| 1 | 2 | 3 | 4 |
|---|---|---|---|
| A\(\alpha\) | B\(\beta\) | C\(\gamma\) | D\(\delta\) |
| B\(\delta\) | A\(\gamma\) | C\(\beta\) | D\(\alpha\) |
| C\(\beta\) | D\(\alpha\) | A\(\delta\) | B\(\gamma\) |
| D\(\gamma\) | C\(\delta\) | B\(\alpha\) | A\(\beta\) |
##Caso Práctico
| Vaca/Periodo | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|
| 1 | 304(A\(\alpha\)) | 436(B\(\varepsilon\)) | 350(C\(\beta\)) | 504(D\(\varphi\)) | 417(E\(\chi\)) | 519(F\(\gamma\)) | 432(G\(\delta\)) |
| 2 | 381(B\(\beta\)) | 505(C\(\varphi\)) | 425(D\(\chi\)) | 564(E\(\gamma\)) | 494(F\(\delta\)) | 350(G\(\alpha\)) | 413(GA\(\varepsilon\)) |
| 3 | 432(C\(\chi\)) | 566(D\(\gamma\)) | 479(E\(\delta\)) | 357(F\(\alpha\)) | 461(G\(\varepsilon\)) | 340(A\(\beta\)) | 502(B\(\varphi\)) |
| 4 | 442(D\(\delta\)) | 372(E\(\alpha\)) | 536(F\(\varepsilon\)) | 366(G\(\beta\)) | 495(A\(\varphi\)) | 425(B\(\chi\)) | 507(C\(\gamma\)) |
| 5 | 496(E\(\varepsilon\)) | 449(F\(\beta\)) | 493(G\(\varphi\)) | 345(A\(\chi\)) | 509(B\(\gamma\)) | 481(C\(\delta\)) | 380(D\(\alpha\)) |
| 6 | 534(F\(\varphi\)) | 421(G\(\chi\)) | 352(A\(\gamma\)) | 427(B\(\delta\)) | 346(C\(\alpha\)) | 478(D\(\varepsilon\)) | 397(E\(\beta\)) |
| 7 | 543(G\(\gamma\)) | 386(A\(\delta\)) | 435(B\(\alpha\)) | 485(C\(\varepsilon\)) | 406(D\(\beta\)) | 554(E\(\varphi\)) | 410(F\(\chi\)) |
library(readxl)
datos=read_excel("dataset.xlsx")
attach(datos)
print(datos)
## # A tibble: 49 x 5
## Galones Lisina Vaca Periodo Proteina
## <dbl> <chr> <dbl> <dbl> <chr>
## 1 304 a 1 1 a
## 2 381 b 2 1 b
## 3 432 c 3 1 c
## 4 442 d 4 1 d
## 5 496 e 5 1 e
## 6 534 f 6 1 f
## 7 543 g 7 1 g
## 8 436 b 1 2 e
## 9 505 c 2 2 f
## 10 566 d 3 2 g
## # … with 39 more rows
f_lisina=factor(Lisina)
f_vacas=factor(Vaca)
f_periodo=factor(Periodo)
f_proteina=factor(Proteina)
modelo=lm(Galones~(f_lisina+f_vacas+f_periodo+f_proteina))
summary(modelo)
##
## Call:
## lm(formula = Galones ~ (f_lisina + f_vacas + f_periodo + f_proteina))
##
## Residuals:
## Min 1Q Median 3Q Max
## -65.082 -13.796 -0.082 11.204 56.776
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 281.7959 22.4284 12.564 4.80e-12 ***
## f_lisinab 68.5714 16.7839 4.086 0.000424 ***
## f_lisinac 67.2857 16.7839 4.009 0.000515 ***
## f_lisinad 80.8571 16.7839 4.818 6.60e-05 ***
## f_lisinae 92.0000 16.7839 5.481 1.23e-05 ***
## f_lisinaf 94.8571 16.7839 5.652 8.07e-06 ***
## f_lisinag 61.5714 16.7839 3.668 0.001212 **
## f_vacas2 24.2857 16.7839 1.447 0.160843
## f_vacas3 25.0000 16.7839 1.490 0.149375
## f_vacas4 25.8571 16.7839 1.541 0.136499
## f_vacas5 27.2857 16.7839 1.626 0.117073
## f_vacas6 -1.0000 16.7839 -0.060 0.952983
## f_vacas7 36.7143 16.7839 2.187 0.038684 *
## f_periodo2 0.4286 16.7839 0.026 0.979840
## f_periodo3 -8.8571 16.7839 -0.528 0.602542
## f_periodo4 -12.0000 16.7839 -0.715 0.481525
## f_periodo5 -0.5714 16.7839 -0.034 0.973122
## f_periodo6 2.1429 16.7839 0.128 0.899471
## f_periodo7 -13.0000 16.7839 -0.775 0.446169
## f_proteinab 20.7143 16.7839 1.234 0.229087
## f_proteinac 47.2857 16.7839 2.817 0.009537 **
## f_proteinad 85.2857 16.7839 5.081 3.38e-05 ***
## f_proteinae 108.7143 16.7839 6.477 1.07e-06 ***
## f_proteinaf 149.0000 16.7839 8.878 4.77e-09 ***
## f_proteinag 145.1429 16.7839 8.648 7.74e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 31.4 on 24 degrees of freedom
## Multiple R-squared: 0.8938, Adjusted R-squared: 0.7876
## F-statistic: 8.417 on 24 and 24 DF, p-value: 8.969e-07
boxplot(Galones~f_lisina, col="red", xlab= "Porcentaje de Lisina", ylab = "Galones de leche")
boxplot(Galones~f_vacas, col="skyblue", xlab = "Identificador de Vacas", ylab="Galones de leche")
boxplot(Galones~f_periodo, xlab="Identificador de Periodo", ylab = "Galones de leche")
boxplot(Galones~f_proteina, col="orange", xlab="Porcentaje de Proteína", ylab="Galones de leche")
Para establecer conclusiones con un nivel de confianza definido, en este caso, de 95%, procederemos a generar la Tabla ANOVA,para la cual se probarán las siguientes hipótesis estadísticas:
\[H_o:\tau_i=\tau_j=0\] \[H_1:\tau_i\neq\tau_j\neq0\]anova=aov(modelo)
summary(anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## f_lisina 6 42784 7131 7.232 0.000171 ***
## f_vacas 6 8754 1459 1.480 0.227194
## f_periodo 6 1761 293 0.298 0.931964
## f_proteina 6 145880 24313 24.660 3.77e-09 ***
## Residuals 24 23663 986
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(agricolae)
rm_lisina=duncan.test(y=Galones,trt=f_lisina,MSerror = 986, DFerror = 24, alpha = 0.05,group = TRUE)
print(rm_lisina)
## $statistics
## MSerror Df Mean CV
## 986 24 442.8776 7.09014
##
## $parameters
## test name.t ntr alpha
## Duncan f_lisina 7 0.05
##
## $duncan
## Table CriticalRange
## 2 2.918793 34.64119
## 3 3.065610 36.38366
## 4 3.159874 37.50241
## 5 3.226454 38.29261
## 6 3.276155 38.88247
## 7 3.314602 39.33878
##
## $means
## Galones std r Min Max Q25 Q50 Q75
## a 376.4286 62.77701 7 304 495 342.5 352 399.5
## b 445.0000 45.36151 7 381 509 426.0 435 469.0
## c 443.7143 69.90878 7 346 507 391.0 481 495.0
## d 457.2857 63.65196 7 380 566 415.5 442 491.0
## e 468.4286 75.68984 7 372 564 407.0 479 525.0
## f 471.2857 68.58988 7 357 536 429.5 494 526.5
## g 438.0000 68.10776 7 350 543 393.5 432 477.0
##
## $comparison
## NULL
##
## $groups
## Galones groups
## f 471.2857 a
## e 468.4286 a
## d 457.2857 a
## b 445.0000 a
## c 443.7143 a
## g 438.0000 a
## a 376.4286 b
##
## attr(,"class")
## [1] "group"
plot.group(rm_lisina,main="Grupos para el factor Lisina")
rm_proteina=duncan.test(y=Galones,trt=f_proteina,MSerror = 986, DFerror = 24, alpha = 0.05,group = TRUE)
print(rm_proteina)
## $statistics
## MSerror Df Mean CV
## 986 24 442.8776 7.09014
##
## $parameters
## test name.t ntr alpha
## Duncan f_proteina 7 0.05
##
## $duncan
## Table CriticalRange
## 2 2.918793 34.64119
## 3 3.065610 36.38366
## 4 3.159874 37.50241
## 5 3.226454 38.29261
## 6 3.276155 38.88247
## 7 3.314602 39.33878
##
## $means
## Galones std r Min Max Q25 Q50 Q75
## a 363.4286 39.84912 7 304 435 348.0 357 376.0
## b 384.1429 37.19959 7 340 449 358.0 381 401.5
## c 410.7143 29.79214 7 345 432 413.5 421 425.0
## d 448.7143 38.16506 7 386 494 429.5 442 480.0
## e 472.1429 40.36264 7 413 536 448.5 478 490.5
## f 512.4286 22.76589 7 493 554 498.5 504 519.5
## g 508.5714 73.23673 7 352 566 508.0 519 553.5
##
## $comparison
## NULL
##
## $groups
## Galones groups
## f 512.4286 a
## g 508.5714 a
## e 472.1429 b
## d 448.7143 b
## c 410.7143 c
## b 384.1429 cd
## a 363.4286 d
##
## attr(,"class")
## [1] "group"
plot.group(rm_proteina,main="Grupos para el factor de bloque Proteína")
PAra el caso de la Prueba de Normalidad, procederemos a aplicar la Prueba de Shapiro-Wilks, considerando las siguientes hipótesis estadísticas:
\[ H_0: {x \in N(\mu=0,\sigma^2=Constante)} \] \[ H_1: {x \not\in N(\mu=0,\sigma^2=Constante)} \] mediante la sigueinte secuencia de comandos:.normalidad=shapiro.test(resid(modelo))
print(normalidad)
##
## Shapiro-Wilk normality test
##
## data: resid(modelo)
## W = 0.98663, p-value = 0.8467
#Gráfica de Probabiliad Normal
qqnorm(resid(modelo), main= "Gráfica de Probabilidad para los Residuales del Modelo", xlab="Cuantiles Teoricos", ylab = "Cuantiles de muestra")
qqline(resid(modelo))
homocedasticidad_lisina=bartlett.test(resid(modelo)~Lisina,data=datos)
print(homocedasticidad_lisina)
##
## Bartlett test of homogeneity of variances
##
## data: resid(modelo) by Lisina
## Bartlett's K-squared = 6.4864, df = 6, p-value = 0.371
homocedasticidad_proteina=bartlett.test(resid(modelo)~Proteina,data=datos)
print(homocedasticidad_proteina)
##
## Bartlett test of homogeneity of variances
##
## data: resid(modelo) by Proteina
## Bartlett's K-squared = 5.7725, df = 6, p-value = 0.4492