Business Objectives and Goals

The main objective of this analysis is to determine factors affecting petrol prices.

Following are the goals to achieve:

Find factors, Correlation, Importance

Data Sources and Data Used

The dataset contains one response variable and six regressor variables. 84 observations data points of monthly data from April, 2014 to March, 2021 are available for these variables.

Load common usage libraries

#Load library
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ tibble  3.0.3     ✓ dplyr   1.0.2
## ✓ tidyr   1.1.2     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.5.0
## ✓ purrr   0.3.4
## ── Conflicts ────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
## x purrr::lift()   masks caret::lift()
library(olsrr)
## 
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
## 
##     rivers
library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:olsrr':
## 
##     cement
## The following object is masked from 'package:dplyr':
## 
##     select
library(ROCR)

Import dataset

data <- read.csv("Petrol_Consumption_Dataset.csv")

Explore dataset

head(data)
##       Date Petrol.Price.per.litre.in.INR
## 1 4/1/2014                      64.07333
## 2 5/1/2014                      64.21833
## 3 6/1/2014                      64.36333
## 4 7/1/2014                      64.50833
## 5 8/1/2014                      64.65333
## 6 9/1/2014                      64.79833
##   Consumption.of.petrol...000.Metric.Tonnes.
## 1                                      11008
## 2                                      12710
## 3                                      12827
## 4                                      14487
## 5                                      13487
## 6                                      13673
##   Production.of.petroleum.products.in.India...000.Metric.Tonnes.
## 1                                                          10699
## 2                                                           9742
## 3                                                          11489
## 4                                                          11441
## 5                                                           9864
## 6                                                          10651
##   Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.
## 1                                                         17988
## 2                                                         17518
## 3                                                         17564
## 4                                                         17760
## 5                                                         18291
## 6                                                         17921
##   Imports.of.petroleum.products.to.India...000.Metric.Tonnes.
## 1                                                       17378
## 2                                                       19098
## 3                                                       19146
## 4                                                       16861
## 5                                                       17952
## 6                                                       17637
##   Exports.of.petroleum.products.from.India...000.Metric.Tonnes.
## 1                                                          4656
## 2                                                          4982
## 3                                                          4049
## 4                                                          3864
## 5                                                          3766
## 6                                                          4605
##   Dollar.Rupee.exchange.rate..in.INR.
## 1                                  66
## 2                                  63
## 3                                  67
## 4                                  65
## 5                                  63
## 6                                  63
summary(data)
##      Date           Petrol.Price.per.litre.in.INR
##  Length:84          Min.   :64.07                
##  Class :character   1st Qu.:68.69                
##  Mode  :character   Median :80.28                
##                     Mean   :81.24                
##                     3rd Qu.:95.13                
##                     Max.   :98.98                
##  Consumption.of.petrol...000.Metric.Tonnes.
##  Min.   :10037                             
##  1st Qu.:13262                             
##  Median :16103                             
##  Mean   :15225                             
##  3rd Qu.:16947                             
##  Max.   :17999                             
##  Production.of.petroleum.products.in.India...000.Metric.Tonnes.
##  Min.   : 9662                                                 
##  1st Qu.:11432                                                 
##  Median :11952                                                 
##  Mean   :11951                                                 
##  3rd Qu.:12658                                                 
##  Max.   :13458                                                 
##  Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.
##  Min.   :17518                                                
##  1st Qu.:19301                                                
##  Median :20740                                                
##  Mean   :20351                                                
##  3rd Qu.:21427                                                
##  Max.   :22299                                                
##  Imports.of.petroleum.products.to.India...000.Metric.Tonnes.
##  Min.   :16861                                              
##  1st Qu.:19103                                              
##  Median :20815                                              
##  Mean   :20653                                              
##  3rd Qu.:22135                                              
##  Max.   :24617                                              
##  Exports.of.petroleum.products.from.India...000.Metric.Tonnes.
##  Min.   :3766                                                 
##  1st Qu.:4898                                                 
##  Median :5446                                                 
##  Mean   :5566                                                 
##  3rd Qu.:6367                                                 
##  Max.   :7235                                                 
##  Dollar.Rupee.exchange.rate..in.INR.
##  Min.   :63.00                      
##  1st Qu.:64.00                      
##  Median :66.00                      
##  Mean   :67.24                      
##  3rd Qu.:69.25                      
##  Max.   :77.00
str(data)
## 'data.frame':    84 obs. of  8 variables:
##  $ Date                                                          : chr  "4/1/2014" "5/1/2014" "6/1/2014" "7/1/2014" ...
##  $ Petrol.Price.per.litre.in.INR                                 : num  64.1 64.2 64.4 64.5 64.7 ...
##  $ Consumption.of.petrol...000.Metric.Tonnes.                    : int  11008 12710 12827 14487 13487 13673 12170 11826 12526 11440 ...
##  $ Production.of.petroleum.products.in.India...000.Metric.Tonnes.: int  10699 9742 11489 11441 9864 10651 9662 11101 11407 9738 ...
##  $ Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes. : int  17988 17518 17564 17760 18291 17921 18000 18341 18423 18262 ...
##  $ Imports.of.petroleum.products.to.India...000.Metric.Tonnes.   : int  17378 19098 19146 16861 17952 17637 19086 16918 18329 17005 ...
##  $ Exports.of.petroleum.products.from.India...000.Metric.Tonnes. : int  4656 4982 4049 3864 3766 4605 4535 4248 4185 4725 ...
##  $ Dollar.Rupee.exchange.rate..in.INR.                           : int  66 63 67 65 63 63 65 63 66 65 ...

Remove missing values

na.omit(data)
##         Date Petrol.Price.per.litre.in.INR
## 1   4/1/2014                      64.07333
## 2   5/1/2014                      64.21833
## 3   6/1/2014                      64.36333
## 4   7/1/2014                      64.50833
## 5   8/1/2014                      64.65333
## 6   9/1/2014                      64.79833
## 7  10/1/2014                      64.94333
## 8  11/1/2014                      65.08833
## 9  12/1/2014                      65.23333
## 10  1/1/2015                      65.33000
## 11  2/1/2015                      65.62000
## 12  3/1/2015                      65.62000
## 13  4/1/2015                      66.10000
## 14  5/1/2015                      66.40000
## 15  6/1/2015                      66.70000
## 16  7/1/2015                      67.00000
## 17  8/1/2015                      67.30000
## 18  9/1/2015                      67.60000
## 19 10/1/2015                      67.90000
## 20 11/1/2015                      68.20000
## 21 12/1/2015                      68.50000
## 22  1/1/2016                      68.75000
## 23  2/1/2016                      69.20000
## 24  3/1/2016                      69.35000
## 25  4/1/2016                      74.72000
## 26  5/1/2016                      74.78500
## 27  6/1/2016                      74.85000
## 28  7/1/2016                      74.91500
## 29  8/1/2016                      74.98000
## 30  9/1/2016                      75.04500
## 31 10/1/2016                      75.11000
## 32 11/1/2016                      75.17500
## 33 12/1/2016                      75.65000
## 34  1/1/2017                      74.80000
## 35  2/1/2017                      75.15000
## 36  3/1/2017                      75.75000
## 37  4/1/2017                      78.94400
## 38  5/1/2017                      79.18700
## 39  6/1/2017                      79.43000
## 40  7/1/2017                      79.67300
## 41  8/1/2017                      79.91600
## 42  9/1/2017                      80.15900
## 43 10/1/2017                      80.40200
## 44 11/1/2017                      80.64500
## 45 12/1/2017                      81.15000
## 46  1/1/2018                      80.80000
## 47  2/1/2018                      81.25000
## 48  3/1/2018                      81.81000
## 49  4/1/2018                      84.69667
## 50  5/1/2018                      85.24667
## 51  6/1/2018                      85.79667
## 52  7/1/2018                      86.34667
## 53  8/1/2018                      86.89667
## 54  9/1/2018                      87.44667
## 55 10/1/2018                      87.99667
## 56 11/1/2018                      88.54667
## 57 12/1/2018                      89.09667
## 58  1/1/2019                      89.80000
## 59  2/1/2019                      89.89000
## 60  3/1/2019                      90.90000
## 61  4/1/2019                      95.67000
## 62  5/1/2019                      95.59000
## 63  6/1/2019                      95.51000
## 64  7/1/2019                      95.43000
## 65  8/1/2019                      95.35000
## 66  9/1/2019                      95.27000
## 67 10/1/2019                      95.19000
## 68 11/1/2019                      95.11000
## 69 12/1/2019                      95.55000
## 70  1/1/2020                      94.67000
## 71  2/1/2020                      93.87000
## 72  3/1/2020                      95.55000
## 73  4/1/2020                      96.64200
## 74  5/1/2020                      96.84100
## 75  6/1/2020                      97.04000
## 76  7/1/2020                      97.23900
## 77  8/1/2020                      97.43800
## 78  9/1/2020                      97.63700
## 79 10/1/2020                      97.83600
## 80 11/1/2020                      98.03500
## 81 12/1/2020                      98.65000
## 82  1/1/2021                      97.75000
## 83  2/1/2021                      98.75000
## 84  3/1/2021                      98.98000
##    Consumption.of.petrol...000.Metric.Tonnes.
## 1                                       11008
## 2                                       12710
## 3                                       12827
## 4                                       14487
## 5                                       13487
## 6                                       13673
## 7                                       12170
## 8                                       11826
## 9                                       12526
## 10                                      11440
## 11                                      12818
## 12                                      14561
## 13                                      13323
## 14                                      12173
## 15                                      13616
## 16                                      13551
## 17                                      13153
## 18                                      13130
## 19                                      12295
## 20                                      12942
## 21                                      13464
## 22                                      12575
## 23                                      13510
## 24                                      12685
## 25                                      16129
## 26                                      16284
## 27                                      16781
## 28                                      15848
## 29                                      16297
## 30                                      15791
## 31                                      16939
## 32                                      14224
## 33                                      14784
## 34                                      16077
## 35                                      14669
## 36                                      16571
## 37                                      16310
## 38                                      16767
## 39                                      16409
## 40                                      16849
## 41                                      16148
## 42                                      16738
## 43                                      16150
## 44                                      16176
## 45                                      16733
## 46                                      16456
## 47                                      16817
## 48                                      16297
## 49                                      17052
## 50                                      17274
## 51                                      17397
## 52                                      17183
## 53                                      17674
## 54                                      17973
## 55                                      17841
## 56                                      17109
## 57                                      17999
## 58                                      17532
## 59                                      17367
## 60                                      17534
## 61                                      17752
## 62                                      16505
## 63                                      16503
## 64                                      17491
## 65                                      16319
## 66                                      17883
## 67                                      17469
## 68                                      17573
## 69                                      17312
## 70                                      16025
## 71                                      17125
## 72                                      13084
## 73                                      10037
## 74                                      12482
## 75                                      11902
## 76                                      13298
## 77                                      15557
## 78                                      15414
## 79                                      12103
## 80                                      15975
## 81                                      15781
## 82                                      17460
## 83                                      12780
## 84                                      16972
##    Production.of.petroleum.products.in.India...000.Metric.Tonnes.
## 1                                                           10699
## 2                                                            9742
## 3                                                           11489
## 4                                                           11441
## 5                                                            9864
## 6                                                           10651
## 7                                                            9662
## 8                                                           11101
## 9                                                           11407
## 10                                                           9738
## 11                                                          10181
## 12                                                          11470
## 13                                                          11382
## 14                                                          10629
## 15                                                          10659
## 16                                                          10569
## 17                                                          10503
## 18                                                          10858
## 19                                                          11391
## 20                                                          10878
## 21                                                          10873
## 22                                                          11183
## 23                                                          11179
## 24                                                          10708
## 25                                                          12398
## 26                                                          12360
## 27                                                          11922
## 28                                                          11772
## 29                                                          12043
## 30                                                          12283
## 31                                                          11861
## 32                                                          12392
## 33                                                          11930
## 34                                                          12249
## 35                                                          12289
## 36                                                          11956
## 37                                                          11794
## 38                                                          11719
## 39                                                          11905
## 40                                                          12125
## 41                                                          12344
## 42                                                          12096
## 43                                                          12283
## 44                                                          12289
## 45                                                          11975
## 46                                                          11989
## 47                                                          11977
## 48                                                          11778
## 49                                                          13389
## 50                                                          12502
## 51                                                          12755
## 52                                                          13342
## 53                                                          12563
## 54                                                          13008
## 55                                                          13458
## 56                                                          13355
## 57                                                          12626
## 58                                                          12937
## 59                                                          12987
## 60                                                          13305
## 61                                                          13093
## 62                                                          13069
## 63                                                          12929
## 64                                                          13016
## 65                                                          12987
## 66                                                          12823
## 67                                                          13301
## 68                                                          13134
## 69                                                          13341
## 70                                                          13058
## 71                                                          12925
## 72                                                          13360
## 73                                                          11572
## 74                                                          11874
## 75                                                          11937
## 76                                                          11947
## 77                                                          12249
## 78                                                          11917
## 79                                                          11919
## 80                                                          11940
## 81                                                          11714
## 82                                                          11685
## 83                                                          12164
## 84                                                          11678
##    Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.
## 1                                                          17988
## 2                                                          17518
## 3                                                          17564
## 4                                                          17760
## 5                                                          18291
## 6                                                          17921
## 7                                                          18000
## 8                                                          18341
## 9                                                          18423
## 10                                                         18262
## 11                                                         17897
## 12                                                         18452
## 13                                                         19323
## 14                                                         19193
## 15                                                         19173
## 16                                                         18589
## 17                                                         18637
## 18                                                         19365
## 19                                                         19202
## 20                                                         18617
## 21                                                         19236
## 22                                                         19202
## 23                                                         19410
## 24                                                         18692
## 25                                                         19999
## 26                                                         20105
## 27                                                         20396
## 28                                                         19847
## 29                                                         20400
## 30                                                         19546
## 31                                                         20092
## 32                                                         19741
## 33                                                         20371
## 34                                                         19588
## 35                                                         20458
## 36                                                         20063
## 37                                                         20724
## 38                                                         20903
## 39                                                         20855
## 40                                                         20799
## 41                                                         20856
## 42                                                         20560
## 43                                                         20793
## 44                                                         20729
## 45                                                         20749
## 46                                                         20772
## 47                                                         20822
## 48                                                         20731
## 49                                                         21767
## 50                                                         21733
## 51                                                         21641
## 52                                                         21675
## 53                                                         21851
## 54                                                         21823
## 55                                                         21681
## 56                                                         21872
## 57                                                         21969
## 58                                                         21826
## 59                                                         21847
## 60                                                         21723
## 61                                                         21371
## 62                                                         21065
## 63                                                         21844
## 64                                                         21710
## 65                                                         21293
## 66                                                         21219
## 67                                                         21146
## 68                                                         21934
## 69                                                         20878
## 70                                                         21286
## 71                                                         21212
## 72                                                         21142
## 73                                                         20547
## 74                                                         21400
## 75                                                         21874
## 76                                                         21101
## 77                                                         22299
## 78                                                         21508
## 79                                                         21921
## 80                                                         21935
## 81                                                         20510
## 82                                                         21859
## 83                                                         21080
## 84                                                         20947
##    Imports.of.petroleum.products.to.India...000.Metric.Tonnes.
## 1                                                        17378
## 2                                                        19098
## 3                                                        19146
## 4                                                        16861
## 5                                                        17952
## 6                                                        17637
## 7                                                        19086
## 8                                                        16918
## 9                                                        18329
## 10                                                       17005
## 11                                                       18559
## 12                                                       18393
## 13                                                       19262
## 14                                                       18328
## 15                                                       18161
## 16                                                       19105
## 17                                                       20677
## 18                                                       20172
## 19                                                       17423
## 20                                                       19693
## 21                                                       18142
## 22                                                       19993
## 23                                                       20218
## 24                                                       19488
## 25                                                       22398
## 26                                                       22069
## 27                                                       20549
## 28                                                       22032
## 29                                                       20815
## 30                                                       21005
## 31                                                       21791
## 32                                                       21120
## 33                                                       19358
## 34                                                       22169
## 35                                                       18414
## 36                                                       19376
## 37                                                       21056
## 38                                                       21817
## 39                                                       23196
## 40                                                       18581
## 41                                                       20564
## 42                                                       21694
## 43                                                       20051
## 44                                                       21006
## 45                                                       21836
## 46                                                       22124
## 47                                                       22436
## 48                                                       23516
## 49                                                       19308
## 50                                                       23192
## 51                                                       22910
## 52                                                       19311
## 53                                                       19661
## 54                                                       22381
## 55                                                       22200
## 56                                                       20805
## 57                                                       22231
## 58                                                       20815
## 59                                                       21303
## 60                                                       19915
## 61                                                       20858
## 62                                                       23573
## 63                                                       23986
## 64                                                       23620
## 65                                                       24615
## 66                                                       23108
## 67                                                       21836
## 68                                                       24171
## 69                                                       24617
## 70                                                       21688
## 71                                                       23473
## 72                                                       21189
## 73                                                       17828
## 74                                                       18864
## 75                                                       21146
## 76                                                       18049
## 77                                                       20839
## 78                                                       18335
## 79                                                       23083
## 80                                                       20968
## 81                                                       20653
## 82                                                       21688
## 83                                                       22421
## 84                                                       24236
##    Exports.of.petroleum.products.from.India...000.Metric.Tonnes.
## 1                                                           4656
## 2                                                           4982
## 3                                                           4049
## 4                                                           3864
## 5                                                           3766
## 6                                                           4605
## 7                                                           4535
## 8                                                           4248
## 9                                                           4185
## 10                                                          4725
## 11                                                          4879
## 12                                                          4914
## 13                                                          4828
## 14                                                          3852
## 15                                                          5480
## 16                                                          4270
## 17                                                          4679
## 18                                                          3807
## 19                                                          5610
## 20                                                          5113
## 21                                                          4904
## 22                                                          5320
## 23                                                          5038
## 24                                                          3874
## 25                                                          4882
## 26                                                          4596
## 27                                                          5372
## 28                                                          5365
## 29                                                          6111
## 30                                                          6042
## 31                                                          6156
## 32                                                          5334
## 33                                                          5325
## 34                                                          5194
## 35                                                          4556
## 36                                                          6582
## 37                                                          6908
## 38                                                          6609
## 39                                                          6631
## 40                                                          5799
## 41                                                          6347
## 42                                                          5348
## 43                                                          5915
## 44                                                          6598
## 45                                                          6445
## 46                                                          6345
## 47                                                          5340
## 48                                                          6590
## 49                                                          5379
## 50                                                          5840
## 51                                                          5744
## 52                                                          5790
## 53                                                          5327
## 54                                                          6030
## 55                                                          5047
## 56                                                          4778
## 57                                                          5413
## 58                                                          4708
## 59                                                          5039
## 60                                                          5485
## 61                                                          5255
## 62                                                          5197
## 63                                                          6264
## 64                                                          5082
## 65                                                          6155
## 66                                                          5864
## 67                                                          6559
## 68                                                          6365
## 69                                                          6374
## 70                                                          6412
## 71                                                          5593
## 72                                                          6474
## 73                                                          6598
## 74                                                          7021
## 75                                                          5891
## 76                                                          6853
## 77                                                          6498
## 78                                                          6928
## 79                                                          6982
## 80                                                          7084
## 81                                                          7235
## 82                                                          5900
## 83                                                          6713
## 84                                                          7093
##    Dollar.Rupee.exchange.rate..in.INR.
## 1                                   66
## 2                                   63
## 3                                   67
## 4                                   65
## 5                                   63
## 6                                   63
## 7                                   65
## 8                                   63
## 9                                   66
## 10                                  65
## 11                                  63
## 12                                  67
## 13                                  63
## 14                                  64
## 15                                  65
## 16                                  66
## 17                                  65
## 18                                  63
## 19                                  64
## 20                                  66
## 21                                  66
## 22                                  63
## 23                                  64
## 24                                  64
## 25                                  67
## 26                                  67
## 27                                  65
## 28                                  66
## 29                                  65
## 30                                  63
## 31                                  65
## 32                                  63
## 33                                  67
## 34                                  65
## 35                                  63
## 36                                  64
## 37                                  63
## 38                                  63
## 39                                  63
## 40                                  66
## 41                                  67
## 42                                  63
## 43                                  66
## 44                                  64
## 45                                  64
## 46                                  65
## 47                                  64
## 48                                  65
## 49                                  63
## 50                                  66
## 51                                  65
## 52                                  67
## 53                                  63
## 54                                  67
## 55                                  67
## 56                                  64
## 57                                  66
## 58                                  67
## 59                                  65
## 60                                  66
## 61                                  74
## 62                                  68
## 63                                  71
## 64                                  70
## 65                                  76
## 66                                  72
## 67                                  69
## 68                                  69
## 69                                  73
## 70                                  77
## 71                                  77
## 72                                  72
## 73                                  75
## 74                                  74
## 75                                  74
## 76                                  74
## 77                                  74
## 78                                  74
## 79                                  74
## 80                                  73
## 81                                  76
## 82                                  75
## 83                                  76
## 84                                  73

Change date variable

rdate <-as.Date(data$Date,"%m/%d/%y")

Plot the timeseries

plot(data$Petrol.Price.per.litre.in.INR~rdate,type="l", col="red", axes=T)

Plot all variables

plot(data)

Initial Model with all regressors full model

datalm1 <- lm(data = data, data$Petrol.Price.per.litre.in.INR ~ data$Consumption.of.petrol...000.Metric.Tonnes.+data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.+data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.+data$Imports.of.petroleum.products.to.India...000.Metric.Tonnes.+data$Exports.of.petroleum.products.from.India...000.Metric.Tonnes.+data$Dollar.Rupee.exchange.rate..in.INR.)
summary(datalm1)
## 
## Call:
## lm(formula = data$Petrol.Price.per.litre.in.INR ~ data$Consumption.of.petrol...000.Metric.Tonnes. + 
##     data$Production.of.petroleum.products.in.India...000.Metric.Tonnes. + 
##     data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes. + 
##     data$Imports.of.petroleum.products.to.India...000.Metric.Tonnes. + 
##     data$Exports.of.petroleum.products.from.India...000.Metric.Tonnes. + 
##     data$Dollar.Rupee.exchange.rate..in.INR., data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.0444 -2.1711 -0.2794  1.8816  8.6667 
## 
## Coefficients:
##                                                                       Estimate
## (Intercept)                                                         -1.223e+02
## data$Consumption.of.petrol...000.Metric.Tonnes.                     -1.318e-04
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.  9.359e-04
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.   5.070e-03
## data$Imports.of.petroleum.products.to.India...000.Metric.Tonnes.     2.410e-04
## data$Exports.of.petroleum.products.from.India...000.Metric.Tonnes.   1.146e-03
## data$Dollar.Rupee.exchange.rate..in.INR.                             1.187e+00
##                                                                     Std. Error
## (Intercept)                                                          6.603e+00
## data$Consumption.of.petrol...000.Metric.Tonnes.                      2.821e-04
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.  6.915e-04
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.   5.435e-04
## data$Imports.of.petroleum.products.to.India...000.Metric.Tonnes.     2.354e-04
## data$Exports.of.petroleum.products.from.India...000.Metric.Tonnes.   5.101e-04
## data$Dollar.Rupee.exchange.rate..in.INR.                             1.037e-01
##                                                                     t value
## (Intercept)                                                         -18.515
## data$Consumption.of.petrol...000.Metric.Tonnes.                      -0.467
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.   1.353
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.    9.327
## data$Imports.of.petroleum.products.to.India...000.Metric.Tonnes.      1.024
## data$Exports.of.petroleum.products.from.India...000.Metric.Tonnes.    2.246
## data$Dollar.Rupee.exchange.rate..in.INR.                             11.448
##                                                                     Pr(>|t|)
## (Intercept)                                                          < 2e-16
## data$Consumption.of.petrol...000.Metric.Tonnes.                       0.6418
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.   0.1799
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.  2.81e-14
## data$Imports.of.petroleum.products.to.India...000.Metric.Tonnes.      0.3091
## data$Exports.of.petroleum.products.from.India...000.Metric.Tonnes.    0.0275
## data$Dollar.Rupee.exchange.rate..in.INR.                             < 2e-16
##                                                                        
## (Intercept)                                                         ***
## data$Consumption.of.petrol...000.Metric.Tonnes.                        
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.    
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.  ***
## data$Imports.of.petroleum.products.to.India...000.Metric.Tonnes.       
## data$Exports.of.petroleum.products.from.India...000.Metric.Tonnes.  *  
## data$Dollar.Rupee.exchange.rate..in.INR.                            ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.019 on 77 degrees of freedom
## Multiple R-squared:  0.9418, Adjusted R-squared:  0.9373 
## F-statistic: 207.8 on 6 and 77 DF,  p-value: < 2.2e-16

We find based on p value that there are three significant variables Production.of.petroleum.products.in.OPEC…000.Metric.Tonnes., Exports.of.petroleum.products.from.India…000.Metric.Tonnes. and Dollar.Rupee.exchange.rate..in.INR.

Which means that price of petrol is largely dependent on these variables

Apply regression with selected variables

datalm <- lm(data$Petrol.Price.per.litre.in.INR ~ data$Production.of.petroleum.products.in.India...000.Metric.Tonnes. + data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.+data$Dollar.Rupee.exchange.rate..in.INR.)
summary(datalm)
## 
## Call:
## lm(formula = data$Petrol.Price.per.litre.in.INR ~ data$Production.of.petroleum.products.in.India...000.Metric.Tonnes. + 
##     data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes. + 
##     data$Dollar.Rupee.exchange.rate..in.INR.)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3861 -2.1213 -0.0187  1.9399  8.5991 
## 
## Coefficients:
##                                                                       Estimate
## (Intercept)                                                         -1.280e+02
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.  6.474e-04
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.   5.673e-03
## data$Dollar.Rupee.exchange.rate..in.INR.                             1.280e+00
##                                                                     Std. Error
## (Intercept)                                                          6.151e+00
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.  6.202e-04
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.   4.722e-04
## data$Dollar.Rupee.exchange.rate..in.INR.                             9.048e-02
##                                                                     t value
## (Intercept)                                                         -20.816
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.   1.044
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.   12.013
## data$Dollar.Rupee.exchange.rate..in.INR.                             14.153
##                                                                     Pr(>|t|)
## (Intercept)                                                           <2e-16
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.      0.3
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.    <2e-16
## data$Dollar.Rupee.exchange.rate..in.INR.                              <2e-16
##                                                                        
## (Intercept)                                                         ***
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.    
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.  ***
## data$Dollar.Rupee.exchange.rate..in.INR.                            ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.09 on 80 degrees of freedom
## Multiple R-squared:  0.9367, Adjusted R-squared:  0.9343 
## F-statistic: 394.5 on 3 and 80 DF,  p-value: < 2.2e-16

Here we observe that the variables significantly affecting petrol price are production of petroleum products in India, production of petroleum products in OPEC and Dollar Rupee exchange rate. The coefficient of determination, R2 is only 0.9367 and the adjusted R2 is 0.9343, which is too low to arrive at reliable conclusions.

Diagnostics Plot

par(mfrow=c(2,2))
plot(datalm)

We will try with logistic regression model

Logistic Linear regression

datalm2 <- lm(data = data, log(data$Petrol.Price.per.litre.in.INR)~data$Production.of.petroleum.products.in.India...000.Metric.Tonnes. + data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.+data$Dollar.Rupee.exchange.rate..in.INR.)
summary(datalm2)
## 
## Call:
## lm(formula = log(data$Petrol.Price.per.litre.in.INR) ~ data$Production.of.petroleum.products.in.India...000.Metric.Tonnes. + 
##     data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes. + 
##     data$Dollar.Rupee.exchange.rate..in.INR., data = data)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.058568 -0.026026 -0.001896  0.022888  0.098259 
## 
## Coefficients:
##                                                                      Estimate
## (Intercept)                                                         1.795e+00
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes. 1.068e-05
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.  7.355e-05
## data$Dollar.Rupee.exchange.rate..in.INR.                            1.438e-02
##                                                                     Std. Error
## (Intercept)                                                          7.319e-02
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.  7.379e-06
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.   5.618e-06
## data$Dollar.Rupee.exchange.rate..in.INR.                             1.076e-03
##                                                                     t value
## (Intercept)                                                          24.529
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.   1.447
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.   13.092
## data$Dollar.Rupee.exchange.rate..in.INR.                             13.356
##                                                                     Pr(>|t|)
## (Intercept)                                                           <2e-16
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.    0.152
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.    <2e-16
## data$Dollar.Rupee.exchange.rate..in.INR.                              <2e-16
##                                                                        
## (Intercept)                                                         ***
## data$Production.of.petroleum.products.in.India...000.Metric.Tonnes.    
## data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.  ***
## data$Dollar.Rupee.exchange.rate..in.INR.                            ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.03676 on 80 degrees of freedom
## Multiple R-squared:  0.942,  Adjusted R-squared:  0.9398 
## F-statistic: 433.3 on 3 and 80 DF,  p-value: < 2.2e-16
par(mfrow=c(2,2))
plot(datalm2)

So we compared the adjusted R square of both the models above and found the Model with logistic regression is better model compared to without it.

Test for normality using Shapiro Wilk test

shapiro.test(data$Petrol.Price.per.litre.in.INR)
## 
##  Shapiro-Wilk normality test
## 
## data:  data$Petrol.Price.per.litre.in.INR
## W = 0.89992, p-value = 7.729e-06

We find that p value is low hence we fail to reject Null hypothesis which is data is normal

Model with Box-Cox Transformation on the Dependent Variable

PriceTrans <- BoxCoxTrans(data$Petrol.Price.per.litre.in.INR)
PriceTrans
## Box-Cox Transformation
## 
## 84 data points used to estimate Lambda
## 
## Input data summary:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   64.07   68.69   80.28   81.24   95.13   98.98 
## 
## Largest/Smallest: 1.54 
## Sample Skewness: 0.0388 
## 
## Estimated Lambda: 0.4

We see lambda is 0.4

Now apply transformed variable to model

PriceNew = predict(PriceTrans, data$Petrol.Price.per.litre.in.INR)
head(PriceNew)
## [1] 10.70112 10.71307 10.72499 10.73690 10.74879 10.76067

Integration of PriceNew into dataset

newdata <- cbind(data, PriceNew)
head(newdata)
##       Date Petrol.Price.per.litre.in.INR
## 1 4/1/2014                      64.07333
## 2 5/1/2014                      64.21833
## 3 6/1/2014                      64.36333
## 4 7/1/2014                      64.50833
## 5 8/1/2014                      64.65333
## 6 9/1/2014                      64.79833
##   Consumption.of.petrol...000.Metric.Tonnes.
## 1                                      11008
## 2                                      12710
## 3                                      12827
## 4                                      14487
## 5                                      13487
## 6                                      13673
##   Production.of.petroleum.products.in.India...000.Metric.Tonnes.
## 1                                                          10699
## 2                                                           9742
## 3                                                          11489
## 4                                                          11441
## 5                                                           9864
## 6                                                          10651
##   Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.
## 1                                                         17988
## 2                                                         17518
## 3                                                         17564
## 4                                                         17760
## 5                                                         18291
## 6                                                         17921
##   Imports.of.petroleum.products.to.India...000.Metric.Tonnes.
## 1                                                       17378
## 2                                                       19098
## 3                                                       19146
## 4                                                       16861
## 5                                                       17952
## 6                                                       17637
##   Exports.of.petroleum.products.from.India...000.Metric.Tonnes.
## 1                                                          4656
## 2                                                          4982
## 3                                                          4049
## 4                                                          3864
## 5                                                          3766
## 6                                                          4605
##   Dollar.Rupee.exchange.rate..in.INR. PriceNew
## 1                                  66 10.70112
## 2                                  63 10.71307
## 3                                  67 10.72499
## 4                                  65 10.73690
## 5                                  63 10.74879
## 6                                  63 10.76067

Re-do the regression model with Box-Cox transformed dependent variable and original regressors

datalm3 <- lm(newdata$PriceNew ~ newdata$Production.of.petroleum.products.in.India...000.Metric.Tonnes. + newdata$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.+newdata$Dollar.Rupee.exchange.rate..in.INR.)
summary(datalm3)
## 
## Call:
## lm(formula = newdata$PriceNew ~ newdata$Production.of.petroleum.products.in.India...000.Metric.Tonnes. + 
##     newdata$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes. + 
##     newdata$Dollar.Rupee.exchange.rate..in.INR.)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.35731 -0.15430 -0.00241  0.13822  0.58748 
## 
## Coefficients:
##                                                                          Estimate
## (Intercept)                                                            -3.012e+00
## newdata$Production.of.petroleum.products.in.India...000.Metric.Tonnes.  5.573e-05
## newdata$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.   4.177e-04
## newdata$Dollar.Rupee.exchange.rate..in.INR.                             8.659e-02
##                                                                        Std. Error
## (Intercept)                                                             4.295e-01
## newdata$Production.of.petroleum.products.in.India...000.Metric.Tonnes.  4.331e-05
## newdata$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.   3.297e-05
## newdata$Dollar.Rupee.exchange.rate..in.INR.                             6.318e-03
##                                                                        t value
## (Intercept)                                                             -7.011
## newdata$Production.of.petroleum.products.in.India...000.Metric.Tonnes.   1.287
## newdata$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.   12.669
## newdata$Dollar.Rupee.exchange.rate..in.INR.                             13.705
##                                                                        Pr(>|t|)
## (Intercept)                                                            6.75e-10
## newdata$Production.of.petroleum.products.in.India...000.Metric.Tonnes.    0.202
## newdata$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.   < 2e-16
## newdata$Dollar.Rupee.exchange.rate..in.INR.                             < 2e-16
##                                                                           
## (Intercept)                                                            ***
## newdata$Production.of.petroleum.products.in.India...000.Metric.Tonnes.    
## newdata$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes.  ***
## newdata$Dollar.Rupee.exchange.rate..in.INR.                            ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2158 on 80 degrees of freedom
## Multiple R-squared:  0.9401, Adjusted R-squared:  0.9378 
## F-statistic: 418.3 on 3 and 80 DF,  p-value: < 2.2e-16

We see that the adjusted R-square doesnt change much when we run the regression with the transformed values

Check normality again

plot(datalm3, 2)

plot(datalm, 2)

Notice that the it is following the normal QQ plot indicating normal data distribution

Check ACF and PACF for autocorrelation for petrol prices

par(mfrow=c(2,2))
acf(data$Petrol.Price.per.litre.in.INR);pacf(data$Petrol.Price.per.litre.in.INR)

We see from the ACF and PACF plot that data is correlated.

Check for multicollinerity using VIF function

ols_vif_tol(datalm1)
##                                                             Variables Tolerance
## 1                     data$Consumption.of.petrol...000.Metric.Tonnes. 0.3165399
## 2 data$Production.of.petroleum.products.in.India...000.Metric.Tonnes. 0.2556025
## 3  data$Production.of.petroleum.products.in.OPEC...000.Metric.Tonnes. 0.2109089
## 4    data$Imports.of.petroleum.products.to.India...000.Metric.Tonnes. 0.4903499
## 5  data$Exports.of.petroleum.products.from.India...000.Metric.Tonnes. 0.5080415
## 6                            data$Dollar.Rupee.exchange.rate..in.INR. 0.5590611
##        VIF
## 1 3.159159
## 2 3.912324
## 3 4.741383
## 4 2.039360
## 5 1.968343
## 6 1.788713

We dont observe any high VIF values compared to other variables, then we can say that our model is appropriate and can be considered as final model.