final<-read.csv("/Users/anikalewis/Downloads/SD4 NHIS Data ALT.csv")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
Recode
finalrecode<-final%>%
mutate(health=ifelse(health==1,"Excellent",
ifelse(health==2,"Very Good",
ifelse(health==3,"Good",
ifelse(health==4,"Fair",
ifelse(health==5,"Poor",NA))))),
sexorien=ifelse(sexorien==1,"GayOrLesbian",
ifelse(sexorien==2,"Straight",
ifelse(sexorien==3,"Bisexual",
ifelse(sexorien==4,"Other",NA)))),
K6=ifelse(K6>99,NA,K6))
head(finalrecode)
## sexorien health K6
## 1 Straight Very Good 0
## 2 Straight Excellent 0
## 3 Straight Excellent 0
## 4 Straight Excellent 0
## 5 GayOrLesbian Excellent 0
## 6 Straight Good 0
Data Summary
finalrecode%>%
filter(!is.na(health))%>%
group_by(health)%>%
summarize(n=n())%>%
mutate(percent=n/sum(n))
## # A tibble: 5 x 3
## health n percent
## * <chr> <int> <dbl>
## 1 Excellent 26630 0.258
## 2 Fair 11602 0.112
## 3 Good 28383 0.275
## 4 Poor 3534 0.0342
## 5 Very Good 33202 0.321
finalrecode%>%
filter(!is.na(sexorien))%>%
group_by(sexorien)%>%
summarize(n=n())%>%
mutate(percent=n/sum(n))
## # A tibble: 4 x 3
## sexorien n percent
## * <chr> <int> <dbl>
## 1 Bisexual 882 0.00883
## 2 GayOrLesbian 1673 0.0168
## 3 Other 333 0.00333
## 4 Straight 96988 0.971
finalrecode%>%
summarize(K6=mean(K6,na.rm=TRUE))
## K6
## 1 6.266265