 and over.17-29.Women   1096.2578 14.016791
## Under 18.5.30-39.Women     656.4776 14.662633
## 18.5-25.30-39.Women        740.1270  5.411527
## 26-30.30-39.Women          833.9638  7.699247
## 31-35.30-39.Women          937.2889  9.654177
## 36 and over.30-39.Women   1073.8670 12.312053
## Under 18.5.40-49.Women     650.4684 16.101166
## 18.5-25.40-49.Women        733.5949  4.721499
## 26-30.40-49.Women          832.0361  6.750187
## 31-35.40-49.Women          939.3143  8.383070
## 36 and over.40-49.Women   1092.8890 14.217025
## Under 18.5.50-59.Women     641.6834 31.307799
## 18.5-25.50-59.Women        711.4458  6.515243
## 26-30.50-59.Women          805.6913  6.667889
## 31-35.50-59.Women          913.5837  7.683077
## 36 and over.50-59.Women   1045.8413 10.977401
## Under 18.5.60-69.Women     643.0203 21.275993
## 18.5-25.60-69.Women        701.7874  6.110838
## 26-30.60-69.Women          780.9300  6.704362
## 31-35.60-69.Women          878.9744 10.406727
## 36 and over.60-69.Women   1023.2322 11.111769
## Under 18.5.70-79.Women     632.7584 17.408160
## 18.5-25.70-79.Women        694.8215  6.947488
## 26-30.70-79.Women          764.3894  7.500010
## 31-35.70-79.Women          876.4893 12.138198
## 36 and over.70-79.Women    981.6247 19.315464
## Under 18.5.Over 80.Women   631.7664 25.616035
## 18.5-25.Over 80.Women      686.3762  9.625247
## 26-30.Over 80.Women        756.0610  9.848658
## 31-35.Over 80.Women        827.9587 16.110001
## 36 and over.Over 80.Women  941.9910 23.695581
## Multiple imputation results:
##       with(nhc_all, svyby(~LALEANH2, ~BMI.Group + Age.Group2 + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~LALEANH2, ~BMI.Group + 
##     Age.Group2 + Gender, na = TRUE, svymean)))
##                             results        se
## Under 18.5.17-29.Men       846.4727 10.600125
## 18.5-25.17-29.Men         1060.2434  5.255490
## 26-30.17-29.Men           1216.0418  7.247509
## 31-35.17-29.Men           1344.8285 11.789274
## 36 and over.17-29.Men     1524.6680 23.669031
## Under 18.5.30-39.Men       852.2348 28.905840
## 18.5-25.30-39.Men         1090.6775  7.140817
## 26-30.30-39.Men           1242.8559  8.185002
## 31-35.30-39.Men           1375.1042  9.504765
## 36 and over.30-39.Men     1571.1023 28.378643
## Under 18.5.40-49.Men       883.9433 36.873037
## 18.5-25.40-49.Men         1066.7554  8.210000
## 26-30.40-49.Men           1230.6261  7.129204
## 31-35.40-49.Men           1351.7432 12.186734
## 36 and over.40-49.Men     1543.0229 25.027527
## Under 18.5.50-59.Men       824.9850 33.084765
## 18.5-25.50-59.Men         1011.3125 10.485637
## 26-30.50-59.Men           1180.9713  8.685264
## 31-35.50-59.Men           1308.1615  9.762535
## 36 and over.50-59.Men     1461.2878 15.911663
## Under 18.5.60-69.Men       822.9547 38.519778
## 18.5-25.60-69.Men          981.4106 10.884622
## 26-30.60-69.Men           1124.7851  7.487850
## 31-35.60-69.Men           1247.7757 12.179008
## 36 and over.60-69.Men     1412.8279 18.269957
## Under 18.5.70-79.Men       807.6334 21.831629
## 18.5-25.70-79.Men          939.3371  8.481218
## 26-30.70-79.Men           1078.9151 11.210931
## 31-35.70-79.Men           1167.6142 15.908403
## 36 and over.70-79.Men     1287.0176 25.782089
## Under 18.5.Over 80.Men     705.7823 26.674893
## 18.5-25.Over 80.Men        874.1556  8.895511
## 26-30.Over 80.Men          998.0591  9.603968
## 31-35.Over 80.Men         1084.8964 18.494990
## 36 and over.Over 80.Men   1212.4821 46.416325
## Under 18.5.17-29.Women     605.1938 10.320805
## 18.5-25.17-29.Women        693.0842  3.874504
## 26-30.17-29.Women          802.5892  7.345901
## 31-35.17-29.Women          900.6328 10.373577
## 36 and over.17-29.Women   1057.1347 15.010909
## Under 18.5.30-39.Women     607.8994 16.580707
## 18.5-25.30-39.Women        695.5776  5.579801
## 26-30.30-39.Women          789.7903  7.628863
## 31-35.30-39.Women          893.8993  8.409365
## 36 and over.30-39.Women   1040.5959 12.870589
## Under 18.5.40-49.Women     613.4788 14.408996
## 18.5-25.40-49.Women        688.3803  5.090669
## 26-30.40-49.Women          787.2441  6.692919
## 31-35.40-49.Women          893.9684  8.767274
## 36 and over.40-49.Women   1057.4381 13.898908
## Under 18.5.50-59.Women     593.9688 26.461808
## 18.5-25.50-59.Women        676.6190  6.519955
## 26-30.50-59.Women          763.2383  5.670057
## 31-35.50-59.Women          881.2027  7.742978
## 36 and over.50-59.Women   1016.8841 11.063423
## Under 18.5.60-69.Women     599.0816 24.941836
## 18.5-25.60-69.Women        660.5709  5.783964
## 26-30.60-69.Women          745.4502  7.652560
## 31-35.60-69.Women          843.6508  9.153797
## 36 and over.60-69.Women    990.3133 12.142029
## Under 18.5.70-79.Women     593.8891 17.946228
## 18.5-25.70-79.Women        653.6396  7.692197
## 26-30.70-79.Women          725.9870  7.222889
## 31-35.70-79.Women          839.0567 10.709690
## 36 and over.70-79.Women    965.6906 19.074486
## Under 18.5.Over 80.Women   605.1687 16.914298
## 18.5-25.Over 80.Women      645.6543  7.876179
## 26-30.Over 80.Women        732.8951  8.848141
## 31-35.Over 80.Women        796.3521 17.467471
## 36 and over.Over 80.Women  914.9342 26.820425
## Multiple imputation results:
##       with(nhc_all, svyby(~RLLEANH2, ~BMI.Group + Age.Group2 + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~RLLEANH2, ~BMI.Group + 
##     Age.Group2 + Gender, na = TRUE, svymean)))
##                            results        se
## Under 18.5.17-29.Men      2335.834  20.42722
## 18.5-25.17-29.Men         2819.724  11.14454
## 26-30.17-29.Men           3183.572  12.07874
## 31-35.17-29.Men           3554.542  20.80708
## 36 and over.17-29.Men     4220.376  41.94835
## Under 18.5.30-39.Men      2346.790  77.33961
## 18.5-25.30-39.Men         2769.754  17.99815
## 26-30.30-39.Men           3149.395  11.05933
## 31-35.30-39.Men           3475.035  19.25853
## 36 and over.30-39.Men     4139.875  72.79899
## Under 18.5.40-49.Men      2255.825  65.78163
## 18.5-25.40-49.Men         2747.587  19.14942
## 26-30.40-49.Men           3072.986  14.87116
## 31-35.40-49.Men           3399.092  22.97360
## 36 and over.40-49.Men     3952.793  61.01054
## Under 18.5.50-59.Men      2153.963  71.93199
## 18.5-25.50-59.Men         2620.164  18.52305
## 26-30.50-59.Men           2995.619  16.25350
## 31-35.50-59.Men           3298.067  22.77860
## 36 and over.50-59.Men     3767.584  38.28870
## Under 18.5.60-69.Men      2188.060  96.02586
## 18.5-25.60-69.Men         2561.858  24.39463
## 26-30.60-69.Men           2911.622  17.21898
## 31-35.60-69.Men           3196.751  21.01457
## 36 and over.60-69.Men     3624.652  42.34127
## Under 18.5.70-79.Men      1978.699  84.61489
## 18.5-25.70-79.Men         2505.257  18.05443
## 26-30.70-79.Men           2820.832  17.66921
## 31-35.70-79.Men           3099.518  27.12514
## 36 and over.70-79.Men     3468.486  78.27011
## Under 18.5.Over 80.Men    1988.187 121.87491
## 18.5-25.Over 80.Men       2405.564  18.47854
## 26-30.Over 80.Men         2731.838  18.38589
## 31-35.Over 80.Men         3055.952  44.70655
## 36 and over.Over 80.Men   3445.446 149.06949
## Under 18.5.17-29.Women    1931.664  22.60624
## 18.5-25.17-29.Women       2303.163  10.89775
## 26-30.17-29.Women         2645.718  15.09154
## 31-35.17-29.Women         2975.525  24.57843
## 36 and over.17-29.Women   3567.879  40.83689
## Under 18.5.30-39.Women    1907.154  43.77640
## 18.5-25.30-39.Women       2278.038  12.62774
## 26-30.30-39.Women         2569.056  19.83106
## 31-35.30-39.Women         2893.469  20.32531
## 36 and over.30-39.Women   3496.363  33.30873
## Under 18.5.40-49.Women    1903.728  39.74289
## 18.5-25.40-49.Women       2215.876  16.72910
## 26-30.40-49.Women         2512.661  13.43560
## 31-35.40-49.Women         2863.661  18.23603
## 36 and over.40-49.Women   3475.546  33.95892
## Under 18.5.50-59.Women    1831.900  80.93618
## 18.5-25.50-59.Women       2136.017  17.36623
## 26-30.50-59.Women         2428.462  14.93672
## 31-35.50-59.Women         2745.325  16.64156
## 36 and over.50-59.Women   3302.970  33.53873
## Under 18.5.60-69.Women    1950.868  95.49333
## 18.5-25.60-69.Women       2078.078  17.85842
## 26-30.60-69.Women         2376.876  16.09178
## 31-35.60-69.Women         2654.654  18.33216
## 36 and over.60-69.Women   3253.803  30.55780
## Under 18.5.70-79.Women    1780.999  56.94016
## 18.5-25.70-79.Women       2050.388  14.53014
## 26-30.70-79.Women         2320.832  18.67559
## 31-35.70-79.Women         2663.639  23.62410
## 36 and over.70-79.Women   3099.145  43.35479
## Under 18.5.Over 80.Women  1911.589  59.91553
## 18.5-25.Over 80.Women     2056.282  22.43259
## 26-30.Over 80.Women       2344.790  16.94276
## 31-35.Over 80.Women       2629.904  34.14187
## 36 and over.Over 80.Women 3296.385 119.63646
## Multiple imputation results:
##       with(nhc_all, svyby(~LLLEANH2, ~BMI.Group + Age.Group2 + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~LLLEANH2, ~BMI.Group + 
##     Age.Group2 + Gender, na = TRUE, svymean)))
##                            results        se
## Under 18.5.17-29.Men      2314.463  19.86436
## 18.5-25.17-29.Men         2774.014  10.97647
## 26-30.17-29.Men           3130.726  12.84702
## 31-35.17-29.Men           3502.083  21.14375
## 36 and over.17-29.Men     4151.246  38.01832
## Under 18.5.30-39.Men      2321.280  77.54486
## 18.5-25.30-39.Men         2718.858  18.07851
## 26-30.30-39.Men           3101.534  10.65871
## 31-35.30-39.Men           3439.658  16.65222
## 36 and over.30-39.Men     4065.167  65.13375
## Under 18.5.40-49.Men      2229.994  65.11193
## 18.5-25.40-49.Men         2695.999  19.60159
## 26-30.40-49.Men           3031.317  15.65954
## 31-35.40-49.Men           3359.428  21.79641
## 36 and over.40-49.Men     3907.230  55.72242
## Under 18.5.50-59.Men      2104.429  83.51880
## 18.5-25.50-59.Men         2583.019  17.24879
## 26-30.50-59.Men           2956.745  15.54138
## 31-35.50-59.Men           3258.400  20.41177
## 36 and over.50-59.Men     3700.018  33.98649
## Under 18.5.60-69.Men      2136.137  76.53602
## 18.5-25.60-69.Men         2518.133  26.22153
## 26-30.60-69.Men           2868.369  15.31146
## 31-35.60-69.Men           3148.532  18.62130
## 36 and over.60-69.Men     3603.918  40.56162
## Under 18.5.70-79.Men      1962.918 135.19164
## 18.5-25.70-79.Men         2442.177  18.98200
## 26-30.70-79.Men           2775.398  18.18788
## 31-35.70-79.Men           3074.234  25.29088
## 36 and over.70-79.Men     3477.791  79.45404
## Under 18.5.Over 80.Men    1961.661 113.74472
## 18.5-25.Over 80.Men       2362.186  18.58361
## 26-30.Over 80.Men         2717.604  19.48712
## 31-35.Over 80.Men         3048.600  48.75948
## 36 and over.Over 80.Men   3344.289 130.70094
## Under 18.5.17-29.Women    1890.739  22.16829
## 18.5-25.17-29.Women       2268.056  11.45051
## 26-30.17-29.Women         2606.424  15.96341
## 31-35.17-29.Women         2939.503  24.13765
## 36 and over.17-29.Women   3517.834  38.38690
## Under 18.5.30-39.Women    1878.249  40.19878
## 18.5-25.30-39.Women       2234.995  12.19723
## 26-30.30-39.Women         2531.804  19.17689
## 31-35.30-39.Women         2853.289  19.74405
## 36 and over.30-39.Women   3460.204  35.76589
## Under 18.5.40-49.Women    1901.698  46.36110
## 18.5-25.40-49.Women       2185.482  15.82004
## 26-30.40-49.Women         2478.563  14.12715
## 31-35.40-49.Women         2827.557  18.65926
## 36 and over.40-49.Women   3430.357  33.83258
## Under 18.5.50-59.Women    1831.998  79.73252
## 18.5-25.50-59.Women       2094.743  16.24552
## 26-30.50-59.Women         2390.423  16.54347
## 31-35.50-59.Women         2700.244  17.93813
## 36 and over.50-59.Women   3258.246  36.26288
## Under 18.5.60-69.Women    1820.840 105.69881
## 18.5-25.60-69.Women       2045.839  16.83964
## 26-30.60-69.Women         2337.751  16.30473
## 31-35.60-69.Women         2625.635  18.25757
## 36 and over.60-69.Women   3238.789  29.01073
## Under 18.5.70-79.Women    1732.123  58.08545
## 18.5-25.70-79.Women       1998.872  18.35952
## 26-30.70-79.Women         2292.119  18.53672
## 31-35.70-79.Women         2624.201  27.23053
## 36 and over.70-79.Women   3078.265  43.79899
## Under 18.5.Over 80.Women  1806.090  47.23532
## 18.5-25.Over 80.Women     2019.814  21.73086
## 26-30.Over 80.Women       2323.601  17.15005
## 31-35.Over 80.Women       2602.393  31.14577
## 36 and over.Over 80.Women 3266.305 149.74626
## Multiple imputation results:
##       with(nhc_all, svyby(~TFWHR, ~BMI.Group + Age.Group2 + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~TFWHR, ~BMI.Group + Age.Group2 + 
##     Gender, na = TRUE, svymean)))
##                             results         se
## Under 18.5.17-29.Men       6.388291 0.13435656
## 18.5-25.17-29.Men          9.310294 0.07663535
## 26-30.17-29.Men           14.245330 0.13435782
## 31-35.17-29.Men           18.870458 0.22770466
## 36 and over.17-29.Men     26.677659 0.38257185
## Under 18.5.30-39.Men       6.994564 0.40128484
## 18.5-25.30-39.Men         10.628804 0.16633856
## 26-30.30-39.Men           14.974726 0.13883737
## 31-35.30-39.Men           19.013796 0.23383659
## 36 and over.30-39.Men     25.842629 0.58625045
## Under 18.5.40-49.Men       6.616501 0.36337722
## 18.5-25.40-49.Men         11.255864 0.16283667
## 26-30.40-49.Men           15.429811 0.12539469
## 31-35.40-49.Men           19.616080 0.18737778
## 36 and over.40-49.Men     26.293003 0.51277641
## Under 18.5.50-59.Men       8.352011 0.53080099
## 18.5-25.50-59.Men         12.356991 0.19111771
## 26-30.50-59.Men           16.279255 0.16885493
## 31-35.50-59.Men           20.398580 0.20620149
## 36 and over.50-59.Men     27.045456 0.44804380
## Under 18.5.60-69.Men       7.447658 0.42318035
## 18.5-25.60-69.Men         13.284094 0.17914351
## 26-30.60-69.Men           17.541924 0.14964726
## 31-35.60-69.Men           21.941616 0.20779292
## 36 and over.60-69.Men     27.569427 0.35632204
## Under 18.5.70-79.Men       9.921460 0.87301088
## 18.5-25.70-79.Men         14.019488 0.23959018
## 26-30.70-79.Men           18.608426 0.17900795
## 31-35.70-79.Men           23.606629 0.37075682
## 36 and over.70-79.Men     29.659673 0.86123622
## Under 18.5.Over 80.Men     9.488902 0.96258337
## 18.5-25.Over 80.Men       15.205244 0.22185409
## 26-30.Over 80.Men         19.381320 0.19401541
## 31-35.Over 80.Men         24.158741 0.42823141
## 36 and over.Over 80.Men   29.629884 0.94278968
## Under 18.5.17-29.Women    11.010949 0.19062928
## 18.5-25.17-29.Women       15.454860 0.11626138
## 26-30.17-29.Women         21.453555 0.16302535
## 31-35.17-29.Women         27.088219 0.24780765
## 36 and over.17-29.Women   34.451218 0.45963921
## Under 18.5.30-39.Women    11.092128 0.48207944
## 18.5-25.30-39.Women       15.928518 0.17185592
## 26-30.30-39.Women         21.996724 0.18136675
## 31-35.30-39.Women         26.684041 0.25693001
## 36 and over.30-39.Women   33.809665 0.32248196
## Under 18.5.40-49.Women    11.405746 0.35100661
## 18.5-25.40-49.Women       16.580480 0.18409732
## 26-30.40-49.Women         22.505556 0.15086246
## 31-35.40-49.Women         27.328706 0.20541672
## 36 and over.40-49.Women   34.356642 0.41403676
## Under 18.5.50-59.Women    11.737353 0.93890895
## 18.5-25.50-59.Women       17.756781 0.23940009
## 26-30.50-59.Women         24.149509 0.18058008
## 31-35.50-59.Women         28.739903 0.21875841
## 36 and over.50-59.Women   35.357441 0.41360029
## Under 18.5.60-69.Women    10.722574 0.81279377
## 18.5-25.60-69.Women       19.176941 0.21798153
## 26-30.60-69.Women         24.764147 0.18584396
## 31-35.60-69.Women         29.722262 0.18405742
## 36 and over.60-69.Women   36.169031 0.30002596
## Under 18.5.70-79.Women    13.109921 0.59906386
## 18.5-25.70-79.Women       19.876320 0.30899955
## 26-30.70-79.Women         26.004751 0.27419221
## 31-35.70-79.Women         30.158693 0.27282171
## 36 and over.70-79.Women   36.600730 0.47428240
## Under 18.5.Over 80.Women  12.315987 0.96700388
## 18.5-25.Over 80.Women     20.432699 0.30942813
## 26-30.Over 80.Women       26.191965 0.27453159
## 31-35.Over 80.Women       30.449831 0.41565617
## 36 and over.Over 80.Women 35.315622 0.69093570
## Multiple imputation results:
##       with(nhc_all, svyby(~TFWHR, ~BMI.Group + Age.Group + Gender, 
##     na = TRUE, svymean))
##       MIcombine.default(with(nhc_all, svyby(~TFWHR, ~BMI.Group + Age.Group + 
##     Gender, na = TRUE, svymean)))
##                             results        se
## Under 18.5.17-19.Men       6.290394 0.1991118
## 18.5-25.17-19.Men          8.393436 0.1077515
## 26-30.17-19.Men           13.792279 0.2429305
## 31-35.17-19.Men           19.117010 0.3620370
## 36 and over.17-19.Men     25.491361 0.5650039
## Under 18.5.20-24.Men       6.468360 0.2382197
## 18.5-25.20-24.Men          9.248025 0.1322321
## 26-30.20-24.Men           14.040169 0.2709265
## 31-35.20-24.Men           18.831431 0.3909231
## 36 and over.20-24.Men     26.450241 0.6905264
## Under 18.5.25-29.Men       6.396459 0.2564011
## 18.5-25.25-29.Men         10.326538 0.1483086
## 26-30.25-29.Men           14.567170 0.1977399
## 31-35.25-29.Men           18.802204 0.2842508
## 36 and over.25-29.Men     27.351935 0.6644394
## Under 18.5.30-34.Men       6.842782 0.5627924
## 18.5-25.30-34.Men         10.425405 0.2207374
## 26-30.30-34.Men           14.892858 0.1640446
## 31-35.30-34.Men           18.836640 0.3938631
## 36 and over.30-34.Men     25.722806 0.7490048
## Under 18.5.35-39.Men       7.183135 0.5495073
## 18.5-25.35-39.Men         10.849781 0.2361071
## 26-30.35-39.Men           15.049902 0.2205843
## 31-35.35-39.Men           19.150101 0.2620828
## 36 and over.35-39.Men     25.932215 0.7980755
## Under 18.5.40-44.Men       6.618212 0.4411371
## 18.5-25.40-44.Men         11.258628 0.1911661
## 26-30.40-44.Men           15.182022 0.1699245
## 31-35.40-44.Men           19.379379 0.2397024
## 36 and over.40-44.Men     25.639576 0.5677073
## Under 18.5.45-49.Men       6.610462 0.5334394
## 18.5-25.45-49.Men         11.252896 0.2918438
## 26-30.45-49.Men           15.666083 0.1831366
## 31-35.45-49.Men           19.914791 0.2719901
## 36 and over.45-49.Men     26.992209 0.8224687
## Under 18.5.50-54.Men       7.576531 0.3213047
## 18.5-25.50-54.Men         11.984222 0.2376461
## 26-30.50-54.Men           15.975088 0.2010069
## 31-35.50-54.Men           20.106727 0.3098679
## 36 and over.50-54.Men     26.156929 0.4032086
## Under 18.5.55-59.Men       9.009515 0.8203072
## 18.5-25.55-59.Men         12.880598 0.2956413
## 26-30.55-59.Men           16.755769 0.2240819
## 31-35.55-59.Men           20.756091 0.3200585
## 36 and over.55-59.Men     28.681675 0.8705163
## Under 18.5.60-64.Men       7.390905 0.5432113
## 18.5-25.60-64.Men         12.963152 0.2327751
## 26-30.60-64.Men           17.099436 0.2212367
## 31-35.60-64.Men           21.603531 0.2732954
## 36 and over.60-64.Men     27.548883 0.5207979
## Under 18.5.65-69.Men       7.550005 0.5608600
## 18.5-25.65-69.Men         13.658676 0.2796402
## 26-30.65-69.Men           17.984507 0.1688966
## 31-35.65-69.Men           22.408582 0.3731485
## 36 and over.65-69.Men     27.588925 0.5424149
## Under 18.5.70-74.Men      10.942425 0.9516132
## 18.5-25.70-74.Men         13.387185 0.3074688
## 26-30.70-74.Men           18.472595 0.1943640
## 31-35.70-74.Men           23.462086 0.4667707
## 36 and over.70-74.Men     30.572775 1.0325364
## Under 18.5.75-79.Men       7.207322 0.8985033
## 18.5-25.75-79.Men         14.911420 0.3494067
## 26-30.75-79.Men           18.781345 0.2913825
## 31-35.75-79.Men           23.810811 0.4241588
## 36 and over.75-79.Men     27.282021 1.0137710
## Under 18.5.Over 80.Men     9.488902 0.9625834
## 18.5-25.Over 80.Men       15.205244 0.2218541
## 26-30.Over 80.Men         19.381320 0.1940154
## 31-35.Over 80.Men         24.158741 0.4282314
## 36 and over.Over 80.Men   29.629884 0.9427897
## Under 18.5.17-19.Women    11.120775 0.1954720
## 18.5-25.17-19.Women       15.134376 0.1645600
## 26-30.17-19.Women         21.416315 0.2957463
## 31-35.17-19.Women         26.822855 0.4143886
## 36 and over.17-19.Women   33.921801 0.5414388
## Under 18.5.20-24.Women    11.029145 0.4422787
## 18.5-25.20-24.Women       15.467719 0.1864215
## 26-30.20-24.Women         21.383794 0.3006557
## 31-35.20-24.Women         27.411816 0.3648559
## 36 and over.20-24.Women   34.809365 0.6654390
## Under 18.5.25-29.Women    10.885744 0.3336697
## 18.5-25.25-29.Women       15.731043 0.2177028
## 26-30.25-29.Women         21.549084 0.2416285
## 31-35.25-29.Women         26.901503 0.3503651
## 36 and over.25-29.Women   34.257490 0.8072567
## Under 18.5.30-34.Women    11.209969 0.6233487
## 18.5-25.30-34.Women       15.772101 0.2646874
## 26-30.30-34.Women         21.985733 0.2175936
## 31-35.30-34.Women         26.484785 0.3675574
## 36 and over.30-34.Women   33.183032 0.4797974
## Under 18.5.35-39.Women    10.911842 0.8872610
## 18.5-25.35-39.Women       16.075208 0.1784851
## 26-30.35-39.Women         22.005563 0.2635493
## 31-35.35-39.Women         26.898906 0.2937534
## 36 and over.35-39.Women   34.381282 0.6094161
## Under 18.5.40-44.Women    11.082402 0.2114263
## 18.5-25.40-44.Women       16.591968 0.2673059
## 26-30.40-44.Women         22.139528 0.2145493
## 31-35.40-44.Women         27.056765 0.2822369
## 36 and over.40-44.Women   33.741831 0.5437118
## Under 18.5.45-49.Women    11.748892 0.5787662
## 18.5-25.45-49.Women       16.568400 0.2511540
## 26-30.45-49.Women         22.885717 0.1816807
## 31-35.45-49.Women         27.609572 0.3367803
## 36 and over.45-49.Women   34.813483 0.5320685
## Under 18.5.50-54.Women    11.710926 1.0337915
## 18.5-25.50-54.Women       17.547996 0.2767236
## 26-30.50-54.Women         24.127956 0.2229869
## 31-35.50-54.Women         28.354823 0.3120417
## 36 and over.50-54.Women   34.726319 0.4514285
## Under 18.5.55-59.Women    11.995103 0.6738433
## 18.5-25.55-59.Women       18.069985 0.4013998
## 26-30.55-59.Women         24.182076 0.2795948
## 31-35.55-59.Women         29.315209 0.3647531
## 36 and over.55-59.Women   36.071815 0.5739714
## Under 18.5.60-64.Women    10.341506 1.5932658
## 18.5-25.60-64.Women       18.821429 0.3140641
## 26-30.60-64.Women         24.664521 0.2567257
## 31-35.60-64.Women         29.404780 0.2353497
## 36 and over.60-64.Women   35.917777 0.4729573
## Under 18.5.65-69.Women    10.923262 0.8895533
## 18.5-25.65-69.Women       19.599981 0.2751432
## 26-30.65-69.Women         24.878061 0.2385518
## 31-35.65-69.Women         30.092030 0.3469482
## 36 and over.65-69.Women   36.456545 0.4242479
## Under 18.5.70-74.Women    13.676586 0.6804521
## 18.5-25.70-74.Women       19.622590 0.3284647
## 26-30.70-74.Women         26.022453 0.4402517
## 31-35.70-74.Women         30.328200 0.2991722
## 36 and over.70-74.Women   36.836056 0.6672673
## Under 18.5.75-79.Women    12.106775 1.1940583
## 18.5-25.75-79.Women       20.204964 0.4577414
## 26-30.75-79.Women         25.986821 0.3141950
## 31-35.75-79.Women         29.870012 0.5172775
## 36 and over.75-79.Women   36.299830 0.6396065
## Under 18.5.Over 80.Women  12.315987 0.9670039
## 18.5-25.Over 80.Women     20.432699 0.3094281
## 26-30.Over 80.Women       26.191965 0.2745316
## 31-35.Over 80.Women       30.449831 0.4156562
## 36 and over.Over 80.Women 35.315622 0.6909357
## Multiple imputation results:
##       with(nhc_all, svyby(~TFWHR, ~Age.Group + Gender, na = TRUE, svyquantile, 
##     quantiles = c(0.05, 0.25, 0.5, 0.75, 0.95), keep.var = TRUE, 
##     se = T, ci = T))
##       MIcombine.default(with(nhc_all, svyby(~TFWHR, ~Age.Group + Gender, 
##     na = TRUE, svyquantile, quantiles = c(0.05, 0.25, 0.5, 0.75, 
##         0.95), keep.var = TRUE, se = T, ci = T)))
##                      results         se
## 17-19.Men:0.05      5.734969 0.08101517
## 20-24.Men:0.05      6.124015 0.12489355
## 25-29.Men:0.05      6.903535 0.17903423
## 30-34.Men:0.05      7.235851 0.26125798
## 35-39.Men:0.05      7.823469 0.34921550
## 40-44.Men:0.05      8.871628 0.26038494
## 45-49.Men:0.05      8.888644 0.36138168
## 50-54.Men:0.05      8.988146 0.32825310
## 55-59.Men:0.05      9.992873 0.45961950
## 60-64.Men:0.05     10.859383 0.31036898
## 65-69.Men:0.05     11.299557 0.35697507
## 70-74.Men:0.05     10.738273 0.64148986
## 75-79.Men:0.05     12.370986 0.68483168
## Over 80.Men:0.05   11.078987 0.54365587
## 17-19.Women:0.05   10.670698 0.21065926
## 20-24.Women:0.05   10.746113 0.45146158
## 25-29.Women:0.05   11.125744 0.39061600
## 30-34.Women:0.05   10.866560 0.55949668
## 35-39.Women:0.05   12.163095 0.24985556
## 40-44.Women:0.05   11.689667 0.38476667
## 45-49.Women:0.05   12.384641 0.58989380
## 50-54.Women:0.05   13.685663 0.54464618
## 55-59.Women:0.05   13.981877 0.70164956
## 60-64.Women:0.05   15.977364 0.69889374
## 65-69.Women:0.05   16.058803 0.52052185
## 70-74.Women:0.05   15.301843 0.55710116
## 75-79.Women:0.05   16.225390 0.92288460
## Over 80.Women:0.05 14.603166 0.89464669
## 17-19.Men:0.25      7.255493 0.11497469
## 20-24.Men:0.25      8.548371 0.16882444
## 25-29.Men:0.25     10.564616 0.24703918
## 30-34.Men:0.25     10.754656 0.32519864
## 35-39.Men:0.25     11.846017 0.38473742
## 40-44.Men:0.25     12.740972 0.25794988
## 45-49.Men:0.25     13.096568 0.27623185
## 50-54.Men:0.25     13.752865 0.24505458
## 55-59.Men:0.25     14.415794 0.26930507
## 60-64.Men:0.25     14.642964 0.31072577
## 65-69.Men:0.25     15.791851 0.19112286
## 70-74.Men:0.25     14.966622 0.40100777
## 75-79.Men:0.25     15.619552 0.37592432
## Over 80.Men:0.25   15.286724 0.25088601
## 17-19.Women:0.25   13.546770 0.21241346
## 20-24.Women:0.25   14.609870 0.35098453
## 25-29.Women:0.25   15.205192 0.42949578
## 30-34.Women:0.25   15.959200 0.45065895
## 35-39.Women:0.25   16.272398 0.31226936
## 40-44.Women:0.25   17.735616 0.38388620
## 45-49.Women:0.25   17.908011 0.41283322
## 50-54.Women:0.25   19.044162 0.45848838
## 55-59.Women:0.25   20.359957 0.64196906
## 60-64.Women:0.25   21.110636 0.37956094
## 65-69.Women:0.25   21.815451 0.34176496
## 70-74.Women:0.25   21.349299 0.48679439
## 75-79.Women:0.25   22.007185 0.46287828
## Over 80.Women:0.25 20.581831 0.32829624
## 17-19.Men:0.5       9.583542 0.21799544
## 20-24.Men:0.5      11.950923 0.25952385
## 25-29.Men:0.5      13.799951 0.26790070
## 30-34.Men:0.5      14.341343 0.27039823
## 35-39.Men:0.5      14.880650 0.28289666
## 40-44.Men:0.5      15.708676 0.27189549
## 45-49.Men:0.5      16.128311 0.23159799
## 50-54.Men:0.5      16.885012 0.25552883
## 55-59.Men:0.5      17.441119 0.37608769
## 60-64.Men:0.5      17.865732 0.39633638
## 65-69.Men:0.5      18.445573 0.30557151
## 70-74.Men:0.5      18.395020 0.39906167
## 75-79.Men:0.5      18.678577 0.33549320
## Over 80.Men:0.5    17.881888 0.23194700
## 17-19.Women:0.5    16.687739 0.28510610
## 20-24.Women:0.5    18.046655 0.41788002
## 25-29.Women:0.5    19.531074 0.31217963
## 30-34.Women:0.5    20.707798 0.38044914
## 35-39.Women:0.5    20.899540 0.53387542
## 40-44.Women:0.5    22.055480 0.45188614
## 45-49.Women:0.5    22.945118 0.38197593
## 50-54.Women:0.5    24.438388 0.25970728
## 55-59.Women:0.5    25.093720 0.52684384
## 60-64.Women:0.5    25.819956 0.47382627
## 65-69.Women:0.5    25.998973 0.50525232
## 70-74.Women:0.5    26.167286 0.63508158
## 75-79.Women:0.5    25.998455 0.48411462
## Over 80.Women:0.5  24.499194 0.36457918
## 17-19.Men:0.75     14.106501 0.38497646
## 20-24.Men:0.75     16.405505 0.49507674
## 25-29.Men:0.75     16.951018 0.33832002
## 30-34.Men:0.75     17.297976 0.30856615
## 35-39.Men:0.75     18.475969 0.33732017
## 40-44.Men:0.75     19.210375 0.48219488
## 45-49.Men:0.75     19.117017 0.47179613
## 50-54.Men:0.75     20.147110 0.40004038
## 55-59.Men:0.75     20.817753 0.38337530
## 60-64.Men:0.75     21.910347 0.52506511
## 65-69.Men:0.75     22.703313 0.53891906
## 70-74.Men:0.75     22.047518 0.39620918
## 75-79.Men:0.75     21.833892 0.31573327
## Over 80.Men:0.75   21.193217 0.36815743
## 17-19.Women:0.75   21.825458 0.48533551
## 20-24.Women:0.75   24.432498 0.63814837
## 25-29.Women:0.75   25.041058 0.55836510
## 30-34.Women:0.75   26.870630 0.52792646
## 35-39.Women:0.75   26.574933 0.66389440
## 40-44.Women:0.75   27.254440 0.42001333
## 45-49.Women:0.75   28.626488 0.70295980
## 50-54.Women:0.75   29.083363 0.37934230
## 55-59.Women:0.75   30.764577 0.51425443
## 60-64.Women:0.75   30.416902 0.39308148
## 65-69.Women:0.75   31.418438 0.53370082
## 70-74.Women:0.75   30.547977 0.54735180
## 75-79.Women:0.75   29.160097 0.42121610
## Over 80.Women:0.75 28.137750 0.43536641
## 17-19.Men:0.95     23.055580 0.70709295
## 20-24.Men:0.95     24.639546 0.99955722
## 25-29.Men:0.95     26.405770 1.42535894
## 30-34.Men:0.95     24.524735 0.82149734
## 35-39.Men:0.95     25.768494 0.79889694
## 40-44.Men:0.95     24.973087 0.60445978
## 45-49.Men:0.95     26.840724 1.23107379
## 50-54.Men:0.95     26.854681 0.60757708
## 55-59.Men:0.95     28.467254 1.34514406
## 60-64.Men:0.95     28.545825 0.83612472
## 65-69.Men:0.95     28.794322 0.90028400
## 70-74.Men:0.95     28.584502 1.02923148
## 75-79.Men:0.95     26.511700 1.06585277
## Over 80.Men:0.95   26.294956 0.49980688
## 17-19.Women:0.95   31.868211 0.99657248
## 20-24.Women:0.95   35.027986 0.95532827
## 25-29.Women:0.95   34.242639 1.10364777
## 30-34.Women:0.95   34.782894 1.09566548
## 35-39.Women:0.95   37.777858 1.06133976
## 40-44.Women:0.95   34.918625 0.85803965
## 45-49.Women:0.95   37.694044 1.11089162
## 50-54.Women:0.95   36.793398 0.70671318
## 55-59.Women:0.95   39.298453 0.92636829
## 60-64.Women:0.95   38.906935 0.85323851
## 65-69.Women:0.95   39.432514 0.96286440
## 70-74.Women:0.95   36.669874 0.72321768
## 75-79.Women:0.95   36.314894 0.99758560
## Over 80.Women:0.95 33.937865 1.05853917

Plot Total Fat % * WHtR

By Gender.

## Warning: Removed 3183 rows containing non-finite values (stat_density).

## Warning: Removed 2462 rows containing non-finite values (stat_density).