Theme Song
# install.packages("remotes")
library('BBmisc', 'rmsfuns')
#remotes::install_github("rstudio/sass")
lib('sass')
## sass
## TRUE
/* https://stackoverflow.com/a/66029010/3806250 */
h1 { color: #002C54; }
h2 { color: #2F496E; }
h3 { color: #375E97; }
h4 { color: #556DAC; }
h5 { color: #92AAC7; }
/* ----------------------------------------------------------------- */
/* https://gist.github.com/himynameisdave/c7a7ed14500d29e58149#file-broken-gradient-animation-less */
.hover01 {
/* color: #FFD64D; */
background: linear-gradient(155deg, #EDAE01 0%, #FFEB94 100%);
transition: all 0.45s;
&:hover{
background: linear-gradient(155deg, #EDAE01 20%, #FFEB94 80%);
}
}
.hover02 {
color: #FFD64D;
background: linear-gradient(155deg, #002C54 0%, #4CB5F5 100%);
transition: all 0.45s;
&:hover{
background: linear-gradient(155deg, #002C54 20%, #4CB5F5 80%);
}
}
.hover03 {
color: #FFD64D;
background: linear-gradient(155deg, #A10115 0%, #FF3C5C 100%);
transition: all 0.45s;
&:hover{
background: linear-gradient(155deg, #A10115 20%, #FF3C5C 80%);
}
}
## https://stackoverflow.com/a/36846793/3806250
options(width = 999)
knitr::opts_chunk$set(class.source = 'hover01', class.output = 'hover02', class.error = 'hover03')
if(!suppressPackageStartupMessages(require('BBmisc'))) {
install.packages('BBmisc', dependencies = TRUE, INSTALL_opts = '--no-lock')
}
suppressPackageStartupMessages(require('BBmisc'))
# suppressPackageStartupMessages(require('rmsfuns'))
pkgs <- c('devtools', 'knitr', 'kableExtra', 'tidyr',
'readr', 'lubridate', 'reprex', 'magrittr',
'timetk', 'plyr', 'dplyr', 'stringr',
'tdplyr', 'tidyverse', 'formattable',
'echarts4r', 'paletteer')
suppressAll(lib(pkgs))
# load_pkg(pkgs)
## Set the timezone but not change the datetime
Sys.setenv(TZ = 'Asia/Tokyo')
## options(knitr.table.format = 'html') will set all kableExtra tables to be 'html', otherwise need to set the parameter on every single table.
options(warn = -1, knitr.table.format = 'html')#, digits.secs = 6)
## https://stackoverflow.com/questions/39417003/long-vectors-not-supported-yet-abnor-in-rmd-but-not-in-r-script
knitr::opts_chunk$set(message = FALSE, warning = FALSE)#,
#cache = TRUE, cache.lazy = FALSE)
rm(pkgs)
5月17日 15:59 JST までに提出
課題をすぐに提出してください
課題の提出期限は、5月17日 15:59 JSTですが、可能であれば1日か2日早く提出してください。
早い段階で提出すると、他の受講生のレビューを時間内に得る可能性が高くなります。
Data on the lifetime (in years) of fuses produced by the ACME Corporation is available in the file fuses.csv
:
In order to characterize the distribution of the lifetimes, it seems reasonable to fit to the data a two-component mixture of the form:
\[\begin{align} f(x) = w \lambda \exp\left\{ -\lambda x \right\} + (1-w) \frac{1}{\sqrt{2\pi} \tau x} \exp\left\{ - \frac{1}{2 \tau^2} \left( \log(x) - \mu \right)^2\right\} \\ \quad\quad\quad x>0. \end{align}\]
The first component, which corresponds to an exponential distribution with rate \(\lambda\), is used to model low-quality components with a very short lifetime. The second component, which corresponds to a log-Gaussian distribution, is used to model normal, properly-functioning components.
You are asked to modify the implementation of the EM algorithm contained in the Reading “Sample code for EM example 1” so that you can fit this two-component mixture distributions instead. You then should run your algorithm with the data contained in fuses.csv
and report the values of the estimates for \(w\), \(\lambda\), \(\mu\) and \(\tau\) that you obtained, rounded to two decimal places.
The code you generate should follow the same structure as “Sample code for EM example 1”. Peer reviewers will be asked to check whether the different pieces of code have been adequately modified to reflect the fact that (1) you provided a reasonable initial point for you algorithm, (2) the observation-specific weights \(v_{i,k}\) are computed correctly (E step), (3) the formulas for the maximum of the QQ functions are correct (M step), (4) the converge check is correct, and (5) the numerical values that you obtain are correct.
Provide the EM algorithm to fit the mixture model
\[\begin{align} f(x) = w \lambda \exp\left\{ -\lambda x \right\} + (1-w) \frac{1}{\sqrt{2\pi} \tau x} \exp\left\{ - \frac{1}{2 \tau^2} \left( \log(x) - \mu \right)^2\right\} \\ \quad\quad\quad x>0. \end{align}\]
#read the data from the file
dat = read.csv(file = "data/fuses.csv", header = FALSE)
fuses = dat$V1
logfuses = log(fuses)
## Run the actual EM algorithm
## Initialize the parameters
KK = 2 # number of components
n = length(fuses) # number of samples
v = array(0, dim=c(n,KK))
v[,1] = 0.5 #Assign half weight to first component
v[,2] = 1-v[,1] #Assign all of the remaining weights to the second component
mean1 = sum(v[,1]*fuses)/sum(v[, 1]) #mean of the first component
lambda = 1.0/mean1 #parameter for the first component
mu = sum(v[,2]*logfuses)/sum(v[,2]) #parameter (mean) of the second component
tausquared = sum(v[,2]*((logfuses-mu)**2))/sum(v[,2]) #parameter (variance) for the second component
tau = sqrt(tausquared)
w = mean(v[,1])
print(paste(lambda, mu, tausquared, tau, w))
## [1] "0.459751008921357 0.570093003536586 0.72941677732671 0.854059001080552 0.5"
s = 0
sw = FALSE
QQ = -Inf
QQ.out = NULL
epsilon = 10^(-5)
##Checking convergence of the algorithm
while(!sw){
## E step
v = array(0, dim=c(n,KK))
v[,1] = log(w) + dexp(fuses, lambda,log=TRUE) #Compute the log of the weights
v[,2] = log(1-w) + dnorm(logfuses, mu, tau, log=TRUE) #Compute the log of the weights
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,]))) #Go from logs to actual weights in a numerically stable manner
}
## M step
# Weights
w = mean(v[,1])
## parameters
mean1 = sum(v[,1]*fuses)/sum(v[, 1]) #mean of the first component
lambda = 1.0/mean1 #parameter for the first component
mu = sum(v[,2]*logfuses)/sum(v[,2]) #parameter (mean) of the second component
tausquared = sum(v[,2]*((logfuses-mu)**2))/sum(v[,2]) #parameter (variance) for the second component
tau = sqrt(tausquared)
w = mean(v[,1])
print(paste(s, lambda, mu, tausquared, tau, w))
##Check convergence
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(fuses[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dnorm(logfuses[i], mu, tau, log=TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
QQ.out = c(QQ.out, QQ)
s = s + 1
print(paste(s, QQn))
}
## [1] "0 0.575313251766244 0.787418836909862 0.178009906620841 0.421912202502891 0.328849592636438"
## [1] "1 -606.863389985625"
## [1] "1 0.802085491577008 0.806622766604627 0.131654033609992 0.362841609535059 0.191506582340807"
## [1] "2 -419.880981627137"
## [1] "2 1.1454267169641 0.804615207516901 0.13203610814932 0.363367731298914 0.142572486214952"
## [1] "3 -352.579669038117"
## [1] "3 1.55591290988368 0.799681842798857 0.135184605543593 0.367674591920074 0.119896864032964"
## [1] "4 -320.733326920057"
## [1] "4 1.964385391814 0.794449863366094 0.137233851195854 0.370450875550125 0.106515115352943"
## [1] "5 -301.721566048333"
## [1] "5 2.34111556983605 0.790306896625411 0.138896337496948 0.372687989472357 0.0983223145877052"
## [1] "6 -290.209854434937"
## [1] "6 2.65210539136429 0.787357293752234 0.140235622021137 0.3744804694789 0.093315092348149"
## [1] "7 -283.364520128997"
## [1] "7 2.87777831549017 0.785398550673676 0.14123758198893 0.375815888420022 0.0903239845744966"
## [1] "8 -279.460463417894"
## [1] "8 3.02381070153536 0.784177048900066 0.141924107652351 0.376728161480332 0.0885936401654716"
## [1] "9 -277.328468809766"
## [1] "9 3.1108082236803 0.783455349642572 0.142357077527322 0.377302368833436 0.0876217632153569"
## [1] "10 -276.195169841289"
## [1] "10 3.1600367519695 0.783046025705268 0.142612921263191 0.377641260011656 0.0870877815088812"
## [1] "11 -275.598589409758"
## [1] "11 3.18708852493966 0.782820155773 0.142757542644574 0.377832691339135 0.0867985990694814"
## [1] "12 -275.284651853136"
## [1] "12 3.20171812846752 0.782697600264496 0.142837086225026 0.377937939647538 0.0866433470659362"
## [1] "13 -275.119032423377"
## [1] "13 3.20956239627147 0.782631747364304 0.142880147552743 0.377994904135946 0.0865604115501158"
## [1] "14 -275.031442816647"
## [1] "14 3.21374931827894 0.782596554319871 0.142903253457439 0.378025466678423 0.086516229445828"
## [1] "15 -274.985040535995"
## [1] "15 3.21597871481854 0.782577802184506 0.142915591830072 0.37804178582542 0.0864927276392735"
## [1] "16 -274.960432399398"
## [1] "16 3.21716427173932 0.78256782632607 0.142922163261508 0.378050477134347 0.0864802363884198"
## [1] "17 -274.947374423714"
## [1] "17 3.21779430231029 0.782562523857659 0.14292565832828 0.378055099593009 0.0864736001288265"
## [1] "18 -274.940443119399"
## [1] "18 3.21812899309595 0.782559706722832 0.142927515822191 0.37805755622946 0.0864700752759284"
## [1] "19 -274.936763262255"
## [1] "19 3.21830675655292 0.782558210378157 0.142928502617509 0.3780588613133 0.0864682032773083"
## [1] "20 -274.934809425826"
#Plot final estimate over data
layout(matrix(c(1,2),2,1), widths=c(1,1), heights=c(1.3,3))
par(mar=c(3.1,4.1,0.5,0.5))
#plot(QQ.out[1:s],type="l", xlim=c(1,max(10,s)), las=1, ylab="Q", lwd=2)
## https://www.infoworld.com/article/3607068/plot-in-r-with-echarts4r.html
## https://echarts.apache.org/en/theme-builder.html
Qplot <- tibble(Index = 1:length(QQ.out[1:s]), Value = QQ.out[1:s])
Qplot |>
e_charts(x = Index) |>
e_theme('dark-mushroom') |>
e_line(Value, stack = 'grp2') |>
e_datazoom(
type = "slider",
toolbox = FALSE,
bottom = -5) |>
e_tooltip() |>
e_title('Exopential Regression', 'Plot', sublink = 'https://echarts4r.john-coene.com/reference/e_bar.html') |>
e_x_axis(Index, axisPointer = list(show = TRUE)) |>
e_legend(
orient = 'vertical',
type = c('scroll'),
right = 80)
Reference from tutorial : Sample Code for EM Example 1
Provide you maximum likelihood estimates \(\hat{\omega}\), \(\hat{\lambda}\), \(\hat{\mu}\) and \(\hat{\tau}\), rounded to two decimal places.
w
## [1] 0.0864682
mean1
## [1] 0.3107224
lambda
## [1] 3.218307
mu
## [1] 0.7825582
tausquared
## [1] 0.1429285
tau
## [1] 0.3780589
paste('w =', w)
## [1] "w = 0.0864682032773083"
paste('mean1 =', mean1)
## [1] "mean1 = 0.310722400207458"
paste('lambda =', lambda)
## [1] "lambda = 3.21830675655292"
paste('mu =', mu)
## [1] "mu = 0.782558210378157"
paste('tausquared =', tausquared)
## [1] "tausquared = 0.142928502617509"
paste('tau =', tau)
## [1] "tau = 0.3780588613133"
Are the initial values appropriate?
The starting values of four parameters, \(w\), \(\lambda\), \(\mu\) and \(\tau\), need to be specified, and the context of the problem provides some useful clues.
Because the lognormal component corresponds to the “normal” components, and we expect the majority of the observations to be in this class, it makes sense to bias the weights so that \(w \le 1/2\). For example, we could use \(w = 0.1\) (but other values that satisfy \(w \le 1/2\) would be reasonable too).
For the same reason, a reasonable starting values for \(\mu\) and \(\tau\) correspond to their maximum likelihood estimators under the simpler log-Gaussian model. Since a random variable follows a log-Gaussian distribution if and only if its logarithm follows a Gaussian distribution, we can use \(\mu = mean(log(x))\) and \(\tau = sd(log(x))\) as our starting values.
Finally, because the defective components should have shorter lifespan than normal components, it makes sense to take \(1/\lambda1\) (which is the mean of the first component) to be a small fraction of the overall mean of the data (we use \(5%\) of the overall mean, but other similar values would all be reasonable).
In summary, you should expect an initialization such as this one:
w = 0.1
mu = mean(log(x))
## Error in mean(log(x)): object 'x' not found
tau = sd(log(x))
## Error in is.data.frame(x): object 'x' not found
lambda = 20/mean(x)
## Error in mean(x): object 'x' not found
Are the observation-specific weights \(v_{i,k}\) computed correctly (E step)?
In this case it is easy to see that \(v_{i,1}^{(t+1)} \propto w^{(t)} \lambda^{(t)} \exp\left\{ - \lambda^{(t)} x_i \right\}\) and \(v_{i,2}^{(t+1)} \propto \left(1-w^{(t)}\right) \frac{1}{\sqrt{2\pi} \tau^{(t)} x_i} \exp\left\{ - \frac{1}{2 } \left( \frac{\log(x_i) - \mu^{(t)}}{\tau^{(t)}} \right)^2\right\}\).
Hence, the code for the E step could look something like
## E step
v = array(0, dim=c(n,2))
v[,1] = log(w) + dexp(x, lambda, log=TRUE)
## Error in dexp(x, lambda, log = TRUE): object 'x' not found
v[,2] = log(1-w) + dlnorm(x, mu, tau, log=TRUE)
## Error in dlnorm(x, mu, tau, log = TRUE): object 'x' not found
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,])))
}
Remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R. For example, the calculation could be vectorized to increase efficiency.
Are the formulas for the maximum of the QQ functions correct (M step)?
In this case
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Computing the derivatives and setting them to zero yields
\(\hat{w}^{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} v_{i,1}\)
\(\hat{\lambda}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,1}}{\sum_{i=1}^{n} v_{i,1} x_{i}}\)
\(\hat{\mu}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,2} \log(x_i)}{\sum_{i=1}^{n} v_{i,2}}\)
\(\hat{\tau}^{(t+1)} = \sqrt{\frac{\sum_{i=1}^{n} v_{i,2}\left( \log x_i - \hat{\mu}^{(t+1)} \right)^2}{\sum_{i=1}^{n} v_{i,2}}}\)
Hence, the code for this section might look something like:
## M step
w = mean(v[,1])
lambda = sum(v[,1])/sum(v[,1]*x)
## Error in eval(expr, envir, enclos): object 'x' not found
mu = sum(v[,2]*log(x))/sum(v[,2])
## Error in eval(expr, envir, enclos): object 'x' not found
tau = sqrt(sum(v[,2]*(log(x) - mu)^2)/sum(v[,2]))
## Error in eval(expr, envir, enclos): object 'x' not found
However, remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R.
Is the converge check correct?
As noted before,
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Hence, the convergence check might look something like
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(x[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(x[i], mu, tau, log=TRUE))
}
## Error in dexp(x[i], lambda, log = TRUE): object 'x' not found
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
Are the estimates of the parameters generated by the algorithm correct?
The point estimates, rounded to two decimal places, are \(\hat{w}=0.09\), \(\hat{\lambda} = 3.05\), \(\hat{\mu} = 0.78\) and \(\hat{\tau}=0.38\).
Provide the EM algorithm to fit the mixture model
\[\begin{align} f(x) = w \lambda \exp\left\{ -\lambda x \right\} + (1-w) \frac{1}{\sqrt{2\pi} \tau x} \exp\left\{ - \frac{1}{2 \tau^2} \left( \log(x) - \mu \right)^2\right\} \\ \quad\quad\quad x>0. \end{align}\]
dat = read.csv(file = "data/fuses.csv", header = FALSE)
x <- dat$V1
w = 1/2 #Assign equal weight to each component to start with
sigma = sd(log(x)) # take sigma to be tau
mu <- c(.02, 2)
KK <- 2
QQ = -Inf
epsilon <- 10^(-8)
## E step
v = array(0, dim=c(n,KK))
v[,1] = log(w) + dexp(x, mu[1], log=T)
v[,2] = log(1-w) + dlnorm(x, mu[2], sigma, log=T)
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,]))) #Go from logs to actual weights in a numerically stable manner
}
## M step
# Weights
w = mean(v[,1])
mu[1] = sum(v[,1]) / sum(v[,1] * x)
mu[2] = sum(v[,2] * log(x)) / sum(v[,2])
# Standard deviations
sigma = sqrt(sum(v[,2]*(log(x) - mu)^2)/sum(v[,2]))
##Check convergence
QQn = 0
for(i in 1:n){
comp1 = log(w) + dexp(x[i], mu[1], log=T);
comp2 = log(1-w) + dlnorm(x[i], mu[2], sigma, log=T)
QQn = QQn + v[i,1]*(comp1) + v[i,2]*(comp2)
}
#print(QQ)
if(abs(QQn-QQ)/abs(QQn)<epsilon){sw=TRUE}
QQ = QQn
QQ
## [1] -775.7749
Provide you maximum likelihood estimates \(\hat{\omega}\), \(\hat{\lambda}\), \(\hat{\mu}\) and \(\hat{\tau}\), rounded to two decimal places.
\(w = 0.09, lambda = 3.05, mu = 0.79, tau = 0.38\)
Are the initial values appropriate?
The starting values of four parameters, \(w\), \(\lambda\), \(\mu\) and \(\tau\), need to be specified, and the context of the problem provides some useful clues.
Because the lognormal component corresponds to the “normal” components, and we expect the majority of the observations to be in this class, it makes sense to bias the weights so that \(w \le 1/2\). For example, we could use \(w = 0.1\) (but other values that satisfy \(w \le 1/2\) would be reasonable too).
For the same reason, a reasonable starting values for \(\mu\) and \(\tau\) correspond to their maximum likelihood estimators under the simpler log-Gaussian model. Since a random variable follows a log-Gaussian distribution if and only if its logarithm follows a Gaussian distribution, we can use \(\mu = mean(log(x))\) and \(\tau = sd(log(x))\) as our starting values.
Finally, because the defective components should have shorter lifespan than normal components, it makes sense to take \(1/\lambda1\) (which is the mean of the first component) to be a small fraction of the overall mean of the data (we use \(5%\) of the overall mean, but other similar values would all be reasonable).
In summary, you should expect an initialization such as this one:
w = 0.1
mu = mean(log(x))
tau = sd(log(x))
lambda = 20/mean(x)
Are the observation-specific weights \(v_{i,k}\) computed correctly (E step)?
In this case it is easy to see that \(v_{i,1}^{(t+1)} \propto w^{(t)} \lambda^{(t)} \exp\left\{ - \lambda^{(t)} x_i \right\}\) and \(v_{i,2}^{(t+1)} \propto \left(1-w^{(t)}\right) \frac{1}{\sqrt{2\pi} \tau^{(t)} x_i} \exp\left\{ - \frac{1}{2 } \left( \frac{\log(x_i) - \mu^{(t)}}{\tau^{(t)}} \right)^2\right\}\).
Hence, the code for the E step could look something like
## E step
v = array(0, dim=c(n,2))
v[,1] = log(w) + dexp(x, lambda, log=TRUE)
v[,2] = log(1-w) + dlnorm(x, mu, tau, log=TRUE)
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,])))
}
Remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R. For example, the calculation could be vectorized to increase efficiency.
Are the formulas for the maximum of the QQ functions correct (M step)?
In this case
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Computing the derivatives and setting them to zero yields
\(\hat{w}^{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} v_{i,1}\)
\(\hat{\lambda}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,1}}{\sum_{i=1}^{n} v_{i,1} x_{i}}\)
\(\hat{\mu}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,2} \log(x_i)}{\sum_{i=1}^{n} v_{i,2}}\)
\(\hat{\tau}^{(t+1)} = \sqrt{\frac{\sum_{i=1}^{n} v_{i,2}\left( \log x_i - \hat{\mu}^{(t+1)} \right)^2}{\sum_{i=1}^{n} v_{i,2}}}\)
Hence, the code for this section might look something like:
## M step
w = mean(v[,1])
lambda = sum(v[,1])/sum(v[,1]*x)
mu = sum(v[,2]*log(x))/sum(v[,2])
tau = sqrt(sum(v[,2]*(log(x) - mu)^2)/sum(v[,2]))
However, remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R.
Is the converge check correct?
As noted before,
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Hence, the convergence check might look something like
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(x[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(x[i], mu, tau, log=TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
Are the estimates of the parameters generated by the algorithm correct?
The point estimates, rounded to two decimal places, are \(\hat{w}=0.09\), \(\hat{\lambda} = 3.05\), \(\hat{\mu} = 0.78\) and \(\hat{\tau}=0.38\).
Provide the EM algorithm to fit the mixture model
\[\begin{align} f(x) = w \lambda \exp\left\{ -\lambda x \right\} + (1-w) \frac{1}{\sqrt{2\pi} \tau x} \exp\left\{ - \frac{1}{2 \tau^2} \left( \log(x) - \mu \right)^2\right\} \\ \quad\quad\quad x>0. \end{align}\]
#read the data from the file
dat = read.csv(file = "data/fuses.csv", header = FALSE)
fuses = dat$V1
logfuses = log(fuses)
## Run the actual EM algorithm
## Initialize the parameters
KK = 2 # number of components
n = length(fuses) # number of samples
v = array(0, dim=c(n,KK))
v[,1] = 0.5 #Assign half weight to first component
v[,2] = 1-v[,1] #Assign all of the remaining weights to the second component
mean1 = sum(v[,1]*fuses)/sum(v[, 1]) #mean of the first component
lambda = 1.0/mean1 #parameter for the first component
mu = sum(v[,2]*logfuses)/sum(v[,2]) #parameter (mean) of the second component
tausquared = sum(v[,2]*((logfuses-mu)**2))/sum(v[,2]) #parameter (variance) for the second component
tau = sqrt(tausquared)
w = mean(v[,1])
print(paste(lambda, mu, tausquared, tau, w))
## [1] "0.459751008921357 0.570093003536586 0.72941677732671 0.854059001080552 0.5"
s = 0
sw = FALSE
QQ = -Inf
QQ.out = NULL
epsilon = 10^(-5)
##Checking convergence of the algorithm
while(!sw){
## E step
v = array(0, dim=c(n,KK))
v[,1] = log(w) + dexp(fuses, lambda,log=TRUE) #Compute the log of the weights
v[,2] = log(1-w) + dnorm(logfuses, mu, tau, log=TRUE) #Compute the log of the weights
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,]))) #Go from logs to actual weights in a numerically stable manner
}
## M step
# Weights
w = mean(v[,1])
## parameters
mean1 = sum(v[,1]*fuses)/sum(v[, 1]) #mean of the first component
lambda = 1.0/mean1 #parameter for the first component
mu = sum(v[,2]*logfuses)/sum(v[,2]) #parameter (mean) of the second component
tausquared = sum(v[,2]*((logfuses-mu)**2))/sum(v[,2]) #parameter (variance) for the second component
tau = sqrt(tausquared)
w = mean(v[,1])
print(paste(s, lambda, mu, tausquared, tau, w))
##Check convergence
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(fuses[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dnorm(logfuses[i], mu, tau, log=TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
QQ.out = c(QQ.out, QQ)
s = s + 1
print(paste(s, QQn))
}
## [1] "0 0.575313251766244 0.787418836909862 0.178009906620841 0.421912202502891 0.328849592636438"
## [1] "1 -606.863389985625"
## [1] "1 0.802085491577008 0.806622766604627 0.131654033609992 0.362841609535059 0.191506582340807"
## [1] "2 -419.880981627137"
## [1] "2 1.1454267169641 0.804615207516901 0.13203610814932 0.363367731298914 0.142572486214952"
## [1] "3 -352.579669038117"
## [1] "3 1.55591290988368 0.799681842798857 0.135184605543593 0.367674591920074 0.119896864032964"
## [1] "4 -320.733326920057"
## [1] "4 1.964385391814 0.794449863366094 0.137233851195854 0.370450875550125 0.106515115352943"
## [1] "5 -301.721566048333"
## [1] "5 2.34111556983605 0.790306896625411 0.138896337496948 0.372687989472357 0.0983223145877052"
## [1] "6 -290.209854434937"
## [1] "6 2.65210539136429 0.787357293752234 0.140235622021137 0.3744804694789 0.093315092348149"
## [1] "7 -283.364520128997"
## [1] "7 2.87777831549017 0.785398550673676 0.14123758198893 0.375815888420022 0.0903239845744966"
## [1] "8 -279.460463417894"
## [1] "8 3.02381070153536 0.784177048900066 0.141924107652351 0.376728161480332 0.0885936401654716"
## [1] "9 -277.328468809766"
## [1] "9 3.1108082236803 0.783455349642572 0.142357077527322 0.377302368833436 0.0876217632153569"
## [1] "10 -276.195169841289"
## [1] "10 3.1600367519695 0.783046025705268 0.142612921263191 0.377641260011656 0.0870877815088812"
## [1] "11 -275.598589409758"
## [1] "11 3.18708852493966 0.782820155773 0.142757542644574 0.377832691339135 0.0867985990694814"
## [1] "12 -275.284651853136"
## [1] "12 3.20171812846752 0.782697600264496 0.142837086225026 0.377937939647538 0.0866433470659362"
## [1] "13 -275.119032423377"
## [1] "13 3.20956239627147 0.782631747364304 0.142880147552743 0.377994904135946 0.0865604115501158"
## [1] "14 -275.031442816647"
## [1] "14 3.21374931827894 0.782596554319871 0.142903253457439 0.378025466678423 0.086516229445828"
## [1] "15 -274.985040535995"
## [1] "15 3.21597871481854 0.782577802184506 0.142915591830072 0.37804178582542 0.0864927276392735"
## [1] "16 -274.960432399398"
## [1] "16 3.21716427173932 0.78256782632607 0.142922163261508 0.378050477134347 0.0864802363884198"
## [1] "17 -274.947374423714"
## [1] "17 3.21779430231029 0.782562523857659 0.14292565832828 0.378055099593009 0.0864736001288265"
## [1] "18 -274.940443119399"
## [1] "18 3.21812899309595 0.782559706722832 0.142927515822191 0.37805755622946 0.0864700752759284"
## [1] "19 -274.936763262255"
## [1] "19 3.21830675655292 0.782558210378157 0.142928502617509 0.3780588613133 0.0864682032773083"
## [1] "20 -274.934809425826"
#Plot final estimate over data
layout(matrix(c(1,2),2,1), widths=c(1,1), heights=c(1.3,3))
par(mar=c(3.1,4.1,0.5,0.5))
plot(QQ.out[1:s],type="l", xlim=c(1,max(10,s)), las=1, ylab="Q", lwd=2)
Provide you maximum likelihood estimates \(\hat{\omega}\), \(\hat{\lambda}\), \(\hat{\mu}\) and \(\hat{\tau}\), rounded to two decimal places.
\(w = 0.09, lambda = 3.05, mu = 0.79, tau = 0.38\)
Are the estimates of the parameters generated by the algorithm correct?
The point estimates, rounded to two decimal places, are \(w = 0.09\), \(lambda = 3.05\), \(mu = 0.79\), \(tau = 0.38\).
Provide the EM algorithm to fit the mixture model
\[\begin{align} f(x) = w \lambda \exp\left\{ -\lambda x \right\} + (1-w) \frac{1}{\sqrt{2\pi} \tau x} \exp\left\{ - \frac{1}{2 \tau^2} \left( \log(x) - \mu \right)^2\right\} \\ \quad\quad\quad x>0. \end{align}\]
#### Example of an EM algorithm for fitting a location mixture of 2 Gaussian components
#### The algorithm is tested using simulated data
## Clear the environment and load required libraries
rm(list=ls())
#set.seed(81196) # So that results are reproducible (same simulated data every time)
set.seed(12345)
x = read.csv("data/nestsize.csv", header=FALSE)$V1
KK = 2
## Run the actual EM algorithm
## Initialize the parameters
w = 0.5 #Assign equal weight to each component to start with
lambda = mean(x) #Random cluster centers randomly spread over the support of the data
n = length(x)
# Plot the initial guess for the density
xx = seq(0,10,length=11)
ddeg = function(x,log=FALSE) {
p = pmin(0.99999,pmax(0.00001,as.integer(x==0)))
if(log==FALSE) {
p
} else {
.Primitive("log")(pmax(1.0e-40,p))
}
}
yy = w*ddeg(xx) + (1-w)*dpois(xx, lambda)
par(mfrow=c(1,1),mar=c(4,4,4,4))
plot(xx, yy, type="l", ylim=c(0, max(yy)), xlab="x", ylab="Initial density")
points(jitter(x), jitter(rep(0,n)),col="red")
s = 0
sw = FALSE
QQ = -Inf
QQ.out = NULL
epsilon = 10^(-8)
##Checking convergence of the algorithm
while(!sw){
## E step
v = array(0, dim=c(n,KK))
v.logs = array(0, dim=c(n,KK))
v.logs[,1] = log(w) + log(ddeg(x)) #Compute the log of the weights
v.logs[,2] = log(1-w) + log(dpois(x, lambda)) #Compute the log of the weights
for(i in 1:n){
#v[i,] = exp(v.logs[i,])
v[i,] = exp(v.logs[i,] - max(v.logs[i,]))/sum(exp(v.logs[i,] - max(v.logs[i,]))) #Go from logs to actual weights in a numerically stable manner
}
## M step
# Weights
#w = max(1.0e-10,sum(v[,1])/(sum(v[,1])+sum(v[,2])))
w = mean(v[,1])#sum(v[,1])/(sum(v[,1])+sum(v[,2]))
mu = 0
for(i in 1:n){
mu = mu + v[i,2]*x[i]
}
mu=mu/sum(v[,2])
##Check convergence
QQn = 0
for(i in 1:n){
logp1 = ddeg(x[i],log=TRUE)
first = v[i,1]*(log(w) + logp1)
second = v[i,2]*(log(1-w) + dpois(x, lambda,log=TRUE))
QQn = QQn + first + second
#cat("v[",i,",1]",v[i,1],"v[",i,",2]",v[i,2],"w",w,"logp1",logp1,"QQn",QQn,"first",first,"second",second,"\n")
}
epsilon_cond = abs(QQn-QQ)/abs(QQn)
cat("QQn",QQn,"QQ",QQ,"epsilon_cond",epsilon_cond,"mu",mu,"w",w,"\n")
if(epsilon_cond<epsilon){
sw=TRUE
}
QQ = QQn
QQ.out = c(QQ.out, QQ)
s = s + 1
print(paste(s, QQn))
#Plot current estimate over data
layout(matrix(c(1,2,3),3,1), widths=c(1,1,1), heights=c(1,1,3))
par(mar=c(3.1,4.1,0.5,0.5))
plot(QQ.out[1:s],type="l", xlim=c(1,max(10,s)), las=1, ylab="Q", lwd=2)
par(mar=c(5,4,1.5,0.5))
xx = seq(0,10,length=11)
yy = w*ddeg(xx) + (1-w)*dpois(xx, mu)
plot(xx, yy, type="l", ylim=c(0,1), main=paste("s =",s," Q =", round(QQ.out[s],4)," w=",w," mu=",mu), lwd=2, col="red", lty=2, xlab="x", ylab="Density")
#lines(xx.true, yy.true, lwd=2)
points(x, rep(0,n), col="red")
legend(6,0.22,c("Truth","Estimate"),col=c("black","red"), lty=c(1,2))
}
## QQn -686.9775 -548.4393 -548.4393 -548.4393 -1930.059 -540.3046 -548.4393 -540.3046 -686.9775 -686.9775 -875.8969 -548.4393 -448.0969 -686.9775 -548.4393 -548.4393 -548.4393 -448.0969 -875.8969 -448.0969 -548.4393 -548.4393 -1351.956 -540.3046 -548.4393 -540.3046 -1629.858 -686.9775 -540.3046 -548.4393 -875.8969 -448.0969 -686.9775 -686.9775 -875.8969 -448.0969 -1099.334 -548.4393 -540.3046 -448.0969 -548.4393 -875.8969 -432.6534 -448.0969 -540.3046 -540.3046 -548.4393 -548.4393 -448.0969 -548.4393 -548.4393 -540.3046 -875.8969 -548.4393 -448.0969 -1351.956 -686.9775 -540.3046 -548.4393 -548.4393 -686.9775 -540.3046 -432.6534 -686.9775 -432.6534 -1351.956 -548.4393 -548.4393 -432.6534 -1099.334 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -540.3046 -540.3046 -1099.334 -548.4393 -548.4393 -432.6534 -548.4393 -448.0969 -686.9775 -540.3046 -548.4393 -686.9775 -686.9775 -548.4393 -548.4393 -432.6534 -448.0969 -686.9775 -548.4393 -432.6534 -432.6534 -432.6534 -548.4393 -686.9775 -548.4393 -548.4393 -548.4393 -540.3046 -548.4393 -686.9775 -548.4393 -548.4393 -432.6534 -540.3046 -548.4393 -540.3046 -540.3046 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -540.3046 -540.3046 -540.3046 -548.4393 -875.8969 -548.4393 -548.4393 -548.4393 -548.4393 -448.0969 -432.6534 -548.4393 -548.4393 -448.0969 -548.4393 -548.4393 -548.4393 -448.0969 -686.9775 -432.6534 -432.6534 -548.4393 -540.3046 -548.4393 -875.8969 -548.4393 -448.0969 -548.4393 -548.4393 -875.8969 -548.4393 -875.8969 -448.0969 -686.9775 -540.3046 -432.6534 -540.3046 -548.4393 -540.3046 -548.4393 -548.4393 -448.0969 -686.9775 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -686.9775 -875.8969 -448.0969 -548.4393 -432.6534 -875.8969 -548.4393 -548.4393 -548.4393 -548.4393 -432.6534 -686.9775 -686.9775 -448.0969 -432.6534 -448.0969 -548.4393 -548.4393 -540.3046 -540.3046 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -540.3046 -875.8969 -448.0969 -432.6534 -1629.858 -540.3046 -548.4393 -548.4393 -686.9775 -548.4393 -548.4393 -548.4393 -875.8969 -548.4393 -540.3046 -448.0969 -432.6534 -540.3046 -432.6534 -548.4393 -1099.334 -448.0969 -448.0969 -875.8969 -548.4393 -432.6534 -548.4393 -548.4393 -548.4393 -540.3046 -548.4393 -548.4393 -448.0969 -548.4393 -686.9775 -686.9775 -448.0969 -540.3046 -548.4393 -548.4393 -548.4393 -548.4393 -432.6534 -448.0969 -548.4393 -548.4393 -875.8969 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -875.8969 -548.4393 -548.4393 -448.0969 -686.9775 -448.0969 -432.6534 -1099.334 -540.3046 -686.9775 -1099.334 -686.9775 -448.0969 -1351.956 -875.8969 -548.4393 -432.6534 -448.0969 -448.0969 -448.0969 -432.6534 -1351.956 -540.3046 -448.0969 -875.8969 -875.8969 -548.4393 -686.9775 -548.4393 -448.0969 -448.0969 -548.4393 -432.6534 -548.4393 -686.9775 -548.4393 -875.8969 -686.9775 -686.9775 -448.0969 -548.4393 -540.3046 -548.4393 -548.4393 -540.3046 -548.4393 -686.9775 -432.6534 -548.4393 -432.6534 -548.4393 -540.3046 -686.9775 -548.4393 -548.4393 QQ -Inf epsilon_cond Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf mu 2.913898 w 0.3689199
## [1] "1 -686.97752505613" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -1930.05943861639" "1 -540.304630953612" "1 -548.439337762417" "1 -540.304630953612" "1 -686.97752505613" "1 -686.97752505613" "1 -875.896856220031" "1 -548.439337762417" "1 -448.096867014809" "1 -686.97752505613" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -448.096867014809" "1 -875.896856220031" "1 -448.096867014809" "1 -548.439337762417" "1 -548.439337762417" "1 -1351.95565178614" "1 -540.304630953612" "1 -548.439337762417" "1 -540.304630953612" "1 -1629.85796553955" "1 -686.97752505613" "1 -540.304630953612" "1 -548.439337762417" "1 -875.896856220031" "1 -448.096867014809" "1 -686.97752505613" "1 -686.97752505613" "1 -875.896856220031" "1 -448.096867014809" "1 -1099.33403980972" "1 -548.439337762417" "1 -540.304630953612" "1 -448.096867014809" "1 -548.439337762417" "1 -875.896856220031" "1 -432.653392563174" "1 -448.096867014809" "1 -540.304630953612"
## [46] "1 -540.304630953612" "1 -548.439337762417" "1 -548.439337762417" "1 -448.096867014809" "1 -548.439337762417" "1 -548.439337762417" "1 -540.304630953612" "1 -875.896856220031" "1 -548.439337762417" "1 -448.096867014809" "1 -1351.95565178614" "1 -686.97752505613" "1 -540.304630953612" "1 -548.439337762417" "1 -548.439337762417" "1 -686.97752505613" "1 -540.304630953612" "1 -432.653392563174" "1 -686.97752505613" "1 -432.653392563174" "1 -1351.95565178614" "1 -548.439337762417" "1 -548.439337762417" "1 -432.653392563174" "1 -1099.33403980972" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -540.304630953612" "1 -540.304630953612" "1 -1099.33403980972" "1 -548.439337762417" "1 -548.439337762417" "1 -432.653392563174" "1 -548.439337762417" "1 -448.096867014809" "1 -686.97752505613" "1 -540.304630953612" "1 -548.439337762417" "1 -686.97752505613" "1 -686.97752505613" "1 -548.439337762417" "1 -548.439337762417"
## [91] "1 -432.653392563174" "1 -448.096867014809" "1 -686.97752505613" "1 -548.439337762417" "1 -432.653392563174" "1 -432.653392563174" "1 -432.653392563174" "1 -548.439337762417" "1 -686.97752505613" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -540.304630953612" "1 -548.439337762417" "1 -686.97752505613" "1 -548.439337762417" "1 -548.439337762417" "1 -432.653392563174" "1 -540.304630953612" "1 -548.439337762417" "1 -540.304630953612" "1 -540.304630953612" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -540.304630953612" "1 -540.304630953612" "1 -540.304630953612" "1 -548.439337762417" "1 -875.896856220031" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -448.096867014809" "1 -432.653392563174" "1 -548.439337762417" "1 -548.439337762417" "1 -448.096867014809" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -448.096867014809"
## [136] "1 -686.97752505613" "1 -432.653392563174" "1 -432.653392563174" "1 -548.439337762417" "1 -540.304630953612" "1 -548.439337762417" "1 -875.896856220031" "1 -548.439337762417" "1 -448.096867014809" "1 -548.439337762417" "1 -548.439337762417" "1 -875.896856220031" "1 -548.439337762417" "1 -875.896856220031" "1 -448.096867014809" "1 -686.97752505613" "1 -540.304630953612" "1 -432.653392563174" "1 -540.304630953612" "1 -548.439337762417" "1 -540.304630953612" "1 -548.439337762417" "1 -548.439337762417" "1 -448.096867014809" "1 -686.97752505613" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -686.97752505613" "1 -875.896856220031" "1 -448.096867014809" "1 -548.439337762417" "1 -432.653392563174" "1 -875.896856220031" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -432.653392563174" "1 -686.97752505613" "1 -686.97752505613"
## [181] "1 -448.096867014809" "1 -432.653392563174" "1 -448.096867014809" "1 -548.439337762417" "1 -548.439337762417" "1 -540.304630953612" "1 -540.304630953612" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -540.304630953612" "1 -875.896856220031" "1 -448.096867014809" "1 -432.653392563174" "1 -1629.85796553955" "1 -540.304630953612" "1 -548.439337762417" "1 -548.439337762417" "1 -686.97752505613" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -875.896856220031" "1 -548.439337762417" "1 -540.304630953612" "1 -448.096867014809" "1 -432.653392563174" "1 -540.304630953612" "1 -432.653392563174" "1 -548.439337762417" "1 -1099.33403980972" "1 -448.096867014809" "1 -448.096867014809" "1 -875.896856220031" "1 -548.439337762417" "1 -432.653392563174" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -540.304630953612" "1 -548.439337762417" "1 -548.439337762417"
## [226] "1 -448.096867014809" "1 -548.439337762417" "1 -686.97752505613" "1 -686.97752505613" "1 -448.096867014809" "1 -540.304630953612" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -432.653392563174" "1 -448.096867014809" "1 -548.439337762417" "1 -548.439337762417" "1 -875.896856220031" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -548.439337762417" "1 -875.896856220031" "1 -548.439337762417" "1 -548.439337762417" "1 -448.096867014809" "1 -686.97752505613" "1 -448.096867014809" "1 -432.653392563174" "1 -1099.33403980972" "1 -540.304630953612" "1 -686.97752505613" "1 -1099.33403980972" "1 -686.97752505613" "1 -448.096867014809" "1 -1351.95565178614" "1 -875.896856220031" "1 -548.439337762417" "1 -432.653392563174" "1 -448.096867014809" "1 -448.096867014809" "1 -448.096867014809" "1 -432.653392563174" "1 -1351.95565178614" "1 -540.304630953612" "1 -448.096867014809" "1 -875.896856220031"
## [271] "1 -875.896856220031" "1 -548.439337762417" "1 -686.97752505613" "1 -548.439337762417" "1 -448.096867014809" "1 -448.096867014809" "1 -548.439337762417" "1 -432.653392563174" "1 -548.439337762417" "1 -686.97752505613" "1 -548.439337762417" "1 -875.896856220031" "1 -686.97752505613" "1 -686.97752505613" "1 -448.096867014809" "1 -548.439337762417" "1 -540.304630953612" "1 -548.439337762417" "1 -548.439337762417" "1 -540.304630953612" "1 -548.439337762417" "1 -686.97752505613" "1 -432.653392563174" "1 -548.439337762417" "1 -432.653392563174" "1 -548.439337762417" "1 -540.304630953612" "1 -686.97752505613" "1 -548.439337762417" "1 -548.439337762417"
## QQn -705.5679 -559.8223 -559.8223 -559.8223 -2013.321 -551.2644 -559.8223 -551.2644 -705.5679 -705.5679 -904.3157 -559.8223 -454.2595 -705.5679 -559.8223 -559.8223 -559.8223 -454.2595 -904.3157 -454.2595 -559.8223 -559.8223 -1405.141 -551.2644 -559.8223 -551.2644 -1697.502 -705.5679 -551.2644 -559.8223 -904.3157 -454.2595 -705.5679 -705.5679 -904.3157 -454.2595 -1139.377 -559.8223 -551.2644 -454.2595 -559.8223 -904.3157 -438.0126 -454.2595 -551.2644 -551.2644 -559.8223 -559.8223 -454.2595 -559.8223 -559.8223 -551.2644 -904.3157 -559.8223 -454.2595 -1405.141 -705.5679 -551.2644 -559.8223 -559.8223 -705.5679 -551.2644 -438.0126 -705.5679 -438.0126 -1405.141 -559.8223 -559.8223 -438.0126 -1139.377 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -551.2644 -551.2644 -1139.377 -559.8223 -559.8223 -438.0126 -559.8223 -454.2595 -705.5679 -551.2644 -559.8223 -705.5679 -705.5679 -559.8223 -559.8223 -438.0126 -454.2595 -705.5679 -559.8223 -438.0126 -438.0126 -438.0126 -559.8223 -705.5679 -559.8223 -559.8223 -559.8223 -551.2644 -559.8223 -705.5679 -559.8223 -559.8223 -438.0126 -551.2644 -559.8223 -551.2644 -551.2644 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -551.2644 -551.2644 -551.2644 -559.8223 -904.3157 -559.8223 -559.8223 -559.8223 -559.8223 -454.2595 -438.0126 -559.8223 -559.8223 -454.2595 -559.8223 -559.8223 -559.8223 -454.2595 -705.5679 -438.0126 -438.0126 -559.8223 -551.2644 -559.8223 -904.3157 -559.8223 -454.2595 -559.8223 -559.8223 -904.3157 -559.8223 -904.3157 -454.2595 -705.5679 -551.2644 -438.0126 -551.2644 -559.8223 -551.2644 -559.8223 -559.8223 -454.2595 -705.5679 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -705.5679 -904.3157 -454.2595 -559.8223 -438.0126 -904.3157 -559.8223 -559.8223 -559.8223 -559.8223 -438.0126 -705.5679 -705.5679 -454.2595 -438.0126 -454.2595 -559.8223 -559.8223 -551.2644 -551.2644 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -551.2644 -904.3157 -454.2595 -438.0126 -1697.502 -551.2644 -559.8223 -559.8223 -705.5679 -559.8223 -559.8223 -559.8223 -904.3157 -559.8223 -551.2644 -454.2595 -438.0126 -551.2644 -438.0126 -559.8223 -1139.377 -454.2595 -454.2595 -904.3157 -559.8223 -438.0126 -559.8223 -559.8223 -559.8223 -551.2644 -559.8223 -559.8223 -454.2595 -559.8223 -705.5679 -705.5679 -454.2595 -551.2644 -559.8223 -559.8223 -559.8223 -559.8223 -438.0126 -454.2595 -559.8223 -559.8223 -904.3157 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -904.3157 -559.8223 -559.8223 -454.2595 -705.5679 -454.2595 -438.0126 -1139.377 -551.2644 -705.5679 -1139.377 -705.5679 -454.2595 -1405.141 -904.3157 -559.8223 -438.0126 -454.2595 -454.2595 -454.2595 -438.0126 -1405.141 -551.2644 -454.2595 -904.3157 -904.3157 -559.8223 -705.5679 -559.8223 -454.2595 -454.2595 -559.8223 -438.0126 -559.8223 -705.5679 -559.8223 -904.3157 -705.5679 -705.5679 -454.2595 -559.8223 -551.2644 -559.8223 -559.8223 -551.2644 -559.8223 -705.5679 -438.0126 -559.8223 -438.0126 -559.8223 -551.2644 -705.5679 -559.8223 -559.8223 QQ -686.9775 -548.4393 -548.4393 -548.4393 -1930.059 -540.3046 -548.4393 -540.3046 -686.9775 -686.9775 -875.8969 -548.4393 -448.0969 -686.9775 -548.4393 -548.4393 -548.4393 -448.0969 -875.8969 -448.0969 -548.4393 -548.4393 -1351.956 -540.3046 -548.4393 -540.3046 -1629.858 -686.9775 -540.3046 -548.4393 -875.8969 -448.0969 -686.9775 -686.9775 -875.8969 -448.0969 -1099.334 -548.4393 -540.3046 -448.0969 -548.4393 -875.8969 -432.6534 -448.0969 -540.3046 -540.3046 -548.4393 -548.4393 -448.0969 -548.4393 -548.4393 -540.3046 -875.8969 -548.4393 -448.0969 -1351.956 -686.9775 -540.3046 -548.4393 -548.4393 -686.9775 -540.3046 -432.6534 -686.9775 -432.6534 -1351.956 -548.4393 -548.4393 -432.6534 -1099.334 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -540.3046 -540.3046 -1099.334 -548.4393 -548.4393 -432.6534 -548.4393 -448.0969 -686.9775 -540.3046 -548.4393 -686.9775 -686.9775 -548.4393 -548.4393 -432.6534 -448.0969 -686.9775 -548.4393 -432.6534 -432.6534 -432.6534 -548.4393 -686.9775 -548.4393 -548.4393 -548.4393 -540.3046 -548.4393 -686.9775 -548.4393 -548.4393 -432.6534 -540.3046 -548.4393 -540.3046 -540.3046 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -540.3046 -540.3046 -540.3046 -548.4393 -875.8969 -548.4393 -548.4393 -548.4393 -548.4393 -448.0969 -432.6534 -548.4393 -548.4393 -448.0969 -548.4393 -548.4393 -548.4393 -448.0969 -686.9775 -432.6534 -432.6534 -548.4393 -540.3046 -548.4393 -875.8969 -548.4393 -448.0969 -548.4393 -548.4393 -875.8969 -548.4393 -875.8969 -448.0969 -686.9775 -540.3046 -432.6534 -540.3046 -548.4393 -540.3046 -548.4393 -548.4393 -448.0969 -686.9775 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -686.9775 -875.8969 -448.0969 -548.4393 -432.6534 -875.8969 -548.4393 -548.4393 -548.4393 -548.4393 -432.6534 -686.9775 -686.9775 -448.0969 -432.6534 -448.0969 -548.4393 -548.4393 -540.3046 -540.3046 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -540.3046 -875.8969 -448.0969 -432.6534 -1629.858 -540.3046 -548.4393 -548.4393 -686.9775 -548.4393 -548.4393 -548.4393 -875.8969 -548.4393 -540.3046 -448.0969 -432.6534 -540.3046 -432.6534 -548.4393 -1099.334 -448.0969 -448.0969 -875.8969 -548.4393 -432.6534 -548.4393 -548.4393 -548.4393 -540.3046 -548.4393 -548.4393 -448.0969 -548.4393 -686.9775 -686.9775 -448.0969 -540.3046 -548.4393 -548.4393 -548.4393 -548.4393 -432.6534 -448.0969 -548.4393 -548.4393 -875.8969 -548.4393 -548.4393 -548.4393 -548.4393 -548.4393 -875.8969 -548.4393 -548.4393 -448.0969 -686.9775 -448.0969 -432.6534 -1099.334 -540.3046 -686.9775 -1099.334 -686.9775 -448.0969 -1351.956 -875.8969 -548.4393 -432.6534 -448.0969 -448.0969 -448.0969 -432.6534 -1351.956 -540.3046 -448.0969 -875.8969 -875.8969 -548.4393 -686.9775 -548.4393 -448.0969 -448.0969 -548.4393 -432.6534 -548.4393 -686.9775 -548.4393 -875.8969 -686.9775 -686.9775 -448.0969 -548.4393 -540.3046 -548.4393 -548.4393 -540.3046 -548.4393 -686.9775 -432.6534 -548.4393 -432.6534 -548.4393 -540.3046 -686.9775 -548.4393 -548.4393 epsilon_cond 0.02634809 0.02033313 0.02033313 0.02033313 0.04135533 0.01988108 0.02033313 0.01988108 0.02634809 0.02634809 0.03142583 0.02033313 0.01356632 0.02634809 0.02033313 0.02033313 0.02033313 0.01356632 0.03142583 0.01356632 0.02033313 0.02033313 0.03785084 0.01988108 0.02033313 0.01988108 0.03984892 0.02634809 0.01988108 0.02033313 0.03142583 0.01356632 0.02634809 0.02634809 0.03142583 0.01356632 0.03514479 0.02033313 0.01988108 0.01356632 0.02033313 0.03142583 0.01223523 0.01356632 0.01988108 0.01988108 0.02033313 0.02033313 0.01356632 0.02033313 0.02033313 0.01988108 0.03142583 0.02033313 0.01356632 0.03785084 0.02634809 0.01988108 0.02033313 0.02033313 0.02634809 0.01988108 0.01223523 0.02634809 0.01223523 0.03785084 0.02033313 0.02033313 0.01223523 0.03514479 0.02033313 0.02033313 0.02033313 0.02033313 0.02033313 0.01988108 0.01988108 0.03514479 0.02033313 0.02033313 0.01223523 0.02033313 0.01356632 0.02634809 0.01988108 0.02033313 0.02634809 0.02634809 0.02033313 0.02033313 0.01223523 0.01356632 0.02634809 0.02033313 0.01223523 0.01223523 0.01223523 0.02033313 0.02634809 0.02033313 0.02033313 0.02033313 0.01988108 0.02033313 0.02634809 0.02033313 0.02033313 0.01223523 0.01988108 0.02033313 0.01988108 0.01988108 0.02033313 0.02033313 0.02033313 0.02033313 0.02033313 0.01988108 0.01988108 0.01988108 0.02033313 0.03142583 0.02033313 0.02033313 0.02033313 0.02033313 0.01356632 0.01223523 0.02033313 0.02033313 0.01356632 0.02033313 0.02033313 0.02033313 0.01356632 0.02634809 0.01223523 0.01223523 0.02033313 0.01988108 0.02033313 0.03142583 0.02033313 0.01356632 0.02033313 0.02033313 0.03142583 0.02033313 0.03142583 0.01356632 0.02634809 0.01988108 0.01223523 0.01988108 0.02033313 0.01988108 0.02033313 0.02033313 0.01356632 0.02634809 0.02033313 0.02033313 0.02033313 0.02033313 0.02033313 0.02033313 0.02033313 0.02634809 0.03142583 0.01356632 0.02033313 0.01223523 0.03142583 0.02033313 0.02033313 0.02033313 0.02033313 0.01223523 0.02634809 0.02634809 0.01356632 0.01223523 0.01356632 0.02033313 0.02033313 0.01988108 0.01988108 0.02033313 0.02033313 0.02033313 0.02033313 0.02033313 0.02033313 0.01988108 0.03142583 0.01356632 0.01223523 0.03984892 0.01988108 0.02033313 0.02033313 0.02634809 0.02033313 0.02033313 0.02033313 0.03142583 0.02033313 0.01988108 0.01356632 0.01223523 0.01988108 0.01223523 0.02033313 0.03514479 0.01356632 0.01356632 0.03142583 0.02033313 0.01223523 0.02033313 0.02033313 0.02033313 0.01988108 0.02033313 0.02033313 0.01356632 0.02033313 0.02634809 0.02634809 0.01356632 0.01988108 0.02033313 0.02033313 0.02033313 0.02033313 0.01223523 0.01356632 0.02033313 0.02033313 0.03142583 0.02033313 0.02033313 0.02033313 0.02033313 0.02033313 0.03142583 0.02033313 0.02033313 0.01356632 0.02634809 0.01356632 0.01223523 0.03514479 0.01988108 0.02634809 0.03514479 0.02634809 0.01356632 0.03785084 0.03142583 0.02033313 0.01223523 0.01356632 0.01356632 0.01356632 0.01223523 0.03785084 0.01988108 0.01356632 0.03142583 0.03142583 0.02033313 0.02634809 0.02033313 0.01356632 0.01356632 0.02033313 0.01223523 0.02033313 0.02634809 0.02033313 0.03142583 0.02634809 0.02634809 0.01356632 0.02033313 0.01988108 0.02033313 0.02033313 0.01988108 0.02033313 0.02634809 0.01223523 0.02033313 0.01223523 0.02033313 0.01988108 0.02634809 0.02033313 0.02033313 mu 2.772481 w 0.336088
## [1] "2 -705.567894623591" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -2013.32099737489" "2 -551.264360592821" "2 -559.822274559019" "2 -551.264360592821" "2 -705.567894623591" "2 -705.567894623591" "2 -904.315731595731" "2 -559.822274559019" "2 -454.259498665929" "2 -705.567894623591" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -454.259498665929" "2 -904.315731595731" "2 -454.259498665929" "2 -559.822274559019" "2 -559.822274559019" "2 -1405.14142956647" "2 -551.264360592821" "2 -559.822274559019" "2 -551.264360592821" "2 -1697.50157824879" "2 -705.567894623591" "2 -551.264360592821" "2 -559.822274559019" "2 -904.315731595731" "2 -454.259498665929" "2 -705.567894623591" "2 -705.567894623591" "2 -904.315731595731" "2 -454.259498665929" "2 -1139.37720817416" "2 -559.822274559019" "2 -551.264360592821" "2 -454.259498665929" "2 -559.822274559019" "2 -904.315731595731" "2 -438.0125792867" "2 -454.259498665929" "2 -551.264360592821"
## [46] "2 -551.264360592821" "2 -559.822274559019" "2 -559.822274559019" "2 -454.259498665929" "2 -559.822274559019" "2 -559.822274559019" "2 -551.264360592821" "2 -904.315731595731" "2 -559.822274559019" "2 -454.259498665929" "2 -1405.14142956647" "2 -705.567894623591" "2 -551.264360592821" "2 -559.822274559019" "2 -559.822274559019" "2 -705.567894623591" "2 -551.264360592821" "2 -438.0125792867" "2 -705.567894623591" "2 -438.0125792867" "2 -1405.14142956647" "2 -559.822274559019" "2 -559.822274559019" "2 -438.0125792867" "2 -1139.37720817416" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -551.264360592821" "2 -551.264360592821" "2 -1139.37720817416" "2 -559.822274559019" "2 -559.822274559019" "2 -438.0125792867" "2 -559.822274559019" "2 -454.259498665929" "2 -705.567894623591" "2 -551.264360592821" "2 -559.822274559019" "2 -705.567894623591" "2 -705.567894623591" "2 -559.822274559019" "2 -559.822274559019"
## [91] "2 -438.0125792867" "2 -454.259498665929" "2 -705.567894623591" "2 -559.822274559019" "2 -438.0125792867" "2 -438.0125792867" "2 -438.0125792867" "2 -559.822274559019" "2 -705.567894623591" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -551.264360592821" "2 -559.822274559019" "2 -705.567894623591" "2 -559.822274559019" "2 -559.822274559019" "2 -438.0125792867" "2 -551.264360592821" "2 -559.822274559019" "2 -551.264360592821" "2 -551.264360592821" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -551.264360592821" "2 -551.264360592821" "2 -551.264360592821" "2 -559.822274559019" "2 -904.315731595731" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -454.259498665929" "2 -438.0125792867" "2 -559.822274559019" "2 -559.822274559019" "2 -454.259498665929" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -454.259498665929"
## [136] "2 -705.567894623591" "2 -438.0125792867" "2 -438.0125792867" "2 -559.822274559019" "2 -551.264360592821" "2 -559.822274559019" "2 -904.315731595731" "2 -559.822274559019" "2 -454.259498665929" "2 -559.822274559019" "2 -559.822274559019" "2 -904.315731595731" "2 -559.822274559019" "2 -904.315731595731" "2 -454.259498665929" "2 -705.567894623591" "2 -551.264360592821" "2 -438.0125792867" "2 -551.264360592821" "2 -559.822274559019" "2 -551.264360592821" "2 -559.822274559019" "2 -559.822274559019" "2 -454.259498665929" "2 -705.567894623591" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -705.567894623591" "2 -904.315731595731" "2 -454.259498665929" "2 -559.822274559019" "2 -438.0125792867" "2 -904.315731595731" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -438.0125792867" "2 -705.567894623591" "2 -705.567894623591"
## [181] "2 -454.259498665929" "2 -438.0125792867" "2 -454.259498665929" "2 -559.822274559019" "2 -559.822274559019" "2 -551.264360592821" "2 -551.264360592821" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -551.264360592821" "2 -904.315731595731" "2 -454.259498665929" "2 -438.0125792867" "2 -1697.50157824879" "2 -551.264360592821" "2 -559.822274559019" "2 -559.822274559019" "2 -705.567894623591" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -904.315731595731" "2 -559.822274559019" "2 -551.264360592821" "2 -454.259498665929" "2 -438.0125792867" "2 -551.264360592821" "2 -438.0125792867" "2 -559.822274559019" "2 -1139.37720817416" "2 -454.259498665929" "2 -454.259498665929" "2 -904.315731595731" "2 -559.822274559019" "2 -438.0125792867" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -551.264360592821" "2 -559.822274559019" "2 -559.822274559019"
## [226] "2 -454.259498665929" "2 -559.822274559019" "2 -705.567894623591" "2 -705.567894623591" "2 -454.259498665929" "2 -551.264360592821" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -438.0125792867" "2 -454.259498665929" "2 -559.822274559019" "2 -559.822274559019" "2 -904.315731595731" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -559.822274559019" "2 -904.315731595731" "2 -559.822274559019" "2 -559.822274559019" "2 -454.259498665929" "2 -705.567894623591" "2 -454.259498665929" "2 -438.0125792867" "2 -1139.37720817416" "2 -551.264360592821" "2 -705.567894623591" "2 -1139.37720817416" "2 -705.567894623591" "2 -454.259498665929" "2 -1405.14142956647" "2 -904.315731595731" "2 -559.822274559019" "2 -438.0125792867" "2 -454.259498665929" "2 -454.259498665929" "2 -454.259498665929" "2 -438.0125792867" "2 -1405.14142956647" "2 -551.264360592821" "2 -454.259498665929" "2 -904.315731595731"
## [271] "2 -904.315731595731" "2 -559.822274559019" "2 -705.567894623591" "2 -559.822274559019" "2 -454.259498665929" "2 -454.259498665929" "2 -559.822274559019" "2 -438.0125792867" "2 -559.822274559019" "2 -705.567894623591" "2 -559.822274559019" "2 -904.315731595731" "2 -705.567894623591" "2 -705.567894623591" "2 -454.259498665929" "2 -559.822274559019" "2 -551.264360592821" "2 -559.822274559019" "2 -559.822274559019" "2 -551.264360592821" "2 -559.822274559019" "2 -705.567894623591" "2 -438.0125792867" "2 -559.822274559019" "2 -438.0125792867" "2 -559.822274559019" "2 -551.264360592821" "2 -705.567894623591" "2 -559.822274559019" "2 -559.822274559019"
## QQn -711.4559 -563.3472 -563.3472 -563.3472 -2040.412 -554.6506 -563.3472 -554.6506 -711.4559 -711.4559 -913.4262 -563.3472 -456.0729 -711.4559 -563.3472 -563.3472 -563.3472 -456.0729 -913.4262 -456.0729 -563.3472 -563.3472 -1422.372 -554.6506 -563.3472 -554.6506 -1719.472 -711.4559 -554.6506 -563.3472 -913.4262 -456.0729 -711.4559 -711.4559 -913.4262 -456.0729 -1152.299 -563.3472 -554.6506 -456.0729 -563.3472 -913.4262 -439.5626 -456.0729 -554.6506 -554.6506 -563.3472 -563.3472 -456.0729 -563.3472 -563.3472 -554.6506 -913.4262 -563.3472 -456.0729 -1422.372 -711.4559 -554.6506 -563.3472 -563.3472 -711.4559 -554.6506 -439.5626 -711.4559 -439.5626 -1422.372 -563.3472 -563.3472 -439.5626 -1152.299 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -554.6506 -554.6506 -1152.299 -563.3472 -563.3472 -439.5626 -563.3472 -456.0729 -711.4559 -554.6506 -563.3472 -711.4559 -711.4559 -563.3472 -563.3472 -439.5626 -456.0729 -711.4559 -563.3472 -439.5626 -439.5626 -439.5626 -563.3472 -711.4559 -563.3472 -563.3472 -563.3472 -554.6506 -563.3472 -711.4559 -563.3472 -563.3472 -439.5626 -554.6506 -563.3472 -554.6506 -554.6506 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -554.6506 -554.6506 -554.6506 -563.3472 -913.4262 -563.3472 -563.3472 -563.3472 -563.3472 -456.0729 -439.5626 -563.3472 -563.3472 -456.0729 -563.3472 -563.3472 -563.3472 -456.0729 -711.4559 -439.5626 -439.5626 -563.3472 -554.6506 -563.3472 -913.4262 -563.3472 -456.0729 -563.3472 -563.3472 -913.4262 -563.3472 -913.4262 -456.0729 -711.4559 -554.6506 -439.5626 -554.6506 -563.3472 -554.6506 -563.3472 -563.3472 -456.0729 -711.4559 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -711.4559 -913.4262 -456.0729 -563.3472 -439.5626 -913.4262 -563.3472 -563.3472 -563.3472 -563.3472 -439.5626 -711.4559 -711.4559 -456.0729 -439.5626 -456.0729 -563.3472 -563.3472 -554.6506 -554.6506 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -554.6506 -913.4262 -456.0729 -439.5626 -1719.472 -554.6506 -563.3472 -563.3472 -711.4559 -563.3472 -563.3472 -563.3472 -913.4262 -563.3472 -554.6506 -456.0729 -439.5626 -554.6506 -439.5626 -563.3472 -1152.299 -456.0729 -456.0729 -913.4262 -563.3472 -439.5626 -563.3472 -563.3472 -563.3472 -554.6506 -563.3472 -563.3472 -456.0729 -563.3472 -711.4559 -711.4559 -456.0729 -554.6506 -563.3472 -563.3472 -563.3472 -563.3472 -439.5626 -456.0729 -563.3472 -563.3472 -913.4262 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -913.4262 -563.3472 -563.3472 -456.0729 -711.4559 -456.0729 -439.5626 -1152.299 -554.6506 -711.4559 -1152.299 -711.4559 -456.0729 -1422.372 -913.4262 -563.3472 -439.5626 -456.0729 -456.0729 -456.0729 -439.5626 -1422.372 -554.6506 -456.0729 -913.4262 -913.4262 -563.3472 -711.4559 -563.3472 -456.0729 -456.0729 -563.3472 -439.5626 -563.3472 -711.4559 -563.3472 -913.4262 -711.4559 -711.4559 -456.0729 -563.3472 -554.6506 -563.3472 -563.3472 -554.6506 -563.3472 -711.4559 -439.5626 -563.3472 -439.5626 -563.3472 -554.6506 -711.4559 -563.3472 -563.3472 QQ -705.5679 -559.8223 -559.8223 -559.8223 -2013.321 -551.2644 -559.8223 -551.2644 -705.5679 -705.5679 -904.3157 -559.8223 -454.2595 -705.5679 -559.8223 -559.8223 -559.8223 -454.2595 -904.3157 -454.2595 -559.8223 -559.8223 -1405.141 -551.2644 -559.8223 -551.2644 -1697.502 -705.5679 -551.2644 -559.8223 -904.3157 -454.2595 -705.5679 -705.5679 -904.3157 -454.2595 -1139.377 -559.8223 -551.2644 -454.2595 -559.8223 -904.3157 -438.0126 -454.2595 -551.2644 -551.2644 -559.8223 -559.8223 -454.2595 -559.8223 -559.8223 -551.2644 -904.3157 -559.8223 -454.2595 -1405.141 -705.5679 -551.2644 -559.8223 -559.8223 -705.5679 -551.2644 -438.0126 -705.5679 -438.0126 -1405.141 -559.8223 -559.8223 -438.0126 -1139.377 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -551.2644 -551.2644 -1139.377 -559.8223 -559.8223 -438.0126 -559.8223 -454.2595 -705.5679 -551.2644 -559.8223 -705.5679 -705.5679 -559.8223 -559.8223 -438.0126 -454.2595 -705.5679 -559.8223 -438.0126 -438.0126 -438.0126 -559.8223 -705.5679 -559.8223 -559.8223 -559.8223 -551.2644 -559.8223 -705.5679 -559.8223 -559.8223 -438.0126 -551.2644 -559.8223 -551.2644 -551.2644 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -551.2644 -551.2644 -551.2644 -559.8223 -904.3157 -559.8223 -559.8223 -559.8223 -559.8223 -454.2595 -438.0126 -559.8223 -559.8223 -454.2595 -559.8223 -559.8223 -559.8223 -454.2595 -705.5679 -438.0126 -438.0126 -559.8223 -551.2644 -559.8223 -904.3157 -559.8223 -454.2595 -559.8223 -559.8223 -904.3157 -559.8223 -904.3157 -454.2595 -705.5679 -551.2644 -438.0126 -551.2644 -559.8223 -551.2644 -559.8223 -559.8223 -454.2595 -705.5679 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -705.5679 -904.3157 -454.2595 -559.8223 -438.0126 -904.3157 -559.8223 -559.8223 -559.8223 -559.8223 -438.0126 -705.5679 -705.5679 -454.2595 -438.0126 -454.2595 -559.8223 -559.8223 -551.2644 -551.2644 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -551.2644 -904.3157 -454.2595 -438.0126 -1697.502 -551.2644 -559.8223 -559.8223 -705.5679 -559.8223 -559.8223 -559.8223 -904.3157 -559.8223 -551.2644 -454.2595 -438.0126 -551.2644 -438.0126 -559.8223 -1139.377 -454.2595 -454.2595 -904.3157 -559.8223 -438.0126 -559.8223 -559.8223 -559.8223 -551.2644 -559.8223 -559.8223 -454.2595 -559.8223 -705.5679 -705.5679 -454.2595 -551.2644 -559.8223 -559.8223 -559.8223 -559.8223 -438.0126 -454.2595 -559.8223 -559.8223 -904.3157 -559.8223 -559.8223 -559.8223 -559.8223 -559.8223 -904.3157 -559.8223 -559.8223 -454.2595 -705.5679 -454.2595 -438.0126 -1139.377 -551.2644 -705.5679 -1139.377 -705.5679 -454.2595 -1405.141 -904.3157 -559.8223 -438.0126 -454.2595 -454.2595 -454.2595 -438.0126 -1405.141 -551.2644 -454.2595 -904.3157 -904.3157 -559.8223 -705.5679 -559.8223 -454.2595 -454.2595 -559.8223 -438.0126 -559.8223 -705.5679 -559.8223 -904.3157 -705.5679 -705.5679 -454.2595 -559.8223 -551.2644 -559.8223 -559.8223 -551.2644 -559.8223 -705.5679 -438.0126 -559.8223 -438.0126 -559.8223 -551.2644 -705.5679 -559.8223 -559.8223 epsilon_cond 0.008276014 0.006257156 0.006257156 0.006257156 0.01327744 0.006105099 0.006257156 0.006105099 0.008276014 0.008276014 0.009973926 0.006257156 0.003976107 0.008276014 0.006257156 0.006257156 0.006257156 0.003976107 0.009973926 0.003976107 0.006257156 0.006257156 0.01211403 0.006105099 0.006257156 0.006105099 0.01277768 0.008276014 0.006105099 0.006257156 0.009973926 0.003976107 0.008276014 0.008276014 0.009973926 0.003976107 0.0112138 0.006257156 0.006105099 0.003976107 0.006257156 0.009973926 0.003526171 0.003976107 0.006105099 0.006105099 0.006257156 0.006257156 0.003976107 0.006257156 0.006257156 0.006105099 0.009973926 0.006257156 0.003976107 0.01211403 0.008276014 0.006105099 0.006257156 0.006257156 0.008276014 0.006105099 0.003526171 0.008276014 0.003526171 0.01211403 0.006257156 0.006257156 0.003526171 0.0112138 0.006257156 0.006257156 0.006257156 0.006257156 0.006257156 0.006105099 0.006105099 0.0112138 0.006257156 0.006257156 0.003526171 0.006257156 0.003976107 0.008276014 0.006105099 0.006257156 0.008276014 0.008276014 0.006257156 0.006257156 0.003526171 0.003976107 0.008276014 0.006257156 0.003526171 0.003526171 0.003526171 0.006257156 0.008276014 0.006257156 0.006257156 0.006257156 0.006105099 0.006257156 0.008276014 0.006257156 0.006257156 0.003526171 0.006105099 0.006257156 0.006105099 0.006105099 0.006257156 0.006257156 0.006257156 0.006257156 0.006257156 0.006105099 0.006105099 0.006105099 0.006257156 0.009973926 0.006257156 0.006257156 0.006257156 0.006257156 0.003976107 0.003526171 0.006257156 0.006257156 0.003976107 0.006257156 0.006257156 0.006257156 0.003976107 0.008276014 0.003526171 0.003526171 0.006257156 0.006105099 0.006257156 0.009973926 0.006257156 0.003976107 0.006257156 0.006257156 0.009973926 0.006257156 0.009973926 0.003976107 0.008276014 0.006105099 0.003526171 0.006105099 0.006257156 0.006105099 0.006257156 0.006257156 0.003976107 0.008276014 0.006257156 0.006257156 0.006257156 0.006257156 0.006257156 0.006257156 0.006257156 0.008276014 0.009973926 0.003976107 0.006257156 0.003526171 0.009973926 0.006257156 0.006257156 0.006257156 0.006257156 0.003526171 0.008276014 0.008276014 0.003976107 0.003526171 0.003976107 0.006257156 0.006257156 0.006105099 0.006105099 0.006257156 0.006257156 0.006257156 0.006257156 0.006257156 0.006257156 0.006105099 0.009973926 0.003976107 0.003526171 0.01277768 0.006105099 0.006257156 0.006257156 0.008276014 0.006257156 0.006257156 0.006257156 0.009973926 0.006257156 0.006105099 0.003976107 0.003526171 0.006105099 0.003526171 0.006257156 0.0112138 0.003976107 0.003976107 0.009973926 0.006257156 0.003526171 0.006257156 0.006257156 0.006257156 0.006105099 0.006257156 0.006257156 0.003976107 0.006257156 0.008276014 0.008276014 0.003976107 0.006105099 0.006257156 0.006257156 0.006257156 0.006257156 0.003526171 0.003976107 0.006257156 0.006257156 0.009973926 0.006257156 0.006257156 0.006257156 0.006257156 0.006257156 0.009973926 0.006257156 0.006257156 0.003976107 0.008276014 0.003976107 0.003526171 0.0112138 0.006105099 0.008276014 0.0112138 0.008276014 0.003976107 0.01211403 0.009973926 0.006257156 0.003526171 0.003976107 0.003976107 0.003976107 0.003526171 0.01211403 0.006105099 0.003976107 0.009973926 0.009973926 0.006257156 0.008276014 0.006257156 0.003976107 0.003976107 0.006257156 0.003526171 0.006257156 0.008276014 0.006257156 0.009973926 0.008276014 0.008276014 0.003976107 0.006257156 0.006105099 0.006257156 0.006257156 0.006105099 0.006257156 0.008276014 0.003526171 0.006257156 0.003526171 0.006257156 0.006105099 0.008276014 0.006257156 0.006257156 mu 2.728758 w 0.3253236
## [1] "3 -711.455913676417" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -2040.41245737787" "3 -554.650557348045" "3 -563.347226269638" "3 -554.650557348045" "3 -711.455913676417" "3 -711.455913676417" "3 -913.426176973794" "3 -563.347226269638" "3 -456.07289329404" "3 -711.455913676417" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -456.07289329404" "3 -913.426176973794" "3 -456.07289329404" "3 -563.347226269638" "3 -563.347226269638" "3 -1422.37208363752" "3 -554.650557348045" "3 -563.347226269638" "3 -554.650557348045" "3 -1719.47245517667" "3 -711.455913676417" "3 -554.650557348045" "3 -563.347226269638" "3 -913.426176973794" "3 -456.07289329404" "3 -711.455913676417" "3 -711.455913676417" "3 -913.426176973794" "3 -456.07289329404" "3 -1152.29885623858" "3 -563.347226269638" "3 -554.650557348045" "3 -456.07289329404" "3 -563.347226269638" "3 -913.426176973794" "3 -439.562552176448" "3 -456.07289329404" "3 -554.650557348045"
## [46] "3 -554.650557348045" "3 -563.347226269638" "3 -563.347226269638" "3 -456.07289329404" "3 -563.347226269638" "3 -563.347226269638" "3 -554.650557348045" "3 -913.426176973794" "3 -563.347226269638" "3 -456.07289329404" "3 -1422.37208363752" "3 -711.455913676417" "3 -554.650557348045" "3 -563.347226269638" "3 -563.347226269638" "3 -711.455913676417" "3 -554.650557348045" "3 -439.562552176448" "3 -711.455913676417" "3 -439.562552176448" "3 -1422.37208363752" "3 -563.347226269638" "3 -563.347226269638" "3 -439.562552176448" "3 -1152.29885623858" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -554.650557348045" "3 -554.650557348045" "3 -1152.29885623858" "3 -563.347226269638" "3 -563.347226269638" "3 -439.562552176448" "3 -563.347226269638" "3 -456.07289329404" "3 -711.455913676417" "3 -554.650557348045" "3 -563.347226269638" "3 -711.455913676417" "3 -711.455913676417" "3 -563.347226269638" "3 -563.347226269638"
## [91] "3 -439.562552176448" "3 -456.07289329404" "3 -711.455913676417" "3 -563.347226269638" "3 -439.562552176448" "3 -439.562552176448" "3 -439.562552176448" "3 -563.347226269638" "3 -711.455913676417" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -554.650557348045" "3 -563.347226269638" "3 -711.455913676417" "3 -563.347226269638" "3 -563.347226269638" "3 -439.562552176448" "3 -554.650557348045" "3 -563.347226269638" "3 -554.650557348045" "3 -554.650557348045" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -554.650557348045" "3 -554.650557348045" "3 -554.650557348045" "3 -563.347226269638" "3 -913.426176973794" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -456.07289329404" "3 -439.562552176448" "3 -563.347226269638" "3 -563.347226269638" "3 -456.07289329404" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -456.07289329404"
## [136] "3 -711.455913676417" "3 -439.562552176448" "3 -439.562552176448" "3 -563.347226269638" "3 -554.650557348045" "3 -563.347226269638" "3 -913.426176973794" "3 -563.347226269638" "3 -456.07289329404" "3 -563.347226269638" "3 -563.347226269638" "3 -913.426176973794" "3 -563.347226269638" "3 -913.426176973794" "3 -456.07289329404" "3 -711.455913676417" "3 -554.650557348045" "3 -439.562552176448" "3 -554.650557348045" "3 -563.347226269638" "3 -554.650557348045" "3 -563.347226269638" "3 -563.347226269638" "3 -456.07289329404" "3 -711.455913676417" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -711.455913676417" "3 -913.426176973794" "3 -456.07289329404" "3 -563.347226269638" "3 -439.562552176448" "3 -913.426176973794" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -439.562552176448" "3 -711.455913676417" "3 -711.455913676417"
## [181] "3 -456.07289329404" "3 -439.562552176448" "3 -456.07289329404" "3 -563.347226269638" "3 -563.347226269638" "3 -554.650557348045" "3 -554.650557348045" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -554.650557348045" "3 -913.426176973794" "3 -456.07289329404" "3 -439.562552176448" "3 -1719.47245517667" "3 -554.650557348045" "3 -563.347226269638" "3 -563.347226269638" "3 -711.455913676417" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -913.426176973794" "3 -563.347226269638" "3 -554.650557348045" "3 -456.07289329404" "3 -439.562552176448" "3 -554.650557348045" "3 -439.562552176448" "3 -563.347226269638" "3 -1152.29885623858" "3 -456.07289329404" "3 -456.07289329404" "3 -913.426176973794" "3 -563.347226269638" "3 -439.562552176448" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -554.650557348045" "3 -563.347226269638" "3 -563.347226269638"
## [226] "3 -456.07289329404" "3 -563.347226269638" "3 -711.455913676417" "3 -711.455913676417" "3 -456.07289329404" "3 -554.650557348045" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -439.562552176448" "3 -456.07289329404" "3 -563.347226269638" "3 -563.347226269638" "3 -913.426176973794" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -563.347226269638" "3 -913.426176973794" "3 -563.347226269638" "3 -563.347226269638" "3 -456.07289329404" "3 -711.455913676417" "3 -456.07289329404" "3 -439.562552176448" "3 -1152.29885623858" "3 -554.650557348045" "3 -711.455913676417" "3 -1152.29885623858" "3 -711.455913676417" "3 -456.07289329404" "3 -1422.37208363752" "3 -913.426176973794" "3 -563.347226269638" "3 -439.562552176448" "3 -456.07289329404" "3 -456.07289329404" "3 -456.07289329404" "3 -439.562552176448" "3 -1422.37208363752" "3 -554.650557348045" "3 -456.07289329404" "3 -913.426176973794"
## [271] "3 -913.426176973794" "3 -563.347226269638" "3 -711.455913676417" "3 -563.347226269638" "3 -456.07289329404" "3 -456.07289329404" "3 -563.347226269638" "3 -439.562552176448" "3 -563.347226269638" "3 -711.455913676417" "3 -563.347226269638" "3 -913.426176973794" "3 -711.455913676417" "3 -711.455913676417" "3 -456.07289329404" "3 -563.347226269638" "3 -554.650557348045" "3 -563.347226269638" "3 -563.347226269638" "3 -554.650557348045" "3 -563.347226269638" "3 -711.455913676417" "3 -439.562552176448" "3 -563.347226269638" "3 -439.562552176448" "3 -563.347226269638" "3 -554.650557348045" "3 -711.455913676417" "3 -563.347226269638" "3 -563.347226269638"
## QQn -713.5183 -564.5695 -564.5695 -564.5695 -2050.013 -555.8235 -564.5695 -555.8235 -713.5183 -713.5183 -916.6342 -564.5695 -456.6867 -713.5183 -564.5695 -564.5695 -564.5695 -456.6867 -916.6342 -456.6867 -564.5695 -564.5695 -1428.467 -555.8235 -564.5695 -555.8235 -1727.253 -713.5183 -555.8235 -564.5695 -916.6342 -456.6867 -713.5183 -713.5183 -916.6342 -456.6867 -1156.862 -564.5695 -555.8235 -456.6867 -564.5695 -916.6342 -440.0827 -456.6867 -555.8235 -555.8235 -564.5695 -564.5695 -456.6867 -564.5695 -564.5695 -555.8235 -916.6342 -564.5695 -456.6867 -1428.467 -713.5183 -555.8235 -564.5695 -564.5695 -713.5183 -555.8235 -440.0827 -713.5183 -440.0827 -1428.467 -564.5695 -564.5695 -440.0827 -1156.862 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -555.8235 -555.8235 -1156.862 -564.5695 -564.5695 -440.0827 -564.5695 -456.6867 -713.5183 -555.8235 -564.5695 -713.5183 -713.5183 -564.5695 -564.5695 -440.0827 -456.6867 -713.5183 -564.5695 -440.0827 -440.0827 -440.0827 -564.5695 -713.5183 -564.5695 -564.5695 -564.5695 -555.8235 -564.5695 -713.5183 -564.5695 -564.5695 -440.0827 -555.8235 -564.5695 -555.8235 -555.8235 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -555.8235 -555.8235 -555.8235 -564.5695 -916.6342 -564.5695 -564.5695 -564.5695 -564.5695 -456.6867 -440.0827 -564.5695 -564.5695 -456.6867 -564.5695 -564.5695 -564.5695 -456.6867 -713.5183 -440.0827 -440.0827 -564.5695 -555.8235 -564.5695 -916.6342 -564.5695 -456.6867 -564.5695 -564.5695 -916.6342 -564.5695 -916.6342 -456.6867 -713.5183 -555.8235 -440.0827 -555.8235 -564.5695 -555.8235 -564.5695 -564.5695 -456.6867 -713.5183 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -713.5183 -916.6342 -456.6867 -564.5695 -440.0827 -916.6342 -564.5695 -564.5695 -564.5695 -564.5695 -440.0827 -713.5183 -713.5183 -456.6867 -440.0827 -456.6867 -564.5695 -564.5695 -555.8235 -555.8235 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -555.8235 -916.6342 -456.6867 -440.0827 -1727.253 -555.8235 -564.5695 -564.5695 -713.5183 -564.5695 -564.5695 -564.5695 -916.6342 -564.5695 -555.8235 -456.6867 -440.0827 -555.8235 -440.0827 -564.5695 -1156.862 -456.6867 -456.6867 -916.6342 -564.5695 -440.0827 -564.5695 -564.5695 -564.5695 -555.8235 -564.5695 -564.5695 -456.6867 -564.5695 -713.5183 -713.5183 -456.6867 -555.8235 -564.5695 -564.5695 -564.5695 -564.5695 -440.0827 -456.6867 -564.5695 -564.5695 -916.6342 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -916.6342 -564.5695 -564.5695 -456.6867 -713.5183 -456.6867 -440.0827 -1156.862 -555.8235 -713.5183 -1156.862 -713.5183 -456.6867 -1428.467 -916.6342 -564.5695 -440.0827 -456.6867 -456.6867 -456.6867 -440.0827 -1428.467 -555.8235 -456.6867 -916.6342 -916.6342 -564.5695 -713.5183 -564.5695 -456.6867 -456.6867 -564.5695 -440.0827 -564.5695 -713.5183 -564.5695 -916.6342 -713.5183 -713.5183 -456.6867 -564.5695 -555.8235 -564.5695 -564.5695 -555.8235 -564.5695 -713.5183 -440.0827 -564.5695 -440.0827 -564.5695 -555.8235 -713.5183 -564.5695 -564.5695 QQ -711.4559 -563.3472 -563.3472 -563.3472 -2040.412 -554.6506 -563.3472 -554.6506 -711.4559 -711.4559 -913.4262 -563.3472 -456.0729 -711.4559 -563.3472 -563.3472 -563.3472 -456.0729 -913.4262 -456.0729 -563.3472 -563.3472 -1422.372 -554.6506 -563.3472 -554.6506 -1719.472 -711.4559 -554.6506 -563.3472 -913.4262 -456.0729 -711.4559 -711.4559 -913.4262 -456.0729 -1152.299 -563.3472 -554.6506 -456.0729 -563.3472 -913.4262 -439.5626 -456.0729 -554.6506 -554.6506 -563.3472 -563.3472 -456.0729 -563.3472 -563.3472 -554.6506 -913.4262 -563.3472 -456.0729 -1422.372 -711.4559 -554.6506 -563.3472 -563.3472 -711.4559 -554.6506 -439.5626 -711.4559 -439.5626 -1422.372 -563.3472 -563.3472 -439.5626 -1152.299 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -554.6506 -554.6506 -1152.299 -563.3472 -563.3472 -439.5626 -563.3472 -456.0729 -711.4559 -554.6506 -563.3472 -711.4559 -711.4559 -563.3472 -563.3472 -439.5626 -456.0729 -711.4559 -563.3472 -439.5626 -439.5626 -439.5626 -563.3472 -711.4559 -563.3472 -563.3472 -563.3472 -554.6506 -563.3472 -711.4559 -563.3472 -563.3472 -439.5626 -554.6506 -563.3472 -554.6506 -554.6506 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -554.6506 -554.6506 -554.6506 -563.3472 -913.4262 -563.3472 -563.3472 -563.3472 -563.3472 -456.0729 -439.5626 -563.3472 -563.3472 -456.0729 -563.3472 -563.3472 -563.3472 -456.0729 -711.4559 -439.5626 -439.5626 -563.3472 -554.6506 -563.3472 -913.4262 -563.3472 -456.0729 -563.3472 -563.3472 -913.4262 -563.3472 -913.4262 -456.0729 -711.4559 -554.6506 -439.5626 -554.6506 -563.3472 -554.6506 -563.3472 -563.3472 -456.0729 -711.4559 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -711.4559 -913.4262 -456.0729 -563.3472 -439.5626 -913.4262 -563.3472 -563.3472 -563.3472 -563.3472 -439.5626 -711.4559 -711.4559 -456.0729 -439.5626 -456.0729 -563.3472 -563.3472 -554.6506 -554.6506 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -554.6506 -913.4262 -456.0729 -439.5626 -1719.472 -554.6506 -563.3472 -563.3472 -711.4559 -563.3472 -563.3472 -563.3472 -913.4262 -563.3472 -554.6506 -456.0729 -439.5626 -554.6506 -439.5626 -563.3472 -1152.299 -456.0729 -456.0729 -913.4262 -563.3472 -439.5626 -563.3472 -563.3472 -563.3472 -554.6506 -563.3472 -563.3472 -456.0729 -563.3472 -711.4559 -711.4559 -456.0729 -554.6506 -563.3472 -563.3472 -563.3472 -563.3472 -439.5626 -456.0729 -563.3472 -563.3472 -913.4262 -563.3472 -563.3472 -563.3472 -563.3472 -563.3472 -913.4262 -563.3472 -563.3472 -456.0729 -711.4559 -456.0729 -439.5626 -1152.299 -554.6506 -711.4559 -1152.299 -711.4559 -456.0729 -1422.372 -913.4262 -563.3472 -439.5626 -456.0729 -456.0729 -456.0729 -439.5626 -1422.372 -554.6506 -456.0729 -913.4262 -913.4262 -563.3472 -711.4559 -563.3472 -456.0729 -456.0729 -563.3472 -439.5626 -563.3472 -711.4559 -563.3472 -913.4262 -711.4559 -711.4559 -456.0729 -563.3472 -554.6506 -563.3472 -563.3472 -554.6506 -563.3472 -711.4559 -439.5626 -563.3472 -439.5626 -563.3472 -554.6506 -711.4559 -563.3472 -563.3472 epsilon_cond 0.002890451 0.002164984 0.002164984 0.002164984 0.004683155 0.002110301 0.002164984 0.002110301 0.002890451 0.002890451 0.003499772 0.002164984 0.001344029 0.002890451 0.002164984 0.002164984 0.002164984 0.001344029 0.003499772 0.001344029 0.002164984 0.002164984 0.004266718 0.002110301 0.002164984 0.002110301 0.004504312 0.002890451 0.002110301 0.002164984 0.003499772 0.001344029 0.002890451 0.002890451 0.003499772 0.001344029 0.003944248 0.002164984 0.002110301 0.001344029 0.002164984 0.003499772 0.001181937 0.001344029 0.002110301 0.002110301 0.002164984 0.002164984 0.001344029 0.002164984 0.002164984 0.002110301 0.003499772 0.002164984 0.001344029 0.004266718 0.002890451 0.002110301 0.002164984 0.002164984 0.002890451 0.002110301 0.001181937 0.002890451 0.001181937 0.004266718 0.002164984 0.002164984 0.001181937 0.003944248 0.002164984 0.002164984 0.002164984 0.002164984 0.002164984 0.002110301 0.002110301 0.003944248 0.002164984 0.002164984 0.001181937 0.002164984 0.001344029 0.002890451 0.002110301 0.002164984 0.002890451 0.002890451 0.002164984 0.002164984 0.001181937 0.001344029 0.002890451 0.002164984 0.001181937 0.001181937 0.001181937 0.002164984 0.002890451 0.002164984 0.002164984 0.002164984 0.002110301 0.002164984 0.002890451 0.002164984 0.002164984 0.001181937 0.002110301 0.002164984 0.002110301 0.002110301 0.002164984 0.002164984 0.002164984 0.002164984 0.002164984 0.002110301 0.002110301 0.002110301 0.002164984 0.003499772 0.002164984 0.002164984 0.002164984 0.002164984 0.001344029 0.001181937 0.002164984 0.002164984 0.001344029 0.002164984 0.002164984 0.002164984 0.001344029 0.002890451 0.001181937 0.001181937 0.002164984 0.002110301 0.002164984 0.003499772 0.002164984 0.001344029 0.002164984 0.002164984 0.003499772 0.002164984 0.003499772 0.001344029 0.002890451 0.002110301 0.001181937 0.002110301 0.002164984 0.002110301 0.002164984 0.002164984 0.001344029 0.002890451 0.002164984 0.002164984 0.002164984 0.002164984 0.002164984 0.002164984 0.002164984 0.002890451 0.003499772 0.001344029 0.002164984 0.001181937 0.003499772 0.002164984 0.002164984 0.002164984 0.002164984 0.001181937 0.002890451 0.002890451 0.001344029 0.001181937 0.001344029 0.002164984 0.002164984 0.002110301 0.002110301 0.002164984 0.002164984 0.002164984 0.002164984 0.002164984 0.002164984 0.002110301 0.003499772 0.001344029 0.001181937 0.004504312 0.002110301 0.002164984 0.002164984 0.002890451 0.002164984 0.002164984 0.002164984 0.003499772 0.002164984 0.002110301 0.001344029 0.001181937 0.002110301 0.001181937 0.002164984 0.003944248 0.001344029 0.001344029 0.003499772 0.002164984 0.001181937 0.002164984 0.002164984 0.002164984 0.002110301 0.002164984 0.002164984 0.001344029 0.002164984 0.002890451 0.002890451 0.001344029 0.002110301 0.002164984 0.002164984 0.002164984 0.002164984 0.001181937 0.001344029 0.002164984 0.002164984 0.003499772 0.002164984 0.002164984 0.002164984 0.002164984 0.002164984 0.003499772 0.002164984 0.002164984 0.001344029 0.002890451 0.001344029 0.001181937 0.003944248 0.002110301 0.002890451 0.003944248 0.002890451 0.001344029 0.004266718 0.003499772 0.002164984 0.001181937 0.001344029 0.001344029 0.001344029 0.001181937 0.004266718 0.002110301 0.001344029 0.003499772 0.003499772 0.002164984 0.002890451 0.002164984 0.001344029 0.001344029 0.002164984 0.001181937 0.002164984 0.002890451 0.002164984 0.003499772 0.002890451 0.002890451 0.001344029 0.002164984 0.002110301 0.002164984 0.002164984 0.002110301 0.002164984 0.002890451 0.001181937 0.002164984 0.001181937 0.002164984 0.002110301 0.002890451 0.002164984 0.002164984 mu 2.713524 w 0.3214967
## [1] "4 -713.518303412137" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -2050.01298562238" "4 -555.823512060081" "4 -564.569510431313" "4 -555.823512060081" "4 -713.518303412137" "4 -713.518303412137" "4 -916.634187178901" "4 -564.569510431313" "4 -456.686693465596" "4 -713.518303412137" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -456.686693465596" "4 -916.634187178901" "4 -456.686693465596" "4 -564.569510431313" "4 -564.569510431313" "4 -1428.46694876358" "4 -555.823512060081" "4 -564.569510431313" "4 -555.823512060081" "4 -1727.25254000559" "4 -713.518303412137" "4 -555.823512060081" "4 -564.569510431313" "4 -916.634187178901" "4 -456.686693465596" "4 -713.518303412137" "4 -713.518303412137" "4 -916.634187178901" "4 -456.686693465596" "4 -1156.86180566333" "4 -564.569510431313" "4 -555.823512060081" "4 -456.686693465596" "4 -564.569510431313" "4 -916.634187178901" "4 -440.082702003481" "4 -456.686693465596" "4 -555.823512060081"
## [46] "4 -555.823512060081" "4 -564.569510431313" "4 -564.569510431313" "4 -456.686693465596" "4 -564.569510431313" "4 -564.569510431313" "4 -555.823512060081" "4 -916.634187178901" "4 -564.569510431313" "4 -456.686693465596" "4 -1428.46694876358" "4 -713.518303412137" "4 -555.823512060081" "4 -564.569510431313" "4 -564.569510431313" "4 -713.518303412137" "4 -555.823512060081" "4 -440.082702003481" "4 -713.518303412137" "4 -440.082702003481" "4 -1428.46694876358" "4 -564.569510431313" "4 -564.569510431313" "4 -440.082702003481" "4 -1156.86180566333" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -555.823512060081" "4 -555.823512060081" "4 -1156.86180566333" "4 -564.569510431313" "4 -564.569510431313" "4 -440.082702003481" "4 -564.569510431313" "4 -456.686693465596" "4 -713.518303412137" "4 -555.823512060081" "4 -564.569510431313" "4 -713.518303412137" "4 -713.518303412137" "4 -564.569510431313" "4 -564.569510431313"
## [91] "4 -440.082702003481" "4 -456.686693465596" "4 -713.518303412137" "4 -564.569510431313" "4 -440.082702003481" "4 -440.082702003481" "4 -440.082702003481" "4 -564.569510431313" "4 -713.518303412137" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -555.823512060081" "4 -564.569510431313" "4 -713.518303412137" "4 -564.569510431313" "4 -564.569510431313" "4 -440.082702003481" "4 -555.823512060081" "4 -564.569510431313" "4 -555.823512060081" "4 -555.823512060081" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -555.823512060081" "4 -555.823512060081" "4 -555.823512060081" "4 -564.569510431313" "4 -916.634187178901" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -456.686693465596" "4 -440.082702003481" "4 -564.569510431313" "4 -564.569510431313" "4 -456.686693465596" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -456.686693465596"
## [136] "4 -713.518303412137" "4 -440.082702003481" "4 -440.082702003481" "4 -564.569510431313" "4 -555.823512060081" "4 -564.569510431313" "4 -916.634187178901" "4 -564.569510431313" "4 -456.686693465596" "4 -564.569510431313" "4 -564.569510431313" "4 -916.634187178901" "4 -564.569510431313" "4 -916.634187178901" "4 -456.686693465596" "4 -713.518303412137" "4 -555.823512060081" "4 -440.082702003481" "4 -555.823512060081" "4 -564.569510431313" "4 -555.823512060081" "4 -564.569510431313" "4 -564.569510431313" "4 -456.686693465596" "4 -713.518303412137" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -713.518303412137" "4 -916.634187178901" "4 -456.686693465596" "4 -564.569510431313" "4 -440.082702003481" "4 -916.634187178901" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -440.082702003481" "4 -713.518303412137" "4 -713.518303412137"
## [181] "4 -456.686693465596" "4 -440.082702003481" "4 -456.686693465596" "4 -564.569510431313" "4 -564.569510431313" "4 -555.823512060081" "4 -555.823512060081" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -555.823512060081" "4 -916.634187178901" "4 -456.686693465596" "4 -440.082702003481" "4 -1727.25254000559" "4 -555.823512060081" "4 -564.569510431313" "4 -564.569510431313" "4 -713.518303412137" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -916.634187178901" "4 -564.569510431313" "4 -555.823512060081" "4 -456.686693465596" "4 -440.082702003481" "4 -555.823512060081" "4 -440.082702003481" "4 -564.569510431313" "4 -1156.86180566333" "4 -456.686693465596" "4 -456.686693465596" "4 -916.634187178901" "4 -564.569510431313" "4 -440.082702003481" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -555.823512060081" "4 -564.569510431313" "4 -564.569510431313"
## [226] "4 -456.686693465596" "4 -564.569510431313" "4 -713.518303412137" "4 -713.518303412137" "4 -456.686693465596" "4 -555.823512060081" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -440.082702003481" "4 -456.686693465596" "4 -564.569510431313" "4 -564.569510431313" "4 -916.634187178901" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -564.569510431313" "4 -916.634187178901" "4 -564.569510431313" "4 -564.569510431313" "4 -456.686693465596" "4 -713.518303412137" "4 -456.686693465596" "4 -440.082702003481" "4 -1156.86180566333" "4 -555.823512060081" "4 -713.518303412137" "4 -1156.86180566333" "4 -713.518303412137" "4 -456.686693465596" "4 -1428.46694876358" "4 -916.634187178901" "4 -564.569510431313" "4 -440.082702003481" "4 -456.686693465596" "4 -456.686693465596" "4 -456.686693465596" "4 -440.082702003481" "4 -1428.46694876358" "4 -555.823512060081" "4 -456.686693465596" "4 -916.634187178901"
## [271] "4 -916.634187178901" "4 -564.569510431313" "4 -713.518303412137" "4 -564.569510431313" "4 -456.686693465596" "4 -456.686693465596" "4 -564.569510431313" "4 -440.082702003481" "4 -564.569510431313" "4 -713.518303412137" "4 -564.569510431313" "4 -916.634187178901" "4 -713.518303412137" "4 -713.518303412137" "4 -456.686693465596" "4 -564.569510431313" "4 -555.823512060081" "4 -564.569510431313" "4 -564.569510431313" "4 -555.823512060081" "4 -564.569510431313" "4 -713.518303412137" "4 -440.082702003481" "4 -564.569510431313" "4 -440.082702003481" "4 -564.569510431313" "4 -555.823512060081" "4 -713.518303412137" "4 -564.569510431313" "4 -564.569510431313"
## QQn -714.2682 -565.0122 -565.0122 -565.0122 -2053.519 -556.2482 -565.0122 -556.2482 -714.2682 -714.2682 -917.8029 -565.0122 -456.9069 -714.2682 -565.0122 -565.0122 -565.0122 -456.9069 -917.8029 -456.9069 -565.0122 -565.0122 -1430.691 -556.2482 -565.0122 -556.2482 -1730.093 -714.2682 -556.2482 -565.0122 -917.8029 -456.9069 -714.2682 -714.2682 -917.8029 -456.9069 -1158.526 -565.0122 -556.2482 -456.9069 -565.0122 -917.8029 -440.2687 -456.9069 -556.2482 -556.2482 -565.0122 -565.0122 -456.9069 -565.0122 -565.0122 -556.2482 -917.8029 -565.0122 -456.9069 -1430.691 -714.2682 -556.2482 -565.0122 -565.0122 -714.2682 -556.2482 -440.2687 -714.2682 -440.2687 -1430.691 -565.0122 -565.0122 -440.2687 -1158.526 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -556.2482 -556.2482 -1158.526 -565.0122 -565.0122 -440.2687 -565.0122 -456.9069 -714.2682 -556.2482 -565.0122 -714.2682 -714.2682 -565.0122 -565.0122 -440.2687 -456.9069 -714.2682 -565.0122 -440.2687 -440.2687 -440.2687 -565.0122 -714.2682 -565.0122 -565.0122 -565.0122 -556.2482 -565.0122 -714.2682 -565.0122 -565.0122 -440.2687 -556.2482 -565.0122 -556.2482 -556.2482 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -556.2482 -556.2482 -556.2482 -565.0122 -917.8029 -565.0122 -565.0122 -565.0122 -565.0122 -456.9069 -440.2687 -565.0122 -565.0122 -456.9069 -565.0122 -565.0122 -565.0122 -456.9069 -714.2682 -440.2687 -440.2687 -565.0122 -556.2482 -565.0122 -917.8029 -565.0122 -456.9069 -565.0122 -565.0122 -917.8029 -565.0122 -917.8029 -456.9069 -714.2682 -556.2482 -440.2687 -556.2482 -565.0122 -556.2482 -565.0122 -565.0122 -456.9069 -714.2682 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -714.2682 -917.8029 -456.9069 -565.0122 -440.2687 -917.8029 -565.0122 -565.0122 -565.0122 -565.0122 -440.2687 -714.2682 -714.2682 -456.9069 -440.2687 -456.9069 -565.0122 -565.0122 -556.2482 -556.2482 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -556.2482 -917.8029 -456.9069 -440.2687 -1730.093 -556.2482 -565.0122 -565.0122 -714.2682 -565.0122 -565.0122 -565.0122 -917.8029 -565.0122 -556.2482 -456.9069 -440.2687 -556.2482 -440.2687 -565.0122 -1158.526 -456.9069 -456.9069 -917.8029 -565.0122 -440.2687 -565.0122 -565.0122 -565.0122 -556.2482 -565.0122 -565.0122 -456.9069 -565.0122 -714.2682 -714.2682 -456.9069 -556.2482 -565.0122 -565.0122 -565.0122 -565.0122 -440.2687 -456.9069 -565.0122 -565.0122 -917.8029 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -917.8029 -565.0122 -565.0122 -456.9069 -714.2682 -456.9069 -440.2687 -1158.526 -556.2482 -714.2682 -1158.526 -714.2682 -456.9069 -1430.691 -917.8029 -565.0122 -440.2687 -456.9069 -456.9069 -456.9069 -440.2687 -1430.691 -556.2482 -456.9069 -917.8029 -917.8029 -565.0122 -714.2682 -565.0122 -456.9069 -456.9069 -565.0122 -440.2687 -565.0122 -714.2682 -565.0122 -917.8029 -714.2682 -714.2682 -456.9069 -565.0122 -556.2482 -565.0122 -565.0122 -556.2482 -565.0122 -714.2682 -440.2687 -565.0122 -440.2687 -565.0122 -556.2482 -714.2682 -565.0122 -565.0122 QQ -713.5183 -564.5695 -564.5695 -564.5695 -2050.013 -555.8235 -564.5695 -555.8235 -713.5183 -713.5183 -916.6342 -564.5695 -456.6867 -713.5183 -564.5695 -564.5695 -564.5695 -456.6867 -916.6342 -456.6867 -564.5695 -564.5695 -1428.467 -555.8235 -564.5695 -555.8235 -1727.253 -713.5183 -555.8235 -564.5695 -916.6342 -456.6867 -713.5183 -713.5183 -916.6342 -456.6867 -1156.862 -564.5695 -555.8235 -456.6867 -564.5695 -916.6342 -440.0827 -456.6867 -555.8235 -555.8235 -564.5695 -564.5695 -456.6867 -564.5695 -564.5695 -555.8235 -916.6342 -564.5695 -456.6867 -1428.467 -713.5183 -555.8235 -564.5695 -564.5695 -713.5183 -555.8235 -440.0827 -713.5183 -440.0827 -1428.467 -564.5695 -564.5695 -440.0827 -1156.862 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -555.8235 -555.8235 -1156.862 -564.5695 -564.5695 -440.0827 -564.5695 -456.6867 -713.5183 -555.8235 -564.5695 -713.5183 -713.5183 -564.5695 -564.5695 -440.0827 -456.6867 -713.5183 -564.5695 -440.0827 -440.0827 -440.0827 -564.5695 -713.5183 -564.5695 -564.5695 -564.5695 -555.8235 -564.5695 -713.5183 -564.5695 -564.5695 -440.0827 -555.8235 -564.5695 -555.8235 -555.8235 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -555.8235 -555.8235 -555.8235 -564.5695 -916.6342 -564.5695 -564.5695 -564.5695 -564.5695 -456.6867 -440.0827 -564.5695 -564.5695 -456.6867 -564.5695 -564.5695 -564.5695 -456.6867 -713.5183 -440.0827 -440.0827 -564.5695 -555.8235 -564.5695 -916.6342 -564.5695 -456.6867 -564.5695 -564.5695 -916.6342 -564.5695 -916.6342 -456.6867 -713.5183 -555.8235 -440.0827 -555.8235 -564.5695 -555.8235 -564.5695 -564.5695 -456.6867 -713.5183 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -713.5183 -916.6342 -456.6867 -564.5695 -440.0827 -916.6342 -564.5695 -564.5695 -564.5695 -564.5695 -440.0827 -713.5183 -713.5183 -456.6867 -440.0827 -456.6867 -564.5695 -564.5695 -555.8235 -555.8235 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -555.8235 -916.6342 -456.6867 -440.0827 -1727.253 -555.8235 -564.5695 -564.5695 -713.5183 -564.5695 -564.5695 -564.5695 -916.6342 -564.5695 -555.8235 -456.6867 -440.0827 -555.8235 -440.0827 -564.5695 -1156.862 -456.6867 -456.6867 -916.6342 -564.5695 -440.0827 -564.5695 -564.5695 -564.5695 -555.8235 -564.5695 -564.5695 -456.6867 -564.5695 -713.5183 -713.5183 -456.6867 -555.8235 -564.5695 -564.5695 -564.5695 -564.5695 -440.0827 -456.6867 -564.5695 -564.5695 -916.6342 -564.5695 -564.5695 -564.5695 -564.5695 -564.5695 -916.6342 -564.5695 -564.5695 -456.6867 -713.5183 -456.6867 -440.0827 -1156.862 -555.8235 -713.5183 -1156.862 -713.5183 -456.6867 -1428.467 -916.6342 -564.5695 -440.0827 -456.6867 -456.6867 -456.6867 -440.0827 -1428.467 -555.8235 -456.6867 -916.6342 -916.6342 -564.5695 -713.5183 -564.5695 -456.6867 -456.6867 -564.5695 -440.0827 -564.5695 -713.5183 -564.5695 -916.6342 -713.5183 -713.5183 -456.6867 -564.5695 -555.8235 -564.5695 -564.5695 -555.8235 -564.5695 -713.5183 -440.0827 -564.5695 -440.0827 -564.5695 -555.8235 -713.5183 -564.5695 -564.5695 epsilon_cond 0.001049829 0.0007835011 0.0007835011 0.0007835011 0.001707343 0.0007634203 0.0007835011 0.0007634203 0.001049829 0.001049829 0.001273408 0.0007835011 0.0004819472 0.001049829 0.0007835011 0.0007835011 0.0007835011 0.0004819472 0.001273408 0.0004819472 0.0007835011 0.0007835011 0.001554683 0.0007634203 0.0007835011 0.0007634203 0.001641788 0.001049829 0.0007634203 0.0007835011 0.001273408 0.0004819472 0.001049829 0.001049829 0.001273408 0.0004819472 0.001436437 0.0007835011 0.0007634203 0.0004819472 0.0007835011 0.001273408 0.0004223857 0.0004819472 0.0007634203 0.0007634203 0.0007835011 0.0007835011 0.0004819472 0.0007835011 0.0007835011 0.0007634203 0.001273408 0.0007835011 0.0004819472 0.001554683 0.001049829 0.0007634203 0.0007835011 0.0007835011 0.001049829 0.0007634203 0.0004223857 0.001049829 0.0004223857 0.001554683 0.0007835011 0.0007835011 0.0004223857 0.001436437 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.0007634203 0.0007634203 0.001436437 0.0007835011 0.0007835011 0.0004223857 0.0007835011 0.0004819472 0.001049829 0.0007634203 0.0007835011 0.001049829 0.001049829 0.0007835011 0.0007835011 0.0004223857 0.0004819472 0.001049829 0.0007835011 0.0004223857 0.0004223857 0.0004223857 0.0007835011 0.001049829 0.0007835011 0.0007835011 0.0007835011 0.0007634203 0.0007835011 0.001049829 0.0007835011 0.0007835011 0.0004223857 0.0007634203 0.0007835011 0.0007634203 0.0007634203 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.0007634203 0.0007634203 0.0007634203 0.0007835011 0.001273408 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.0004819472 0.0004223857 0.0007835011 0.0007835011 0.0004819472 0.0007835011 0.0007835011 0.0007835011 0.0004819472 0.001049829 0.0004223857 0.0004223857 0.0007835011 0.0007634203 0.0007835011 0.001273408 0.0007835011 0.0004819472 0.0007835011 0.0007835011 0.001273408 0.0007835011 0.001273408 0.0004819472 0.001049829 0.0007634203 0.0004223857 0.0007634203 0.0007835011 0.0007634203 0.0007835011 0.0007835011 0.0004819472 0.001049829 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.001049829 0.001273408 0.0004819472 0.0007835011 0.0004223857 0.001273408 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.0004223857 0.001049829 0.001049829 0.0004819472 0.0004223857 0.0004819472 0.0007835011 0.0007835011 0.0007634203 0.0007634203 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.0007634203 0.001273408 0.0004819472 0.0004223857 0.001641788 0.0007634203 0.0007835011 0.0007835011 0.001049829 0.0007835011 0.0007835011 0.0007835011 0.001273408 0.0007835011 0.0007634203 0.0004819472 0.0004223857 0.0007634203 0.0004223857 0.0007835011 0.001436437 0.0004819472 0.0004819472 0.001273408 0.0007835011 0.0004223857 0.0007835011 0.0007835011 0.0007835011 0.0007634203 0.0007835011 0.0007835011 0.0004819472 0.0007835011 0.001049829 0.001049829 0.0004819472 0.0007634203 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.0004223857 0.0004819472 0.0007835011 0.0007835011 0.001273408 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.0007835011 0.001273408 0.0007835011 0.0007835011 0.0004819472 0.001049829 0.0004819472 0.0004223857 0.001436437 0.0007634203 0.001049829 0.001436437 0.001049829 0.0004819472 0.001554683 0.001273408 0.0007835011 0.0004223857 0.0004819472 0.0004819472 0.0004819472 0.0004223857 0.001554683 0.0007634203 0.0004819472 0.001273408 0.001273408 0.0007835011 0.001049829 0.0007835011 0.0004819472 0.0004819472 0.0007835011 0.0004223857 0.0007835011 0.001049829 0.0007835011 0.001273408 0.001049829 0.001049829 0.0004819472 0.0007835011 0.0007634203 0.0007835011 0.0007835011 0.0007634203 0.0007835011 0.001049829 0.0004223857 0.0007835011 0.0004223857 0.0007835011 0.0007634203 0.001049829 0.0007835011 0.0007835011 mu 2.707994 w 0.3200974
## [1] "5 -714.268162619791" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -2053.51904779508" "5 -556.248163201223" "5 -565.012198117584" "5 -556.248163201223" "5 -714.268162619791" "5 -714.268162619791" "5 -917.802924672067" "5 -565.012198117584" "5 -456.906898455932" "5 -714.268162619791" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -456.906898455932" "5 -917.802924672067" "5 -456.906898455932" "5 -565.012198117584" "5 -565.012198117584" "5 -1430.69121980571" "5 -556.248163201223" "5 -565.012198117584" "5 -556.248163201223" "5 -1730.09298539053" "5 -714.268162619791" "5 -556.248163201223" "5 -565.012198117584" "5 -917.802924672067" "5 -456.906898455932" "5 -714.268162619791" "5 -714.268162619791" "5 -917.802924672067" "5 -456.906898455932" "5 -1158.52595558362" "5 -565.012198117584" "5 -556.248163201223" "5 -456.906898455932" "5 -565.012198117584" "5 -917.802924672067" "5 -440.268665203629" "5 -456.906898455932" "5 -556.248163201223"
## [46] "5 -556.248163201223" "5 -565.012198117584" "5 -565.012198117584" "5 -456.906898455932" "5 -565.012198117584" "5 -565.012198117584" "5 -556.248163201223" "5 -917.802924672067" "5 -565.012198117584" "5 -456.906898455932" "5 -1430.69121980571" "5 -714.268162619791" "5 -556.248163201223" "5 -565.012198117584" "5 -565.012198117584" "5 -714.268162619791" "5 -556.248163201223" "5 -440.268665203629" "5 -714.268162619791" "5 -440.268665203629" "5 -1430.69121980571" "5 -565.012198117584" "5 -565.012198117584" "5 -440.268665203629" "5 -1158.52595558362" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -556.248163201223" "5 -556.248163201223" "5 -1158.52595558362" "5 -565.012198117584" "5 -565.012198117584" "5 -440.268665203629" "5 -565.012198117584" "5 -456.906898455932" "5 -714.268162619791" "5 -556.248163201223" "5 -565.012198117584" "5 -714.268162619791" "5 -714.268162619791" "5 -565.012198117584" "5 -565.012198117584"
## [91] "5 -440.268665203629" "5 -456.906898455932" "5 -714.268162619791" "5 -565.012198117584" "5 -440.268665203629" "5 -440.268665203629" "5 -440.268665203629" "5 -565.012198117584" "5 -714.268162619791" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -556.248163201223" "5 -565.012198117584" "5 -714.268162619791" "5 -565.012198117584" "5 -565.012198117584" "5 -440.268665203629" "5 -556.248163201223" "5 -565.012198117584" "5 -556.248163201223" "5 -556.248163201223" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -556.248163201223" "5 -556.248163201223" "5 -556.248163201223" "5 -565.012198117584" "5 -917.802924672067" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -456.906898455932" "5 -440.268665203629" "5 -565.012198117584" "5 -565.012198117584" "5 -456.906898455932" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -456.906898455932"
## [136] "5 -714.268162619791" "5 -440.268665203629" "5 -440.268665203629" "5 -565.012198117584" "5 -556.248163201223" "5 -565.012198117584" "5 -917.802924672067" "5 -565.012198117584" "5 -456.906898455932" "5 -565.012198117584" "5 -565.012198117584" "5 -917.802924672067" "5 -565.012198117584" "5 -917.802924672067" "5 -456.906898455932" "5 -714.268162619791" "5 -556.248163201223" "5 -440.268665203629" "5 -556.248163201223" "5 -565.012198117584" "5 -556.248163201223" "5 -565.012198117584" "5 -565.012198117584" "5 -456.906898455932" "5 -714.268162619791" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -714.268162619791" "5 -917.802924672067" "5 -456.906898455932" "5 -565.012198117584" "5 -440.268665203629" "5 -917.802924672067" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -440.268665203629" "5 -714.268162619791" "5 -714.268162619791"
## [181] "5 -456.906898455932" "5 -440.268665203629" "5 -456.906898455932" "5 -565.012198117584" "5 -565.012198117584" "5 -556.248163201223" "5 -556.248163201223" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -556.248163201223" "5 -917.802924672067" "5 -456.906898455932" "5 -440.268665203629" "5 -1730.09298539053" "5 -556.248163201223" "5 -565.012198117584" "5 -565.012198117584" "5 -714.268162619791" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -917.802924672067" "5 -565.012198117584" "5 -556.248163201223" "5 -456.906898455932" "5 -440.268665203629" "5 -556.248163201223" "5 -440.268665203629" "5 -565.012198117584" "5 -1158.52595558362" "5 -456.906898455932" "5 -456.906898455932" "5 -917.802924672067" "5 -565.012198117584" "5 -440.268665203629" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -556.248163201223" "5 -565.012198117584" "5 -565.012198117584"
## [226] "5 -456.906898455932" "5 -565.012198117584" "5 -714.268162619791" "5 -714.268162619791" "5 -456.906898455932" "5 -556.248163201223" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -440.268665203629" "5 -456.906898455932" "5 -565.012198117584" "5 -565.012198117584" "5 -917.802924672067" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -565.012198117584" "5 -917.802924672067" "5 -565.012198117584" "5 -565.012198117584" "5 -456.906898455932" "5 -714.268162619791" "5 -456.906898455932" "5 -440.268665203629" "5 -1158.52595558362" "5 -556.248163201223" "5 -714.268162619791" "5 -1158.52595558362" "5 -714.268162619791" "5 -456.906898455932" "5 -1430.69121980571" "5 -917.802924672067" "5 -565.012198117584" "5 -440.268665203629" "5 -456.906898455932" "5 -456.906898455932" "5 -456.906898455932" "5 -440.268665203629" "5 -1430.69121980571" "5 -556.248163201223" "5 -456.906898455932" "5 -917.802924672067"
## [271] "5 -917.802924672067" "5 -565.012198117584" "5 -714.268162619791" "5 -565.012198117584" "5 -456.906898455932" "5 -456.906898455932" "5 -565.012198117584" "5 -440.268665203629" "5 -565.012198117584" "5 -714.268162619791" "5 -565.012198117584" "5 -917.802924672067" "5 -714.268162619791" "5 -714.268162619791" "5 -456.906898455932" "5 -565.012198117584" "5 -556.248163201223" "5 -565.012198117584" "5 -565.012198117584" "5 -556.248163201223" "5 -565.012198117584" "5 -714.268162619791" "5 -440.268665203629" "5 -565.012198117584" "5 -440.268665203629" "5 -565.012198117584" "5 -556.248163201223" "5 -714.268162619791" "5 -565.012198117584" "5 -565.012198117584"
## QQn -714.5446 -565.1751 -565.1751 -565.1751 -2054.814 -556.4044 -565.1751 -556.4044 -714.5446 -714.5446 -918.234 -565.1751 -456.9877 -714.5446 -565.1751 -565.1751 -565.1751 -456.9877 -918.234 -456.9877 -565.1751 -565.1751 -1431.512 -556.4044 -565.1751 -556.4044 -1731.142 -714.5446 -556.4044 -565.1751 -918.234 -456.9877 -714.5446 -714.5446 -918.234 -456.9877 -1159.14 -565.1751 -556.4044 -456.9877 -565.1751 -918.234 -440.3368 -456.9877 -556.4044 -556.4044 -565.1751 -565.1751 -456.9877 -565.1751 -565.1751 -556.4044 -918.234 -565.1751 -456.9877 -1431.512 -714.5446 -556.4044 -565.1751 -565.1751 -714.5446 -556.4044 -440.3368 -714.5446 -440.3368 -1431.512 -565.1751 -565.1751 -440.3368 -1159.14 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -556.4044 -556.4044 -1159.14 -565.1751 -565.1751 -440.3368 -565.1751 -456.9877 -714.5446 -556.4044 -565.1751 -714.5446 -714.5446 -565.1751 -565.1751 -440.3368 -456.9877 -714.5446 -565.1751 -440.3368 -440.3368 -440.3368 -565.1751 -714.5446 -565.1751 -565.1751 -565.1751 -556.4044 -565.1751 -714.5446 -565.1751 -565.1751 -440.3368 -556.4044 -565.1751 -556.4044 -556.4044 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -556.4044 -556.4044 -556.4044 -565.1751 -918.234 -565.1751 -565.1751 -565.1751 -565.1751 -456.9877 -440.3368 -565.1751 -565.1751 -456.9877 -565.1751 -565.1751 -565.1751 -456.9877 -714.5446 -440.3368 -440.3368 -565.1751 -556.4044 -565.1751 -918.234 -565.1751 -456.9877 -565.1751 -565.1751 -918.234 -565.1751 -918.234 -456.9877 -714.5446 -556.4044 -440.3368 -556.4044 -565.1751 -556.4044 -565.1751 -565.1751 -456.9877 -714.5446 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -714.5446 -918.234 -456.9877 -565.1751 -440.3368 -918.234 -565.1751 -565.1751 -565.1751 -565.1751 -440.3368 -714.5446 -714.5446 -456.9877 -440.3368 -456.9877 -565.1751 -565.1751 -556.4044 -556.4044 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -556.4044 -918.234 -456.9877 -440.3368 -1731.142 -556.4044 -565.1751 -565.1751 -714.5446 -565.1751 -565.1751 -565.1751 -918.234 -565.1751 -556.4044 -456.9877 -440.3368 -556.4044 -440.3368 -565.1751 -1159.14 -456.9877 -456.9877 -918.234 -565.1751 -440.3368 -565.1751 -565.1751 -565.1751 -556.4044 -565.1751 -565.1751 -456.9877 -565.1751 -714.5446 -714.5446 -456.9877 -556.4044 -565.1751 -565.1751 -565.1751 -565.1751 -440.3368 -456.9877 -565.1751 -565.1751 -918.234 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -918.234 -565.1751 -565.1751 -456.9877 -714.5446 -456.9877 -440.3368 -1159.14 -556.4044 -714.5446 -1159.14 -714.5446 -456.9877 -1431.512 -918.234 -565.1751 -440.3368 -456.9877 -456.9877 -456.9877 -440.3368 -1431.512 -556.4044 -456.9877 -918.234 -918.234 -565.1751 -714.5446 -565.1751 -456.9877 -456.9877 -565.1751 -440.3368 -565.1751 -714.5446 -565.1751 -918.234 -714.5446 -714.5446 -456.9877 -565.1751 -556.4044 -565.1751 -565.1751 -556.4044 -565.1751 -714.5446 -440.3368 -565.1751 -440.3368 -565.1751 -556.4044 -714.5446 -565.1751 -565.1751 QQ -714.2682 -565.0122 -565.0122 -565.0122 -2053.519 -556.2482 -565.0122 -556.2482 -714.2682 -714.2682 -917.8029 -565.0122 -456.9069 -714.2682 -565.0122 -565.0122 -565.0122 -456.9069 -917.8029 -456.9069 -565.0122 -565.0122 -1430.691 -556.2482 -565.0122 -556.2482 -1730.093 -714.2682 -556.2482 -565.0122 -917.8029 -456.9069 -714.2682 -714.2682 -917.8029 -456.9069 -1158.526 -565.0122 -556.2482 -456.9069 -565.0122 -917.8029 -440.2687 -456.9069 -556.2482 -556.2482 -565.0122 -565.0122 -456.9069 -565.0122 -565.0122 -556.2482 -917.8029 -565.0122 -456.9069 -1430.691 -714.2682 -556.2482 -565.0122 -565.0122 -714.2682 -556.2482 -440.2687 -714.2682 -440.2687 -1430.691 -565.0122 -565.0122 -440.2687 -1158.526 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -556.2482 -556.2482 -1158.526 -565.0122 -565.0122 -440.2687 -565.0122 -456.9069 -714.2682 -556.2482 -565.0122 -714.2682 -714.2682 -565.0122 -565.0122 -440.2687 -456.9069 -714.2682 -565.0122 -440.2687 -440.2687 -440.2687 -565.0122 -714.2682 -565.0122 -565.0122 -565.0122 -556.2482 -565.0122 -714.2682 -565.0122 -565.0122 -440.2687 -556.2482 -565.0122 -556.2482 -556.2482 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -556.2482 -556.2482 -556.2482 -565.0122 -917.8029 -565.0122 -565.0122 -565.0122 -565.0122 -456.9069 -440.2687 -565.0122 -565.0122 -456.9069 -565.0122 -565.0122 -565.0122 -456.9069 -714.2682 -440.2687 -440.2687 -565.0122 -556.2482 -565.0122 -917.8029 -565.0122 -456.9069 -565.0122 -565.0122 -917.8029 -565.0122 -917.8029 -456.9069 -714.2682 -556.2482 -440.2687 -556.2482 -565.0122 -556.2482 -565.0122 -565.0122 -456.9069 -714.2682 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -714.2682 -917.8029 -456.9069 -565.0122 -440.2687 -917.8029 -565.0122 -565.0122 -565.0122 -565.0122 -440.2687 -714.2682 -714.2682 -456.9069 -440.2687 -456.9069 -565.0122 -565.0122 -556.2482 -556.2482 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -556.2482 -917.8029 -456.9069 -440.2687 -1730.093 -556.2482 -565.0122 -565.0122 -714.2682 -565.0122 -565.0122 -565.0122 -917.8029 -565.0122 -556.2482 -456.9069 -440.2687 -556.2482 -440.2687 -565.0122 -1158.526 -456.9069 -456.9069 -917.8029 -565.0122 -440.2687 -565.0122 -565.0122 -565.0122 -556.2482 -565.0122 -565.0122 -456.9069 -565.0122 -714.2682 -714.2682 -456.9069 -556.2482 -565.0122 -565.0122 -565.0122 -565.0122 -440.2687 -456.9069 -565.0122 -565.0122 -917.8029 -565.0122 -565.0122 -565.0122 -565.0122 -565.0122 -917.8029 -565.0122 -565.0122 -456.9069 -714.2682 -456.9069 -440.2687 -1158.526 -556.2482 -714.2682 -1158.526 -714.2682 -456.9069 -1430.691 -917.8029 -565.0122 -440.2687 -456.9069 -456.9069 -456.9069 -440.2687 -1430.691 -556.2482 -456.9069 -917.8029 -917.8029 -565.0122 -714.2682 -565.0122 -456.9069 -456.9069 -565.0122 -440.2687 -565.0122 -714.2682 -565.0122 -917.8029 -714.2682 -714.2682 -456.9069 -565.0122 -556.2482 -565.0122 -565.0122 -556.2482 -565.0122 -714.2682 -440.2687 -565.0122 -440.2687 -565.0122 -556.2482 -714.2682 -565.0122 -565.0122 epsilon_cond 0.000386818 0.0002882959 0.0002882959 0.0002882959 0.0006299681 0.0002808667 0.0002882959 0.0002808667 0.000386818 0.000386818 0.0004695113 0.0002882959 0.0001767192 0.000386818 0.0002882959 0.0002882959 0.0002882959 0.0001767192 0.0004695113 0.0001767192 0.0002882959 0.0002882959 0.0005735245 0.0002808667 0.0002882959 0.0002808667 0.0006057308 0.000386818 0.0002808667 0.0002882959 0.0004695113 0.0001767192 0.000386818 0.000386818 0.0004695113 0.0001767192 0.0005298009 0.0002882959 0.0002808667 0.0001767192 0.0002882959 0.0004695113 0.0001546782 0.0001767192 0.0002808667 0.0002808667 0.0002882959 0.0002882959 0.0001767192 0.0002882959 0.0002882959 0.0002808667 0.0004695113 0.0002882959 0.0001767192 0.0005735245 0.000386818 0.0002808667 0.0002882959 0.0002882959 0.000386818 0.0002808667 0.0001546782 0.000386818 0.0001546782 0.0005735245 0.0002882959 0.0002882959 0.0001546782 0.0005298009 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0002808667 0.0002808667 0.0005298009 0.0002882959 0.0002882959 0.0001546782 0.0002882959 0.0001767192 0.000386818 0.0002808667 0.0002882959 0.000386818 0.000386818 0.0002882959 0.0002882959 0.0001546782 0.0001767192 0.000386818 0.0002882959 0.0001546782 0.0001546782 0.0001546782 0.0002882959 0.000386818 0.0002882959 0.0002882959 0.0002882959 0.0002808667 0.0002882959 0.000386818 0.0002882959 0.0002882959 0.0001546782 0.0002808667 0.0002882959 0.0002808667 0.0002808667 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0002808667 0.0002808667 0.0002808667 0.0002882959 0.0004695113 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0001767192 0.0001546782 0.0002882959 0.0002882959 0.0001767192 0.0002882959 0.0002882959 0.0002882959 0.0001767192 0.000386818 0.0001546782 0.0001546782 0.0002882959 0.0002808667 0.0002882959 0.0004695113 0.0002882959 0.0001767192 0.0002882959 0.0002882959 0.0004695113 0.0002882959 0.0004695113 0.0001767192 0.000386818 0.0002808667 0.0001546782 0.0002808667 0.0002882959 0.0002808667 0.0002882959 0.0002882959 0.0001767192 0.000386818 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.000386818 0.0004695113 0.0001767192 0.0002882959 0.0001546782 0.0004695113 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0001546782 0.000386818 0.000386818 0.0001767192 0.0001546782 0.0001767192 0.0002882959 0.0002882959 0.0002808667 0.0002808667 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0002808667 0.0004695113 0.0001767192 0.0001546782 0.0006057308 0.0002808667 0.0002882959 0.0002882959 0.000386818 0.0002882959 0.0002882959 0.0002882959 0.0004695113 0.0002882959 0.0002808667 0.0001767192 0.0001546782 0.0002808667 0.0001546782 0.0002882959 0.0005298009 0.0001767192 0.0001767192 0.0004695113 0.0002882959 0.0001546782 0.0002882959 0.0002882959 0.0002882959 0.0002808667 0.0002882959 0.0002882959 0.0001767192 0.0002882959 0.000386818 0.000386818 0.0001767192 0.0002808667 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0001546782 0.0001767192 0.0002882959 0.0002882959 0.0004695113 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0002882959 0.0004695113 0.0002882959 0.0002882959 0.0001767192 0.000386818 0.0001767192 0.0001546782 0.0005298009 0.0002808667 0.000386818 0.0005298009 0.000386818 0.0001767192 0.0005735245 0.0004695113 0.0002882959 0.0001546782 0.0001767192 0.0001767192 0.0001767192 0.0001546782 0.0005735245 0.0002808667 0.0001767192 0.0004695113 0.0004695113 0.0002882959 0.000386818 0.0002882959 0.0001767192 0.0001767192 0.0002882959 0.0001546782 0.0002882959 0.000386818 0.0002882959 0.0004695113 0.000386818 0.000386818 0.0001767192 0.0002882959 0.0002808667 0.0002882959 0.0002882959 0.0002808667 0.0002882959 0.000386818 0.0001546782 0.0002882959 0.0001546782 0.0002882959 0.0002808667 0.000386818 0.0002882959 0.0002882959 mu 2.705956 w 0.3195806
## [1] "6 -714.544561328685" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -2054.81351476526" "6 -556.40443867717" "6 -565.175135814838" "6 -556.40443867717" "6 -714.544561328685" "6 -714.544561328685" "6 -918.23404590802" "6 -565.175135814838" "6 -456.987656947124" "6 -714.544561328685" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -456.987656947124" "6 -918.23404590802" "6 -456.987656947124" "6 -565.175135814838" "6 -565.175135814838" "6 -1431.51222713444" "6 -556.40443867717" "6 -565.175135814838" "6 -556.40443867717" "6 -1731.1415911762" "6 -714.544561328685" "6 -556.40443867717" "6 -565.175135814838" "6 -918.23404590802" "6 -456.987656947124" "6 -714.544561328685" "6 -714.544561328685" "6 -918.23404590802" "6 -456.987656947124" "6 -1159.14006902831" "6 -565.175135814838" "6 -556.40443867717" "6 -456.987656947124" "6 -565.175135814838" "6 -918.23404590802" "6 -440.336775685858" "6 -456.987656947124" "6 -556.40443867717"
## [46] "6 -556.40443867717" "6 -565.175135814838" "6 -565.175135814838" "6 -456.987656947124" "6 -565.175135814838" "6 -565.175135814838" "6 -556.40443867717" "6 -918.23404590802" "6 -565.175135814838" "6 -456.987656947124" "6 -1431.51222713444" "6 -714.544561328685" "6 -556.40443867717" "6 -565.175135814838" "6 -565.175135814838" "6 -714.544561328685" "6 -556.40443867717" "6 -440.336775685858" "6 -714.544561328685" "6 -440.336775685858" "6 -1431.51222713444" "6 -565.175135814838" "6 -565.175135814838" "6 -440.336775685858" "6 -1159.14006902831" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -556.40443867717" "6 -556.40443867717" "6 -1159.14006902831" "6 -565.175135814838" "6 -565.175135814838" "6 -440.336775685858" "6 -565.175135814838" "6 -456.987656947124" "6 -714.544561328685" "6 -556.40443867717" "6 -565.175135814838" "6 -714.544561328685" "6 -714.544561328685" "6 -565.175135814838" "6 -565.175135814838"
## [91] "6 -440.336775685858" "6 -456.987656947124" "6 -714.544561328685" "6 -565.175135814838" "6 -440.336775685858" "6 -440.336775685858" "6 -440.336775685858" "6 -565.175135814838" "6 -714.544561328685" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -556.40443867717" "6 -565.175135814838" "6 -714.544561328685" "6 -565.175135814838" "6 -565.175135814838" "6 -440.336775685858" "6 -556.40443867717" "6 -565.175135814838" "6 -556.40443867717" "6 -556.40443867717" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -556.40443867717" "6 -556.40443867717" "6 -556.40443867717" "6 -565.175135814838" "6 -918.23404590802" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -456.987656947124" "6 -440.336775685858" "6 -565.175135814838" "6 -565.175135814838" "6 -456.987656947124" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -456.987656947124"
## [136] "6 -714.544561328685" "6 -440.336775685858" "6 -440.336775685858" "6 -565.175135814838" "6 -556.40443867717" "6 -565.175135814838" "6 -918.23404590802" "6 -565.175135814838" "6 -456.987656947124" "6 -565.175135814838" "6 -565.175135814838" "6 -918.23404590802" "6 -565.175135814838" "6 -918.23404590802" "6 -456.987656947124" "6 -714.544561328685" "6 -556.40443867717" "6 -440.336775685858" "6 -556.40443867717" "6 -565.175135814838" "6 -556.40443867717" "6 -565.175135814838" "6 -565.175135814838" "6 -456.987656947124" "6 -714.544561328685" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -714.544561328685" "6 -918.23404590802" "6 -456.987656947124" "6 -565.175135814838" "6 -440.336775685858" "6 -918.23404590802" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -440.336775685858" "6 -714.544561328685" "6 -714.544561328685"
## [181] "6 -456.987656947124" "6 -440.336775685858" "6 -456.987656947124" "6 -565.175135814838" "6 -565.175135814838" "6 -556.40443867717" "6 -556.40443867717" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -556.40443867717" "6 -918.23404590802" "6 -456.987656947124" "6 -440.336775685858" "6 -1731.1415911762" "6 -556.40443867717" "6 -565.175135814838" "6 -565.175135814838" "6 -714.544561328685" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -918.23404590802" "6 -565.175135814838" "6 -556.40443867717" "6 -456.987656947124" "6 -440.336775685858" "6 -556.40443867717" "6 -440.336775685858" "6 -565.175135814838" "6 -1159.14006902831" "6 -456.987656947124" "6 -456.987656947124" "6 -918.23404590802" "6 -565.175135814838" "6 -440.336775685858" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -556.40443867717" "6 -565.175135814838" "6 -565.175135814838"
## [226] "6 -456.987656947124" "6 -565.175135814838" "6 -714.544561328685" "6 -714.544561328685" "6 -456.987656947124" "6 -556.40443867717" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -440.336775685858" "6 -456.987656947124" "6 -565.175135814838" "6 -565.175135814838" "6 -918.23404590802" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -565.175135814838" "6 -918.23404590802" "6 -565.175135814838" "6 -565.175135814838" "6 -456.987656947124" "6 -714.544561328685" "6 -456.987656947124" "6 -440.336775685858" "6 -1159.14006902831" "6 -556.40443867717" "6 -714.544561328685" "6 -1159.14006902831" "6 -714.544561328685" "6 -456.987656947124" "6 -1431.51222713444" "6 -918.23404590802" "6 -565.175135814838" "6 -440.336775685858" "6 -456.987656947124" "6 -456.987656947124" "6 -456.987656947124" "6 -440.336775685858" "6 -1431.51222713444" "6 -556.40443867717" "6 -456.987656947124" "6 -918.23404590802"
## [271] "6 -918.23404590802" "6 -565.175135814838" "6 -714.544561328685" "6 -565.175135814838" "6 -456.987656947124" "6 -456.987656947124" "6 -565.175135814838" "6 -440.336775685858" "6 -565.175135814838" "6 -714.544561328685" "6 -565.175135814838" "6 -918.23404590802" "6 -714.544561328685" "6 -714.544561328685" "6 -456.987656947124" "6 -565.175135814838" "6 -556.40443867717" "6 -565.175135814838" "6 -565.175135814838" "6 -556.40443867717" "6 -565.175135814838" "6 -714.544561328685" "6 -440.336775685858" "6 -565.175135814838" "6 -440.336775685858" "6 -565.175135814838" "6 -556.40443867717" "6 -714.544561328685" "6 -565.175135814838" "6 -565.175135814838"
## QQn -714.647 -565.2355 -565.2355 -565.2355 -2055.293 -556.4623 -565.2355 -556.4623 -714.647 -714.647 -918.3938 -565.2355 -457.0175 -714.647 -565.2355 -565.2355 -565.2355 -457.0175 -918.3938 -457.0175 -565.2355 -565.2355 -1431.817 -556.4623 -565.2355 -556.4623 -1731.53 -714.647 -556.4623 -565.2355 -918.3938 -457.0175 -714.647 -714.647 -918.3938 -457.0175 -1159.368 -565.2355 -556.4623 -457.0175 -565.2355 -918.3938 -440.3619 -457.0175 -556.4623 -556.4623 -565.2355 -565.2355 -457.0175 -565.2355 -565.2355 -556.4623 -918.3938 -565.2355 -457.0175 -1431.817 -714.647 -556.4623 -565.2355 -565.2355 -714.647 -556.4623 -440.3619 -714.647 -440.3619 -1431.817 -565.2355 -565.2355 -440.3619 -1159.368 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -556.4623 -556.4623 -1159.368 -565.2355 -565.2355 -440.3619 -565.2355 -457.0175 -714.647 -556.4623 -565.2355 -714.647 -714.647 -565.2355 -565.2355 -440.3619 -457.0175 -714.647 -565.2355 -440.3619 -440.3619 -440.3619 -565.2355 -714.647 -565.2355 -565.2355 -565.2355 -556.4623 -565.2355 -714.647 -565.2355 -565.2355 -440.3619 -556.4623 -565.2355 -556.4623 -556.4623 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -556.4623 -556.4623 -556.4623 -565.2355 -918.3938 -565.2355 -565.2355 -565.2355 -565.2355 -457.0175 -440.3619 -565.2355 -565.2355 -457.0175 -565.2355 -565.2355 -565.2355 -457.0175 -714.647 -440.3619 -440.3619 -565.2355 -556.4623 -565.2355 -918.3938 -565.2355 -457.0175 -565.2355 -565.2355 -918.3938 -565.2355 -918.3938 -457.0175 -714.647 -556.4623 -440.3619 -556.4623 -565.2355 -556.4623 -565.2355 -565.2355 -457.0175 -714.647 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -714.647 -918.3938 -457.0175 -565.2355 -440.3619 -918.3938 -565.2355 -565.2355 -565.2355 -565.2355 -440.3619 -714.647 -714.647 -457.0175 -440.3619 -457.0175 -565.2355 -565.2355 -556.4623 -556.4623 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -556.4623 -918.3938 -457.0175 -440.3619 -1731.53 -556.4623 -565.2355 -565.2355 -714.647 -565.2355 -565.2355 -565.2355 -918.3938 -565.2355 -556.4623 -457.0175 -440.3619 -556.4623 -440.3619 -565.2355 -1159.368 -457.0175 -457.0175 -918.3938 -565.2355 -440.3619 -565.2355 -565.2355 -565.2355 -556.4623 -565.2355 -565.2355 -457.0175 -565.2355 -714.647 -714.647 -457.0175 -556.4623 -565.2355 -565.2355 -565.2355 -565.2355 -440.3619 -457.0175 -565.2355 -565.2355 -918.3938 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -918.3938 -565.2355 -565.2355 -457.0175 -714.647 -457.0175 -440.3619 -1159.368 -556.4623 -714.647 -1159.368 -714.647 -457.0175 -1431.817 -918.3938 -565.2355 -440.3619 -457.0175 -457.0175 -457.0175 -440.3619 -1431.817 -556.4623 -457.0175 -918.3938 -918.3938 -565.2355 -714.647 -565.2355 -457.0175 -457.0175 -565.2355 -440.3619 -565.2355 -714.647 -565.2355 -918.3938 -714.647 -714.647 -457.0175 -565.2355 -556.4623 -565.2355 -565.2355 -556.4623 -565.2355 -714.647 -440.3619 -565.2355 -440.3619 -565.2355 -556.4623 -714.647 -565.2355 -565.2355 QQ -714.5446 -565.1751 -565.1751 -565.1751 -2054.814 -556.4044 -565.1751 -556.4044 -714.5446 -714.5446 -918.234 -565.1751 -456.9877 -714.5446 -565.1751 -565.1751 -565.1751 -456.9877 -918.234 -456.9877 -565.1751 -565.1751 -1431.512 -556.4044 -565.1751 -556.4044 -1731.142 -714.5446 -556.4044 -565.1751 -918.234 -456.9877 -714.5446 -714.5446 -918.234 -456.9877 -1159.14 -565.1751 -556.4044 -456.9877 -565.1751 -918.234 -440.3368 -456.9877 -556.4044 -556.4044 -565.1751 -565.1751 -456.9877 -565.1751 -565.1751 -556.4044 -918.234 -565.1751 -456.9877 -1431.512 -714.5446 -556.4044 -565.1751 -565.1751 -714.5446 -556.4044 -440.3368 -714.5446 -440.3368 -1431.512 -565.1751 -565.1751 -440.3368 -1159.14 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -556.4044 -556.4044 -1159.14 -565.1751 -565.1751 -440.3368 -565.1751 -456.9877 -714.5446 -556.4044 -565.1751 -714.5446 -714.5446 -565.1751 -565.1751 -440.3368 -456.9877 -714.5446 -565.1751 -440.3368 -440.3368 -440.3368 -565.1751 -714.5446 -565.1751 -565.1751 -565.1751 -556.4044 -565.1751 -714.5446 -565.1751 -565.1751 -440.3368 -556.4044 -565.1751 -556.4044 -556.4044 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -556.4044 -556.4044 -556.4044 -565.1751 -918.234 -565.1751 -565.1751 -565.1751 -565.1751 -456.9877 -440.3368 -565.1751 -565.1751 -456.9877 -565.1751 -565.1751 -565.1751 -456.9877 -714.5446 -440.3368 -440.3368 -565.1751 -556.4044 -565.1751 -918.234 -565.1751 -456.9877 -565.1751 -565.1751 -918.234 -565.1751 -918.234 -456.9877 -714.5446 -556.4044 -440.3368 -556.4044 -565.1751 -556.4044 -565.1751 -565.1751 -456.9877 -714.5446 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -714.5446 -918.234 -456.9877 -565.1751 -440.3368 -918.234 -565.1751 -565.1751 -565.1751 -565.1751 -440.3368 -714.5446 -714.5446 -456.9877 -440.3368 -456.9877 -565.1751 -565.1751 -556.4044 -556.4044 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -556.4044 -918.234 -456.9877 -440.3368 -1731.142 -556.4044 -565.1751 -565.1751 -714.5446 -565.1751 -565.1751 -565.1751 -918.234 -565.1751 -556.4044 -456.9877 -440.3368 -556.4044 -440.3368 -565.1751 -1159.14 -456.9877 -456.9877 -918.234 -565.1751 -440.3368 -565.1751 -565.1751 -565.1751 -556.4044 -565.1751 -565.1751 -456.9877 -565.1751 -714.5446 -714.5446 -456.9877 -556.4044 -565.1751 -565.1751 -565.1751 -565.1751 -440.3368 -456.9877 -565.1751 -565.1751 -918.234 -565.1751 -565.1751 -565.1751 -565.1751 -565.1751 -918.234 -565.1751 -565.1751 -456.9877 -714.5446 -456.9877 -440.3368 -1159.14 -556.4044 -714.5446 -1159.14 -714.5446 -456.9877 -1431.512 -918.234 -565.1751 -440.3368 -456.9877 -456.9877 -456.9877 -440.3368 -1431.512 -556.4044 -456.9877 -918.234 -918.234 -565.1751 -714.5446 -565.1751 -456.9877 -456.9877 -565.1751 -440.3368 -565.1751 -714.5446 -565.1751 -918.234 -714.5446 -714.5446 -456.9877 -565.1751 -556.4044 -565.1751 -565.1751 -556.4044 -565.1751 -714.5446 -440.3368 -565.1751 -440.3368 -565.1751 -556.4044 -714.5446 -565.1751 -565.1751 epsilon_cond 0.0001432844 0.000106736 0.000106736 0.000106736 0.0002334736 0.0001039799 0.000106736 0.0001039799 0.0001432844 0.0001432844 0.0001739588 0.000106736 6.53415e-05 0.0001432844 0.000106736 0.000106736 0.000106736 6.53415e-05 0.0001739588 6.53415e-05 0.000106736 0.000106736 0.000212539 0.0001039799 0.000106736 0.0001039799 0.0002244842 0.0001432844 0.0001039799 0.000106736 0.0001739588 6.53415e-05 0.0001432844 0.0001432844 0.0001739588 6.53415e-05 0.0001963215 0.000106736 0.0001039799 6.53415e-05 0.000106736 0.0001739588 5.716397e-05 6.53415e-05 0.0001039799 0.0001039799 0.000106736 0.000106736 6.53415e-05 0.000106736 0.000106736 0.0001039799 0.0001739588 0.000106736 6.53415e-05 0.000212539 0.0001432844 0.0001039799 0.000106736 0.000106736 0.0001432844 0.0001039799 5.716397e-05 0.0001432844 5.716397e-05 0.000212539 0.000106736 0.000106736 5.716397e-05 0.0001963215 0.000106736 0.000106736 0.000106736 0.000106736 0.000106736 0.0001039799 0.0001039799 0.0001963215 0.000106736 0.000106736 5.716397e-05 0.000106736 6.53415e-05 0.0001432844 0.0001039799 0.000106736 0.0001432844 0.0001432844 0.000106736 0.000106736 5.716397e-05 6.53415e-05 0.0001432844 0.000106736 5.716397e-05 5.716397e-05 5.716397e-05 0.000106736 0.0001432844 0.000106736 0.000106736 0.000106736 0.0001039799 0.000106736 0.0001432844 0.000106736 0.000106736 5.716397e-05 0.0001039799 0.000106736 0.0001039799 0.0001039799 0.000106736 0.000106736 0.000106736 0.000106736 0.000106736 0.0001039799 0.0001039799 0.0001039799 0.000106736 0.0001739588 0.000106736 0.000106736 0.000106736 0.000106736 6.53415e-05 5.716397e-05 0.000106736 0.000106736 6.53415e-05 0.000106736 0.000106736 0.000106736 6.53415e-05 0.0001432844 5.716397e-05 5.716397e-05 0.000106736 0.0001039799 0.000106736 0.0001739588 0.000106736 6.53415e-05 0.000106736 0.000106736 0.0001739588 0.000106736 0.0001739588 6.53415e-05 0.0001432844 0.0001039799 5.716397e-05 0.0001039799 0.000106736 0.0001039799 0.000106736 0.000106736 6.53415e-05 0.0001432844 0.000106736 0.000106736 0.000106736 0.000106736 0.000106736 0.000106736 0.000106736 0.0001432844 0.0001739588 6.53415e-05 0.000106736 5.716397e-05 0.0001739588 0.000106736 0.000106736 0.000106736 0.000106736 5.716397e-05 0.0001432844 0.0001432844 6.53415e-05 5.716397e-05 6.53415e-05 0.000106736 0.000106736 0.0001039799 0.0001039799 0.000106736 0.000106736 0.000106736 0.000106736 0.000106736 0.000106736 0.0001039799 0.0001739588 6.53415e-05 5.716397e-05 0.0002244842 0.0001039799 0.000106736 0.000106736 0.0001432844 0.000106736 0.000106736 0.000106736 0.0001739588 0.000106736 0.0001039799 6.53415e-05 5.716397e-05 0.0001039799 5.716397e-05 0.000106736 0.0001963215 6.53415e-05 6.53415e-05 0.0001739588 0.000106736 5.716397e-05 0.000106736 0.000106736 0.000106736 0.0001039799 0.000106736 0.000106736 6.53415e-05 0.000106736 0.0001432844 0.0001432844 6.53415e-05 0.0001039799 0.000106736 0.000106736 0.000106736 0.000106736 5.716397e-05 6.53415e-05 0.000106736 0.000106736 0.0001739588 0.000106736 0.000106736 0.000106736 0.000106736 0.000106736 0.0001739588 0.000106736 0.000106736 6.53415e-05 0.0001432844 6.53415e-05 5.716397e-05 0.0001963215 0.0001039799 0.0001432844 0.0001963215 0.0001432844 6.53415e-05 0.000212539 0.0001739588 0.000106736 5.716397e-05 6.53415e-05 6.53415e-05 6.53415e-05 5.716397e-05 0.000212539 0.0001039799 6.53415e-05 0.0001739588 0.0001739588 0.000106736 0.0001432844 0.000106736 6.53415e-05 6.53415e-05 0.000106736 5.716397e-05 0.000106736 0.0001432844 0.000106736 0.0001739588 0.0001432844 0.0001432844 6.53415e-05 0.000106736 0.0001039799 0.000106736 0.000106736 0.0001039799 0.000106736 0.0001432844 5.716397e-05 0.000106736 5.716397e-05 0.000106736 0.0001039799 0.0001432844 0.000106736 0.000106736 mu 2.705202 w 0.319389
## [1] "7 -714.646959088009" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -2055.2933714212" "7 -556.462299557496" "7 -565.235466779736" "7 -556.462299557496" "7 -714.646959088009" "7 -714.646959088009" "7 -918.393808577502" "7 -565.235466779736" "7 -457.017519157004" "7 -714.646959088009" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -457.017519157004" "7 -918.393808577502" "7 -457.017519157004" "7 -565.235466779736" "7 -565.235466779736" "7 -1431.81654393646" "7 -556.462299557496" "7 -565.235466779736" "7 -556.462299557496" "7 -1731.53029236156" "7 -714.646959088009" "7 -556.462299557496" "7 -565.235466779736" "7 -918.393808577502" "7 -457.017519157004" "7 -714.646959088009" "7 -714.646959088009" "7 -918.393808577502" "7 -457.017519157004" "7 -1159.36767787257" "7 -565.235466779736" "7 -556.462299557496" "7 -457.017519157004" "7 -565.235466779736" "7 -918.393808577502" "7 -440.361948521078" "7 -457.017519157004" "7 -556.462299557496"
## [46] "7 -556.462299557496" "7 -565.235466779736" "7 -565.235466779736" "7 -457.017519157004" "7 -565.235466779736" "7 -565.235466779736" "7 -556.462299557496" "7 -918.393808577502" "7 -565.235466779736" "7 -457.017519157004" "7 -1431.81654393646" "7 -714.646959088009" "7 -556.462299557496" "7 -565.235466779736" "7 -565.235466779736" "7 -714.646959088009" "7 -556.462299557496" "7 -440.361948521078" "7 -714.646959088009" "7 -440.361948521078" "7 -1431.81654393646" "7 -565.235466779736" "7 -565.235466779736" "7 -440.361948521078" "7 -1159.36767787257" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -556.462299557496" "7 -556.462299557496" "7 -1159.36767787257" "7 -565.235466779736" "7 -565.235466779736" "7 -440.361948521078" "7 -565.235466779736" "7 -457.017519157004" "7 -714.646959088009" "7 -556.462299557496" "7 -565.235466779736" "7 -714.646959088009" "7 -714.646959088009" "7 -565.235466779736" "7 -565.235466779736"
## [91] "7 -440.361948521078" "7 -457.017519157004" "7 -714.646959088009" "7 -565.235466779736" "7 -440.361948521078" "7 -440.361948521078" "7 -440.361948521078" "7 -565.235466779736" "7 -714.646959088009" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -556.462299557496" "7 -565.235466779736" "7 -714.646959088009" "7 -565.235466779736" "7 -565.235466779736" "7 -440.361948521078" "7 -556.462299557496" "7 -565.235466779736" "7 -556.462299557496" "7 -556.462299557496" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -556.462299557496" "7 -556.462299557496" "7 -556.462299557496" "7 -565.235466779736" "7 -918.393808577502" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -457.017519157004" "7 -440.361948521078" "7 -565.235466779736" "7 -565.235466779736" "7 -457.017519157004" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -457.017519157004"
## [136] "7 -714.646959088009" "7 -440.361948521078" "7 -440.361948521078" "7 -565.235466779736" "7 -556.462299557496" "7 -565.235466779736" "7 -918.393808577502" "7 -565.235466779736" "7 -457.017519157004" "7 -565.235466779736" "7 -565.235466779736" "7 -918.393808577502" "7 -565.235466779736" "7 -918.393808577502" "7 -457.017519157004" "7 -714.646959088009" "7 -556.462299557496" "7 -440.361948521078" "7 -556.462299557496" "7 -565.235466779736" "7 -556.462299557496" "7 -565.235466779736" "7 -565.235466779736" "7 -457.017519157004" "7 -714.646959088009" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -714.646959088009" "7 -918.393808577502" "7 -457.017519157004" "7 -565.235466779736" "7 -440.361948521078" "7 -918.393808577502" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -440.361948521078" "7 -714.646959088009" "7 -714.646959088009"
## [181] "7 -457.017519157004" "7 -440.361948521078" "7 -457.017519157004" "7 -565.235466779736" "7 -565.235466779736" "7 -556.462299557496" "7 -556.462299557496" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -556.462299557496" "7 -918.393808577502" "7 -457.017519157004" "7 -440.361948521078" "7 -1731.53029236156" "7 -556.462299557496" "7 -565.235466779736" "7 -565.235466779736" "7 -714.646959088009" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -918.393808577502" "7 -565.235466779736" "7 -556.462299557496" "7 -457.017519157004" "7 -440.361948521078" "7 -556.462299557496" "7 -440.361948521078" "7 -565.235466779736" "7 -1159.36767787257" "7 -457.017519157004" "7 -457.017519157004" "7 -918.393808577502" "7 -565.235466779736" "7 -440.361948521078" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -556.462299557496" "7 -565.235466779736" "7 -565.235466779736"
## [226] "7 -457.017519157004" "7 -565.235466779736" "7 -714.646959088009" "7 -714.646959088009" "7 -457.017519157004" "7 -556.462299557496" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -440.361948521078" "7 -457.017519157004" "7 -565.235466779736" "7 -565.235466779736" "7 -918.393808577502" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -565.235466779736" "7 -918.393808577502" "7 -565.235466779736" "7 -565.235466779736" "7 -457.017519157004" "7 -714.646959088009" "7 -457.017519157004" "7 -440.361948521078" "7 -1159.36767787257" "7 -556.462299557496" "7 -714.646959088009" "7 -1159.36767787257" "7 -714.646959088009" "7 -457.017519157004" "7 -1431.81654393646" "7 -918.393808577502" "7 -565.235466779736" "7 -440.361948521078" "7 -457.017519157004" "7 -457.017519157004" "7 -457.017519157004" "7 -440.361948521078" "7 -1431.81654393646" "7 -556.462299557496" "7 -457.017519157004" "7 -918.393808577502"
## [271] "7 -918.393808577502" "7 -565.235466779736" "7 -714.646959088009" "7 -565.235466779736" "7 -457.017519157004" "7 -457.017519157004" "7 -565.235466779736" "7 -440.361948521078" "7 -565.235466779736" "7 -714.646959088009" "7 -565.235466779736" "7 -918.393808577502" "7 -714.646959088009" "7 -714.646959088009" "7 -457.017519157004" "7 -565.235466779736" "7 -556.462299557496" "7 -565.235466779736" "7 -565.235466779736" "7 -556.462299557496" "7 -565.235466779736" "7 -714.646959088009" "7 -440.361948521078" "7 -565.235466779736" "7 -440.361948521078" "7 -565.235466779736" "7 -556.462299557496" "7 -714.646959088009" "7 -565.235466779736" "7 -565.235466779736"
## QQn -714.685 -565.2579 -565.2579 -565.2579 -2055.472 -556.4838 -565.2579 -556.4838 -714.685 -714.685 -918.4531 -565.2579 -457.0286 -714.685 -565.2579 -565.2579 -565.2579 -457.0286 -918.4531 -457.0286 -565.2579 -565.2579 -1431.93 -556.4838 -565.2579 -556.4838 -1731.675 -714.685 -556.4838 -565.2579 -918.4531 -457.0286 -714.685 -714.685 -918.4531 -457.0286 -1159.452 -565.2579 -556.4838 -457.0286 -565.2579 -918.4531 -440.3713 -457.0286 -556.4838 -556.4838 -565.2579 -565.2579 -457.0286 -565.2579 -565.2579 -556.4838 -918.4531 -565.2579 -457.0286 -1431.93 -714.685 -556.4838 -565.2579 -565.2579 -714.685 -556.4838 -440.3713 -714.685 -440.3713 -1431.93 -565.2579 -565.2579 -440.3713 -1159.452 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -556.4838 -556.4838 -1159.452 -565.2579 -565.2579 -440.3713 -565.2579 -457.0286 -714.685 -556.4838 -565.2579 -714.685 -714.685 -565.2579 -565.2579 -440.3713 -457.0286 -714.685 -565.2579 -440.3713 -440.3713 -440.3713 -565.2579 -714.685 -565.2579 -565.2579 -565.2579 -556.4838 -565.2579 -714.685 -565.2579 -565.2579 -440.3713 -556.4838 -565.2579 -556.4838 -556.4838 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -556.4838 -556.4838 -556.4838 -565.2579 -918.4531 -565.2579 -565.2579 -565.2579 -565.2579 -457.0286 -440.3713 -565.2579 -565.2579 -457.0286 -565.2579 -565.2579 -565.2579 -457.0286 -714.685 -440.3713 -440.3713 -565.2579 -556.4838 -565.2579 -918.4531 -565.2579 -457.0286 -565.2579 -565.2579 -918.4531 -565.2579 -918.4531 -457.0286 -714.685 -556.4838 -440.3713 -556.4838 -565.2579 -556.4838 -565.2579 -565.2579 -457.0286 -714.685 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -714.685 -918.4531 -457.0286 -565.2579 -440.3713 -918.4531 -565.2579 -565.2579 -565.2579 -565.2579 -440.3713 -714.685 -714.685 -457.0286 -440.3713 -457.0286 -565.2579 -565.2579 -556.4838 -556.4838 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -556.4838 -918.4531 -457.0286 -440.3713 -1731.675 -556.4838 -565.2579 -565.2579 -714.685 -565.2579 -565.2579 -565.2579 -918.4531 -565.2579 -556.4838 -457.0286 -440.3713 -556.4838 -440.3713 -565.2579 -1159.452 -457.0286 -457.0286 -918.4531 -565.2579 -440.3713 -565.2579 -565.2579 -565.2579 -556.4838 -565.2579 -565.2579 -457.0286 -565.2579 -714.685 -714.685 -457.0286 -556.4838 -565.2579 -565.2579 -565.2579 -565.2579 -440.3713 -457.0286 -565.2579 -565.2579 -918.4531 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -918.4531 -565.2579 -565.2579 -457.0286 -714.685 -457.0286 -440.3713 -1159.452 -556.4838 -714.685 -1159.452 -714.685 -457.0286 -1431.93 -918.4531 -565.2579 -440.3713 -457.0286 -457.0286 -457.0286 -440.3713 -1431.93 -556.4838 -457.0286 -918.4531 -918.4531 -565.2579 -714.685 -565.2579 -457.0286 -457.0286 -565.2579 -440.3713 -565.2579 -714.685 -565.2579 -918.4531 -714.685 -714.685 -457.0286 -565.2579 -556.4838 -565.2579 -565.2579 -556.4838 -565.2579 -714.685 -440.3713 -565.2579 -440.3713 -565.2579 -556.4838 -714.685 -565.2579 -565.2579 QQ -714.647 -565.2355 -565.2355 -565.2355 -2055.293 -556.4623 -565.2355 -556.4623 -714.647 -714.647 -918.3938 -565.2355 -457.0175 -714.647 -565.2355 -565.2355 -565.2355 -457.0175 -918.3938 -457.0175 -565.2355 -565.2355 -1431.817 -556.4623 -565.2355 -556.4623 -1731.53 -714.647 -556.4623 -565.2355 -918.3938 -457.0175 -714.647 -714.647 -918.3938 -457.0175 -1159.368 -565.2355 -556.4623 -457.0175 -565.2355 -918.3938 -440.3619 -457.0175 -556.4623 -556.4623 -565.2355 -565.2355 -457.0175 -565.2355 -565.2355 -556.4623 -918.3938 -565.2355 -457.0175 -1431.817 -714.647 -556.4623 -565.2355 -565.2355 -714.647 -556.4623 -440.3619 -714.647 -440.3619 -1431.817 -565.2355 -565.2355 -440.3619 -1159.368 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -556.4623 -556.4623 -1159.368 -565.2355 -565.2355 -440.3619 -565.2355 -457.0175 -714.647 -556.4623 -565.2355 -714.647 -714.647 -565.2355 -565.2355 -440.3619 -457.0175 -714.647 -565.2355 -440.3619 -440.3619 -440.3619 -565.2355 -714.647 -565.2355 -565.2355 -565.2355 -556.4623 -565.2355 -714.647 -565.2355 -565.2355 -440.3619 -556.4623 -565.2355 -556.4623 -556.4623 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -556.4623 -556.4623 -556.4623 -565.2355 -918.3938 -565.2355 -565.2355 -565.2355 -565.2355 -457.0175 -440.3619 -565.2355 -565.2355 -457.0175 -565.2355 -565.2355 -565.2355 -457.0175 -714.647 -440.3619 -440.3619 -565.2355 -556.4623 -565.2355 -918.3938 -565.2355 -457.0175 -565.2355 -565.2355 -918.3938 -565.2355 -918.3938 -457.0175 -714.647 -556.4623 -440.3619 -556.4623 -565.2355 -556.4623 -565.2355 -565.2355 -457.0175 -714.647 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -714.647 -918.3938 -457.0175 -565.2355 -440.3619 -918.3938 -565.2355 -565.2355 -565.2355 -565.2355 -440.3619 -714.647 -714.647 -457.0175 -440.3619 -457.0175 -565.2355 -565.2355 -556.4623 -556.4623 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -556.4623 -918.3938 -457.0175 -440.3619 -1731.53 -556.4623 -565.2355 -565.2355 -714.647 -565.2355 -565.2355 -565.2355 -918.3938 -565.2355 -556.4623 -457.0175 -440.3619 -556.4623 -440.3619 -565.2355 -1159.368 -457.0175 -457.0175 -918.3938 -565.2355 -440.3619 -565.2355 -565.2355 -565.2355 -556.4623 -565.2355 -565.2355 -457.0175 -565.2355 -714.647 -714.647 -457.0175 -556.4623 -565.2355 -565.2355 -565.2355 -565.2355 -440.3619 -457.0175 -565.2355 -565.2355 -918.3938 -565.2355 -565.2355 -565.2355 -565.2355 -565.2355 -918.3938 -565.2355 -565.2355 -457.0175 -714.647 -457.0175 -440.3619 -1159.368 -556.4623 -714.647 -1159.368 -714.647 -457.0175 -1431.817 -918.3938 -565.2355 -440.3619 -457.0175 -457.0175 -457.0175 -440.3619 -1431.817 -556.4623 -457.0175 -918.3938 -918.3938 -565.2355 -714.647 -565.2355 -457.0175 -457.0175 -565.2355 -440.3619 -565.2355 -714.647 -565.2355 -918.3938 -714.647 -714.647 -457.0175 -565.2355 -556.4623 -565.2355 -565.2355 -556.4623 -565.2355 -714.647 -440.3619 -565.2355 -440.3619 -565.2355 -556.4623 -714.647 -565.2355 -565.2355 epsilon_cond 5.317964e-05 3.960733e-05 3.960733e-05 3.960733e-05 8.666995e-05 3.858382e-05 3.960733e-05 3.858382e-05 5.317964e-05 5.317964e-05 6.457034e-05 3.960733e-05 2.423497e-05 5.317964e-05 3.960733e-05 3.960733e-05 3.960733e-05 2.423497e-05 6.457034e-05 2.423497e-05 3.960733e-05 3.960733e-05 7.889642e-05 3.858382e-05 3.960733e-05 3.858382e-05 8.3332e-05 5.317964e-05 3.858382e-05 3.960733e-05 6.457034e-05 2.423497e-05 5.317964e-05 5.317964e-05 6.457034e-05 2.423497e-05 7.287441e-05 3.960733e-05 3.858382e-05 2.423497e-05 3.960733e-05 6.457034e-05 2.119809e-05 2.423497e-05 3.858382e-05 3.858382e-05 3.960733e-05 3.960733e-05 2.423497e-05 3.960733e-05 3.960733e-05 3.858382e-05 6.457034e-05 3.960733e-05 2.423497e-05 7.889642e-05 5.317964e-05 3.858382e-05 3.960733e-05 3.960733e-05 5.317964e-05 3.858382e-05 2.119809e-05 5.317964e-05 2.119809e-05 7.889642e-05 3.960733e-05 3.960733e-05 2.119809e-05 7.287441e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.858382e-05 3.858382e-05 7.287441e-05 3.960733e-05 3.960733e-05 2.119809e-05 3.960733e-05 2.423497e-05 5.317964e-05 3.858382e-05 3.960733e-05 5.317964e-05 5.317964e-05 3.960733e-05 3.960733e-05 2.119809e-05 2.423497e-05 5.317964e-05 3.960733e-05 2.119809e-05 2.119809e-05 2.119809e-05 3.960733e-05 5.317964e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.858382e-05 3.960733e-05 5.317964e-05 3.960733e-05 3.960733e-05 2.119809e-05 3.858382e-05 3.960733e-05 3.858382e-05 3.858382e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.858382e-05 3.858382e-05 3.858382e-05 3.960733e-05 6.457034e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 2.423497e-05 2.119809e-05 3.960733e-05 3.960733e-05 2.423497e-05 3.960733e-05 3.960733e-05 3.960733e-05 2.423497e-05 5.317964e-05 2.119809e-05 2.119809e-05 3.960733e-05 3.858382e-05 3.960733e-05 6.457034e-05 3.960733e-05 2.423497e-05 3.960733e-05 3.960733e-05 6.457034e-05 3.960733e-05 6.457034e-05 2.423497e-05 5.317964e-05 3.858382e-05 2.119809e-05 3.858382e-05 3.960733e-05 3.858382e-05 3.960733e-05 3.960733e-05 2.423497e-05 5.317964e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 5.317964e-05 6.457034e-05 2.423497e-05 3.960733e-05 2.119809e-05 6.457034e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 2.119809e-05 5.317964e-05 5.317964e-05 2.423497e-05 2.119809e-05 2.423497e-05 3.960733e-05 3.960733e-05 3.858382e-05 3.858382e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.858382e-05 6.457034e-05 2.423497e-05 2.119809e-05 8.3332e-05 3.858382e-05 3.960733e-05 3.960733e-05 5.317964e-05 3.960733e-05 3.960733e-05 3.960733e-05 6.457034e-05 3.960733e-05 3.858382e-05 2.423497e-05 2.119809e-05 3.858382e-05 2.119809e-05 3.960733e-05 7.287441e-05 2.423497e-05 2.423497e-05 6.457034e-05 3.960733e-05 2.119809e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.858382e-05 3.960733e-05 3.960733e-05 2.423497e-05 3.960733e-05 5.317964e-05 5.317964e-05 2.423497e-05 3.858382e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 2.119809e-05 2.423497e-05 3.960733e-05 3.960733e-05 6.457034e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 3.960733e-05 6.457034e-05 3.960733e-05 3.960733e-05 2.423497e-05 5.317964e-05 2.423497e-05 2.119809e-05 7.287441e-05 3.858382e-05 5.317964e-05 7.287441e-05 5.317964e-05 2.423497e-05 7.889642e-05 6.457034e-05 3.960733e-05 2.119809e-05 2.423497e-05 2.423497e-05 2.423497e-05 2.119809e-05 7.889642e-05 3.858382e-05 2.423497e-05 6.457034e-05 6.457034e-05 3.960733e-05 5.317964e-05 3.960733e-05 2.423497e-05 2.423497e-05 3.960733e-05 2.119809e-05 3.960733e-05 5.317964e-05 3.960733e-05 6.457034e-05 5.317964e-05 5.317964e-05 2.423497e-05 3.960733e-05 3.858382e-05 3.960733e-05 3.960733e-05 3.858382e-05 3.960733e-05 5.317964e-05 2.119809e-05 3.960733e-05 2.119809e-05 3.960733e-05 3.858382e-05 5.317964e-05 3.960733e-05 3.960733e-05 mu 2.704922 w 0.3193178
## [1] "8 -714.684965775354" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -2055.47151903908" "8 -556.483770829404" "8 -565.257855131499" "8 -556.483770829404" "8 -714.684965775354" "8 -714.684965775354" "8 -918.453113403427" "8 -565.257855131499" "8 -457.028595231542" "8 -714.684965775354" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -457.028595231542" "8 -918.453113403427" "8 -457.028595231542" "8 -565.257855131499" "8 -565.257855131499" "8 -1431.92951805149" "8 -556.483770829404" "8 -565.257855131499" "8 -556.483770829404" "8 -1731.6745962614" "8 -714.684965775354" "8 -556.483770829404" "8 -565.257855131499" "8 -918.453113403427" "8 -457.028595231542" "8 -714.684965775354" "8 -714.684965775354" "8 -918.453113403427" "8 -457.028595231542" "8 -1159.45217226525" "8 -565.257855131499" "8 -556.483770829404" "8 -457.028595231542" "8 -565.257855131499" "8 -918.453113403427" "8 -440.371283549543" "8 -457.028595231542" "8 -556.483770829404"
## [46] "8 -556.483770829404" "8 -565.257855131499" "8 -565.257855131499" "8 -457.028595231542" "8 -565.257855131499" "8 -565.257855131499" "8 -556.483770829404" "8 -918.453113403427" "8 -565.257855131499" "8 -457.028595231542" "8 -1431.92951805149" "8 -714.684965775354" "8 -556.483770829404" "8 -565.257855131499" "8 -565.257855131499" "8 -714.684965775354" "8 -556.483770829404" "8 -440.371283549543" "8 -714.684965775354" "8 -440.371283549543" "8 -1431.92951805149" "8 -565.257855131499" "8 -565.257855131499" "8 -440.371283549543" "8 -1159.45217226525" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -556.483770829404" "8 -556.483770829404" "8 -1159.45217226525" "8 -565.257855131499" "8 -565.257855131499" "8 -440.371283549543" "8 -565.257855131499" "8 -457.028595231542" "8 -714.684965775354" "8 -556.483770829404" "8 -565.257855131499" "8 -714.684965775354" "8 -714.684965775354" "8 -565.257855131499" "8 -565.257855131499"
## [91] "8 -440.371283549543" "8 -457.028595231542" "8 -714.684965775354" "8 -565.257855131499" "8 -440.371283549543" "8 -440.371283549543" "8 -440.371283549543" "8 -565.257855131499" "8 -714.684965775354" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -556.483770829404" "8 -565.257855131499" "8 -714.684965775354" "8 -565.257855131499" "8 -565.257855131499" "8 -440.371283549543" "8 -556.483770829404" "8 -565.257855131499" "8 -556.483770829404" "8 -556.483770829404" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -556.483770829404" "8 -556.483770829404" "8 -556.483770829404" "8 -565.257855131499" "8 -918.453113403427" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -457.028595231542" "8 -440.371283549543" "8 -565.257855131499" "8 -565.257855131499" "8 -457.028595231542" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -457.028595231542"
## [136] "8 -714.684965775354" "8 -440.371283549543" "8 -440.371283549543" "8 -565.257855131499" "8 -556.483770829404" "8 -565.257855131499" "8 -918.453113403427" "8 -565.257855131499" "8 -457.028595231542" "8 -565.257855131499" "8 -565.257855131499" "8 -918.453113403427" "8 -565.257855131499" "8 -918.453113403427" "8 -457.028595231542" "8 -714.684965775354" "8 -556.483770829404" "8 -440.371283549543" "8 -556.483770829404" "8 -565.257855131499" "8 -556.483770829404" "8 -565.257855131499" "8 -565.257855131499" "8 -457.028595231542" "8 -714.684965775354" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -714.684965775354" "8 -918.453113403427" "8 -457.028595231542" "8 -565.257855131499" "8 -440.371283549543" "8 -918.453113403427" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -440.371283549543" "8 -714.684965775354" "8 -714.684965775354"
## [181] "8 -457.028595231542" "8 -440.371283549543" "8 -457.028595231542" "8 -565.257855131499" "8 -565.257855131499" "8 -556.483770829404" "8 -556.483770829404" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -556.483770829404" "8 -918.453113403427" "8 -457.028595231542" "8 -440.371283549543" "8 -1731.6745962614" "8 -556.483770829404" "8 -565.257855131499" "8 -565.257855131499" "8 -714.684965775354" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -918.453113403427" "8 -565.257855131499" "8 -556.483770829404" "8 -457.028595231542" "8 -440.371283549543" "8 -556.483770829404" "8 -440.371283549543" "8 -565.257855131499" "8 -1159.45217226525" "8 -457.028595231542" "8 -457.028595231542" "8 -918.453113403427" "8 -565.257855131499" "8 -440.371283549543" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -556.483770829404" "8 -565.257855131499" "8 -565.257855131499"
## [226] "8 -457.028595231542" "8 -565.257855131499" "8 -714.684965775354" "8 -714.684965775354" "8 -457.028595231542" "8 -556.483770829404" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -440.371283549543" "8 -457.028595231542" "8 -565.257855131499" "8 -565.257855131499" "8 -918.453113403427" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -565.257855131499" "8 -918.453113403427" "8 -565.257855131499" "8 -565.257855131499" "8 -457.028595231542" "8 -714.684965775354" "8 -457.028595231542" "8 -440.371283549543" "8 -1159.45217226525" "8 -556.483770829404" "8 -714.684965775354" "8 -1159.45217226525" "8 -714.684965775354" "8 -457.028595231542" "8 -1431.92951805149" "8 -918.453113403427" "8 -565.257855131499" "8 -440.371283549543" "8 -457.028595231542" "8 -457.028595231542" "8 -457.028595231542" "8 -440.371283549543" "8 -1431.92951805149" "8 -556.483770829404" "8 -457.028595231542" "8 -918.453113403427"
## [271] "8 -918.453113403427" "8 -565.257855131499" "8 -714.684965775354" "8 -565.257855131499" "8 -457.028595231542" "8 -457.028595231542" "8 -565.257855131499" "8 -440.371283549543" "8 -565.257855131499" "8 -714.684965775354" "8 -565.257855131499" "8 -918.453113403427" "8 -714.684965775354" "8 -714.684965775354" "8 -457.028595231542" "8 -565.257855131499" "8 -556.483770829404" "8 -565.257855131499" "8 -565.257855131499" "8 -556.483770829404" "8 -565.257855131499" "8 -714.684965775354" "8 -440.371283549543" "8 -565.257855131499" "8 -440.371283549543" "8 -565.257855131499" "8 -556.483770829404" "8 -714.684965775354" "8 -565.257855131499" "8 -565.257855131499"
## QQn -714.6991 -565.2662 -565.2662 -565.2662 -2055.538 -556.4917 -565.2662 -556.4917 -714.6991 -714.6991 -918.4751 -565.2662 -457.0327 -714.6991 -565.2662 -565.2662 -565.2662 -457.0327 -918.4751 -457.0327 -565.2662 -565.2662 -1431.971 -556.4917 -565.2662 -556.4917 -1731.728 -714.6991 -556.4917 -565.2662 -918.4751 -457.0327 -714.6991 -714.6991 -918.4751 -457.0327 -1159.484 -565.2662 -556.4917 -457.0327 -565.2662 -918.4751 -440.3747 -457.0327 -556.4917 -556.4917 -565.2662 -565.2662 -457.0327 -565.2662 -565.2662 -556.4917 -918.4751 -565.2662 -457.0327 -1431.971 -714.6991 -556.4917 -565.2662 -565.2662 -714.6991 -556.4917 -440.3747 -714.6991 -440.3747 -1431.971 -565.2662 -565.2662 -440.3747 -1159.484 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -556.4917 -556.4917 -1159.484 -565.2662 -565.2662 -440.3747 -565.2662 -457.0327 -714.6991 -556.4917 -565.2662 -714.6991 -714.6991 -565.2662 -565.2662 -440.3747 -457.0327 -714.6991 -565.2662 -440.3747 -440.3747 -440.3747 -565.2662 -714.6991 -565.2662 -565.2662 -565.2662 -556.4917 -565.2662 -714.6991 -565.2662 -565.2662 -440.3747 -556.4917 -565.2662 -556.4917 -556.4917 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -556.4917 -556.4917 -556.4917 -565.2662 -918.4751 -565.2662 -565.2662 -565.2662 -565.2662 -457.0327 -440.3747 -565.2662 -565.2662 -457.0327 -565.2662 -565.2662 -565.2662 -457.0327 -714.6991 -440.3747 -440.3747 -565.2662 -556.4917 -565.2662 -918.4751 -565.2662 -457.0327 -565.2662 -565.2662 -918.4751 -565.2662 -918.4751 -457.0327 -714.6991 -556.4917 -440.3747 -556.4917 -565.2662 -556.4917 -565.2662 -565.2662 -457.0327 -714.6991 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -714.6991 -918.4751 -457.0327 -565.2662 -440.3747 -918.4751 -565.2662 -565.2662 -565.2662 -565.2662 -440.3747 -714.6991 -714.6991 -457.0327 -440.3747 -457.0327 -565.2662 -565.2662 -556.4917 -556.4917 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -556.4917 -918.4751 -457.0327 -440.3747 -1731.728 -556.4917 -565.2662 -565.2662 -714.6991 -565.2662 -565.2662 -565.2662 -918.4751 -565.2662 -556.4917 -457.0327 -440.3747 -556.4917 -440.3747 -565.2662 -1159.484 -457.0327 -457.0327 -918.4751 -565.2662 -440.3747 -565.2662 -565.2662 -565.2662 -556.4917 -565.2662 -565.2662 -457.0327 -565.2662 -714.6991 -714.6991 -457.0327 -556.4917 -565.2662 -565.2662 -565.2662 -565.2662 -440.3747 -457.0327 -565.2662 -565.2662 -918.4751 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -918.4751 -565.2662 -565.2662 -457.0327 -714.6991 -457.0327 -440.3747 -1159.484 -556.4917 -714.6991 -1159.484 -714.6991 -457.0327 -1431.971 -918.4751 -565.2662 -440.3747 -457.0327 -457.0327 -457.0327 -440.3747 -1431.971 -556.4917 -457.0327 -918.4751 -918.4751 -565.2662 -714.6991 -565.2662 -457.0327 -457.0327 -565.2662 -440.3747 -565.2662 -714.6991 -565.2662 -918.4751 -714.6991 -714.6991 -457.0327 -565.2662 -556.4917 -565.2662 -565.2662 -556.4917 -565.2662 -714.6991 -440.3747 -565.2662 -440.3747 -565.2662 -556.4917 -714.6991 -565.2662 -565.2662 QQ -714.685 -565.2579 -565.2579 -565.2579 -2055.472 -556.4838 -565.2579 -556.4838 -714.685 -714.685 -918.4531 -565.2579 -457.0286 -714.685 -565.2579 -565.2579 -565.2579 -457.0286 -918.4531 -457.0286 -565.2579 -565.2579 -1431.93 -556.4838 -565.2579 -556.4838 -1731.675 -714.685 -556.4838 -565.2579 -918.4531 -457.0286 -714.685 -714.685 -918.4531 -457.0286 -1159.452 -565.2579 -556.4838 -457.0286 -565.2579 -918.4531 -440.3713 -457.0286 -556.4838 -556.4838 -565.2579 -565.2579 -457.0286 -565.2579 -565.2579 -556.4838 -918.4531 -565.2579 -457.0286 -1431.93 -714.685 -556.4838 -565.2579 -565.2579 -714.685 -556.4838 -440.3713 -714.685 -440.3713 -1431.93 -565.2579 -565.2579 -440.3713 -1159.452 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -556.4838 -556.4838 -1159.452 -565.2579 -565.2579 -440.3713 -565.2579 -457.0286 -714.685 -556.4838 -565.2579 -714.685 -714.685 -565.2579 -565.2579 -440.3713 -457.0286 -714.685 -565.2579 -440.3713 -440.3713 -440.3713 -565.2579 -714.685 -565.2579 -565.2579 -565.2579 -556.4838 -565.2579 -714.685 -565.2579 -565.2579 -440.3713 -556.4838 -565.2579 -556.4838 -556.4838 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -556.4838 -556.4838 -556.4838 -565.2579 -918.4531 -565.2579 -565.2579 -565.2579 -565.2579 -457.0286 -440.3713 -565.2579 -565.2579 -457.0286 -565.2579 -565.2579 -565.2579 -457.0286 -714.685 -440.3713 -440.3713 -565.2579 -556.4838 -565.2579 -918.4531 -565.2579 -457.0286 -565.2579 -565.2579 -918.4531 -565.2579 -918.4531 -457.0286 -714.685 -556.4838 -440.3713 -556.4838 -565.2579 -556.4838 -565.2579 -565.2579 -457.0286 -714.685 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -714.685 -918.4531 -457.0286 -565.2579 -440.3713 -918.4531 -565.2579 -565.2579 -565.2579 -565.2579 -440.3713 -714.685 -714.685 -457.0286 -440.3713 -457.0286 -565.2579 -565.2579 -556.4838 -556.4838 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -556.4838 -918.4531 -457.0286 -440.3713 -1731.675 -556.4838 -565.2579 -565.2579 -714.685 -565.2579 -565.2579 -565.2579 -918.4531 -565.2579 -556.4838 -457.0286 -440.3713 -556.4838 -440.3713 -565.2579 -1159.452 -457.0286 -457.0286 -918.4531 -565.2579 -440.3713 -565.2579 -565.2579 -565.2579 -556.4838 -565.2579 -565.2579 -457.0286 -565.2579 -714.685 -714.685 -457.0286 -556.4838 -565.2579 -565.2579 -565.2579 -565.2579 -440.3713 -457.0286 -565.2579 -565.2579 -918.4531 -565.2579 -565.2579 -565.2579 -565.2579 -565.2579 -918.4531 -565.2579 -565.2579 -457.0286 -714.685 -457.0286 -440.3713 -1159.452 -556.4838 -714.685 -1159.452 -714.685 -457.0286 -1431.93 -918.4531 -565.2579 -440.3713 -457.0286 -457.0286 -457.0286 -440.3713 -1431.93 -556.4838 -457.0286 -918.4531 -918.4531 -565.2579 -714.685 -565.2579 -457.0286 -457.0286 -565.2579 -440.3713 -565.2579 -714.685 -565.2579 -918.4531 -714.685 -714.685 -457.0286 -565.2579 -556.4838 -565.2579 -565.2579 -556.4838 -565.2579 -714.685 -440.3713 -565.2579 -440.3713 -565.2579 -556.4838 -714.685 -565.2579 -565.2579 epsilon_cond 1.975191e-05 1.470987e-05 1.470987e-05 1.470987e-05 3.219316e-05 1.432964e-05 1.470987e-05 1.432964e-05 1.975191e-05 1.975191e-05 2.398345e-05 1.470987e-05 8.99906e-06 1.975191e-05 1.470987e-05 1.470987e-05 1.470987e-05 8.99906e-06 2.398345e-05 8.99906e-06 1.470987e-05 1.470987e-05 2.930541e-05 1.432964e-05 1.470987e-05 1.432964e-05 3.095316e-05 1.975191e-05 1.432964e-05 1.470987e-05 2.398345e-05 8.99906e-06 1.975191e-05 1.975191e-05 2.398345e-05 8.99906e-06 2.706832e-05 1.470987e-05 1.432964e-05 8.99906e-06 1.470987e-05 2.398345e-05 7.870854e-06 8.99906e-06 1.432964e-05 1.432964e-05 1.470987e-05 1.470987e-05 8.99906e-06 1.470987e-05 1.470987e-05 1.432964e-05 2.398345e-05 1.470987e-05 8.99906e-06 2.930541e-05 1.975191e-05 1.432964e-05 1.470987e-05 1.470987e-05 1.975191e-05 1.432964e-05 7.870854e-06 1.975191e-05 7.870854e-06 2.930541e-05 1.470987e-05 1.470987e-05 7.870854e-06 2.706832e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.432964e-05 1.432964e-05 2.706832e-05 1.470987e-05 1.470987e-05 7.870854e-06 1.470987e-05 8.99906e-06 1.975191e-05 1.432964e-05 1.470987e-05 1.975191e-05 1.975191e-05 1.470987e-05 1.470987e-05 7.870854e-06 8.99906e-06 1.975191e-05 1.470987e-05 7.870854e-06 7.870854e-06 7.870854e-06 1.470987e-05 1.975191e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.432964e-05 1.470987e-05 1.975191e-05 1.470987e-05 1.470987e-05 7.870854e-06 1.432964e-05 1.470987e-05 1.432964e-05 1.432964e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.432964e-05 1.432964e-05 1.432964e-05 1.470987e-05 2.398345e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 8.99906e-06 7.870854e-06 1.470987e-05 1.470987e-05 8.99906e-06 1.470987e-05 1.470987e-05 1.470987e-05 8.99906e-06 1.975191e-05 7.870854e-06 7.870854e-06 1.470987e-05 1.432964e-05 1.470987e-05 2.398345e-05 1.470987e-05 8.99906e-06 1.470987e-05 1.470987e-05 2.398345e-05 1.470987e-05 2.398345e-05 8.99906e-06 1.975191e-05 1.432964e-05 7.870854e-06 1.432964e-05 1.470987e-05 1.432964e-05 1.470987e-05 1.470987e-05 8.99906e-06 1.975191e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.975191e-05 2.398345e-05 8.99906e-06 1.470987e-05 7.870854e-06 2.398345e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 7.870854e-06 1.975191e-05 1.975191e-05 8.99906e-06 7.870854e-06 8.99906e-06 1.470987e-05 1.470987e-05 1.432964e-05 1.432964e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.432964e-05 2.398345e-05 8.99906e-06 7.870854e-06 3.095316e-05 1.432964e-05 1.470987e-05 1.470987e-05 1.975191e-05 1.470987e-05 1.470987e-05 1.470987e-05 2.398345e-05 1.470987e-05 1.432964e-05 8.99906e-06 7.870854e-06 1.432964e-05 7.870854e-06 1.470987e-05 2.706832e-05 8.99906e-06 8.99906e-06 2.398345e-05 1.470987e-05 7.870854e-06 1.470987e-05 1.470987e-05 1.470987e-05 1.432964e-05 1.470987e-05 1.470987e-05 8.99906e-06 1.470987e-05 1.975191e-05 1.975191e-05 8.99906e-06 1.432964e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 7.870854e-06 8.99906e-06 1.470987e-05 1.470987e-05 2.398345e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 1.470987e-05 2.398345e-05 1.470987e-05 1.470987e-05 8.99906e-06 1.975191e-05 8.99906e-06 7.870854e-06 2.706832e-05 1.432964e-05 1.975191e-05 2.706832e-05 1.975191e-05 8.99906e-06 2.930541e-05 2.398345e-05 1.470987e-05 7.870854e-06 8.99906e-06 8.99906e-06 8.99906e-06 7.870854e-06 2.930541e-05 1.432964e-05 8.99906e-06 2.398345e-05 2.398345e-05 1.470987e-05 1.975191e-05 1.470987e-05 8.99906e-06 8.99906e-06 1.470987e-05 7.870854e-06 1.470987e-05 1.975191e-05 1.470987e-05 2.398345e-05 1.975191e-05 1.975191e-05 8.99906e-06 1.470987e-05 1.432964e-05 1.470987e-05 1.470987e-05 1.432964e-05 1.470987e-05 1.975191e-05 7.870854e-06 1.470987e-05 7.870854e-06 1.470987e-05 1.432964e-05 1.975191e-05 1.470987e-05 1.470987e-05 mu 2.704818 w 0.3192914
## [1] "9 -714.699082444371" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -2055.53769328506" "9 -556.491745155435" "9 -565.266170121427" "9 -556.491745155435" "9 -714.699082444371" "9 -714.699082444371" "9 -918.475141604677" "9 -565.266170121427" "9 -457.03270809622" "9 -714.699082444371" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -457.03270809622" "9 -918.475141604677" "9 -457.03270809622" "9 -565.266170121427" "9 -565.266170121427" "9 -1431.97148256356" "9 -556.491745155435" "9 -565.266170121427" "9 -556.491745155435" "9 -1731.72819872019" "9 -714.699082444371" "9 -556.491745155435" "9 -565.266170121427" "9 -918.475141604677" "9 -457.03270809622" "9 -714.699082444371" "9 -714.699082444371" "9 -918.475141604677" "9 -457.03270809622" "9 -1159.48355753158" "9 -565.266170121427" "9 -556.491745155435" "9 -457.03270809622" "9 -565.266170121427" "9 -918.475141604677" "9 -440.374749674974" "9 -457.03270809622" "9 -556.491745155435"
## [46] "9 -556.491745155435" "9 -565.266170121427" "9 -565.266170121427" "9 -457.03270809622" "9 -565.266170121427" "9 -565.266170121427" "9 -556.491745155435" "9 -918.475141604677" "9 -565.266170121427" "9 -457.03270809622" "9 -1431.97148256356" "9 -714.699082444371" "9 -556.491745155435" "9 -565.266170121427" "9 -565.266170121427" "9 -714.699082444371" "9 -556.491745155435" "9 -440.374749674974" "9 -714.699082444371" "9 -440.374749674974" "9 -1431.97148256356" "9 -565.266170121427" "9 -565.266170121427" "9 -440.374749674974" "9 -1159.48355753158" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -556.491745155435" "9 -556.491745155435" "9 -1159.48355753158" "9 -565.266170121427" "9 -565.266170121427" "9 -440.374749674974" "9 -565.266170121427" "9 -457.03270809622" "9 -714.699082444371" "9 -556.491745155435" "9 -565.266170121427" "9 -714.699082444371" "9 -714.699082444371" "9 -565.266170121427" "9 -565.266170121427"
## [91] "9 -440.374749674974" "9 -457.03270809622" "9 -714.699082444371" "9 -565.266170121427" "9 -440.374749674974" "9 -440.374749674974" "9 -440.374749674974" "9 -565.266170121427" "9 -714.699082444371" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -556.491745155435" "9 -565.266170121427" "9 -714.699082444371" "9 -565.266170121427" "9 -565.266170121427" "9 -440.374749674974" "9 -556.491745155435" "9 -565.266170121427" "9 -556.491745155435" "9 -556.491745155435" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -556.491745155435" "9 -556.491745155435" "9 -556.491745155435" "9 -565.266170121427" "9 -918.475141604677" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -457.03270809622" "9 -440.374749674974" "9 -565.266170121427" "9 -565.266170121427" "9 -457.03270809622" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -457.03270809622"
## [136] "9 -714.699082444371" "9 -440.374749674974" "9 -440.374749674974" "9 -565.266170121427" "9 -556.491745155435" "9 -565.266170121427" "9 -918.475141604677" "9 -565.266170121427" "9 -457.03270809622" "9 -565.266170121427" "9 -565.266170121427" "9 -918.475141604677" "9 -565.266170121427" "9 -918.475141604677" "9 -457.03270809622" "9 -714.699082444371" "9 -556.491745155435" "9 -440.374749674974" "9 -556.491745155435" "9 -565.266170121427" "9 -556.491745155435" "9 -565.266170121427" "9 -565.266170121427" "9 -457.03270809622" "9 -714.699082444371" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -714.699082444371" "9 -918.475141604677" "9 -457.03270809622" "9 -565.266170121427" "9 -440.374749674974" "9 -918.475141604677" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -440.374749674974" "9 -714.699082444371" "9 -714.699082444371"
## [181] "9 -457.03270809622" "9 -440.374749674974" "9 -457.03270809622" "9 -565.266170121427" "9 -565.266170121427" "9 -556.491745155435" "9 -556.491745155435" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -556.491745155435" "9 -918.475141604677" "9 -457.03270809622" "9 -440.374749674974" "9 -1731.72819872019" "9 -556.491745155435" "9 -565.266170121427" "9 -565.266170121427" "9 -714.699082444371" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -918.475141604677" "9 -565.266170121427" "9 -556.491745155435" "9 -457.03270809622" "9 -440.374749674974" "9 -556.491745155435" "9 -440.374749674974" "9 -565.266170121427" "9 -1159.48355753158" "9 -457.03270809622" "9 -457.03270809622" "9 -918.475141604677" "9 -565.266170121427" "9 -440.374749674974" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -556.491745155435" "9 -565.266170121427" "9 -565.266170121427"
## [226] "9 -457.03270809622" "9 -565.266170121427" "9 -714.699082444371" "9 -714.699082444371" "9 -457.03270809622" "9 -556.491745155435" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -440.374749674974" "9 -457.03270809622" "9 -565.266170121427" "9 -565.266170121427" "9 -918.475141604677" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -565.266170121427" "9 -918.475141604677" "9 -565.266170121427" "9 -565.266170121427" "9 -457.03270809622" "9 -714.699082444371" "9 -457.03270809622" "9 -440.374749674974" "9 -1159.48355753158" "9 -556.491745155435" "9 -714.699082444371" "9 -1159.48355753158" "9 -714.699082444371" "9 -457.03270809622" "9 -1431.97148256356" "9 -918.475141604677" "9 -565.266170121427" "9 -440.374749674974" "9 -457.03270809622" "9 -457.03270809622" "9 -457.03270809622" "9 -440.374749674974" "9 -1431.97148256356" "9 -556.491745155435" "9 -457.03270809622" "9 -918.475141604677"
## [271] "9 -918.475141604677" "9 -565.266170121427" "9 -714.699082444371" "9 -565.266170121427" "9 -457.03270809622" "9 -457.03270809622" "9 -565.266170121427" "9 -440.374749674974" "9 -565.266170121427" "9 -714.699082444371" "9 -565.266170121427" "9 -918.475141604677" "9 -714.699082444371" "9 -714.699082444371" "9 -457.03270809622" "9 -565.266170121427" "9 -556.491745155435" "9 -565.266170121427" "9 -565.266170121427" "9 -556.491745155435" "9 -565.266170121427" "9 -714.699082444371" "9 -440.374749674974" "9 -565.266170121427" "9 -440.374749674974" "9 -565.266170121427" "9 -556.491745155435" "9 -714.699082444371" "9 -565.266170121427" "9 -565.266170121427"
## QQn -714.7043 -565.2693 -565.2693 -565.2693 -2055.562 -556.4947 -565.2693 -556.4947 -714.7043 -714.7043 -918.4833 -565.2693 -457.0342 -714.7043 -565.2693 -565.2693 -565.2693 -457.0342 -918.4833 -457.0342 -565.2693 -565.2693 -1431.987 -556.4947 -565.2693 -556.4947 -1731.748 -714.7043 -556.4947 -565.2693 -918.4833 -457.0342 -714.7043 -714.7043 -918.4833 -457.0342 -1159.495 -565.2693 -556.4947 -457.0342 -565.2693 -918.4833 -440.376 -457.0342 -556.4947 -556.4947 -565.2693 -565.2693 -457.0342 -565.2693 -565.2693 -556.4947 -918.4833 -565.2693 -457.0342 -1431.987 -714.7043 -556.4947 -565.2693 -565.2693 -714.7043 -556.4947 -440.376 -714.7043 -440.376 -1431.987 -565.2693 -565.2693 -440.376 -1159.495 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -556.4947 -556.4947 -1159.495 -565.2693 -565.2693 -440.376 -565.2693 -457.0342 -714.7043 -556.4947 -565.2693 -714.7043 -714.7043 -565.2693 -565.2693 -440.376 -457.0342 -714.7043 -565.2693 -440.376 -440.376 -440.376 -565.2693 -714.7043 -565.2693 -565.2693 -565.2693 -556.4947 -565.2693 -714.7043 -565.2693 -565.2693 -440.376 -556.4947 -565.2693 -556.4947 -556.4947 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -556.4947 -556.4947 -556.4947 -565.2693 -918.4833 -565.2693 -565.2693 -565.2693 -565.2693 -457.0342 -440.376 -565.2693 -565.2693 -457.0342 -565.2693 -565.2693 -565.2693 -457.0342 -714.7043 -440.376 -440.376 -565.2693 -556.4947 -565.2693 -918.4833 -565.2693 -457.0342 -565.2693 -565.2693 -918.4833 -565.2693 -918.4833 -457.0342 -714.7043 -556.4947 -440.376 -556.4947 -565.2693 -556.4947 -565.2693 -565.2693 -457.0342 -714.7043 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -714.7043 -918.4833 -457.0342 -565.2693 -440.376 -918.4833 -565.2693 -565.2693 -565.2693 -565.2693 -440.376 -714.7043 -714.7043 -457.0342 -440.376 -457.0342 -565.2693 -565.2693 -556.4947 -556.4947 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -556.4947 -918.4833 -457.0342 -440.376 -1731.748 -556.4947 -565.2693 -565.2693 -714.7043 -565.2693 -565.2693 -565.2693 -918.4833 -565.2693 -556.4947 -457.0342 -440.376 -556.4947 -440.376 -565.2693 -1159.495 -457.0342 -457.0342 -918.4833 -565.2693 -440.376 -565.2693 -565.2693 -565.2693 -556.4947 -565.2693 -565.2693 -457.0342 -565.2693 -714.7043 -714.7043 -457.0342 -556.4947 -565.2693 -565.2693 -565.2693 -565.2693 -440.376 -457.0342 -565.2693 -565.2693 -918.4833 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -918.4833 -565.2693 -565.2693 -457.0342 -714.7043 -457.0342 -440.376 -1159.495 -556.4947 -714.7043 -1159.495 -714.7043 -457.0342 -1431.987 -918.4833 -565.2693 -440.376 -457.0342 -457.0342 -457.0342 -440.376 -1431.987 -556.4947 -457.0342 -918.4833 -918.4833 -565.2693 -714.7043 -565.2693 -457.0342 -457.0342 -565.2693 -440.376 -565.2693 -714.7043 -565.2693 -918.4833 -714.7043 -714.7043 -457.0342 -565.2693 -556.4947 -565.2693 -565.2693 -556.4947 -565.2693 -714.7043 -440.376 -565.2693 -440.376 -565.2693 -556.4947 -714.7043 -565.2693 -565.2693 QQ -714.6991 -565.2662 -565.2662 -565.2662 -2055.538 -556.4917 -565.2662 -556.4917 -714.6991 -714.6991 -918.4751 -565.2662 -457.0327 -714.6991 -565.2662 -565.2662 -565.2662 -457.0327 -918.4751 -457.0327 -565.2662 -565.2662 -1431.971 -556.4917 -565.2662 -556.4917 -1731.728 -714.6991 -556.4917 -565.2662 -918.4751 -457.0327 -714.6991 -714.6991 -918.4751 -457.0327 -1159.484 -565.2662 -556.4917 -457.0327 -565.2662 -918.4751 -440.3747 -457.0327 -556.4917 -556.4917 -565.2662 -565.2662 -457.0327 -565.2662 -565.2662 -556.4917 -918.4751 -565.2662 -457.0327 -1431.971 -714.6991 -556.4917 -565.2662 -565.2662 -714.6991 -556.4917 -440.3747 -714.6991 -440.3747 -1431.971 -565.2662 -565.2662 -440.3747 -1159.484 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -556.4917 -556.4917 -1159.484 -565.2662 -565.2662 -440.3747 -565.2662 -457.0327 -714.6991 -556.4917 -565.2662 -714.6991 -714.6991 -565.2662 -565.2662 -440.3747 -457.0327 -714.6991 -565.2662 -440.3747 -440.3747 -440.3747 -565.2662 -714.6991 -565.2662 -565.2662 -565.2662 -556.4917 -565.2662 -714.6991 -565.2662 -565.2662 -440.3747 -556.4917 -565.2662 -556.4917 -556.4917 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -556.4917 -556.4917 -556.4917 -565.2662 -918.4751 -565.2662 -565.2662 -565.2662 -565.2662 -457.0327 -440.3747 -565.2662 -565.2662 -457.0327 -565.2662 -565.2662 -565.2662 -457.0327 -714.6991 -440.3747 -440.3747 -565.2662 -556.4917 -565.2662 -918.4751 -565.2662 -457.0327 -565.2662 -565.2662 -918.4751 -565.2662 -918.4751 -457.0327 -714.6991 -556.4917 -440.3747 -556.4917 -565.2662 -556.4917 -565.2662 -565.2662 -457.0327 -714.6991 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -714.6991 -918.4751 -457.0327 -565.2662 -440.3747 -918.4751 -565.2662 -565.2662 -565.2662 -565.2662 -440.3747 -714.6991 -714.6991 -457.0327 -440.3747 -457.0327 -565.2662 -565.2662 -556.4917 -556.4917 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -556.4917 -918.4751 -457.0327 -440.3747 -1731.728 -556.4917 -565.2662 -565.2662 -714.6991 -565.2662 -565.2662 -565.2662 -918.4751 -565.2662 -556.4917 -457.0327 -440.3747 -556.4917 -440.3747 -565.2662 -1159.484 -457.0327 -457.0327 -918.4751 -565.2662 -440.3747 -565.2662 -565.2662 -565.2662 -556.4917 -565.2662 -565.2662 -457.0327 -565.2662 -714.6991 -714.6991 -457.0327 -556.4917 -565.2662 -565.2662 -565.2662 -565.2662 -440.3747 -457.0327 -565.2662 -565.2662 -918.4751 -565.2662 -565.2662 -565.2662 -565.2662 -565.2662 -918.4751 -565.2662 -565.2662 -457.0327 -714.6991 -457.0327 -440.3747 -1159.484 -556.4917 -714.6991 -1159.484 -714.6991 -457.0327 -1431.971 -918.4751 -565.2662 -440.3747 -457.0327 -457.0327 -457.0327 -440.3747 -1431.971 -556.4917 -457.0327 -918.4751 -918.4751 -565.2662 -714.6991 -565.2662 -457.0327 -457.0327 -565.2662 -440.3747 -565.2662 -714.6991 -565.2662 -918.4751 -714.6991 -714.6991 -457.0327 -565.2662 -556.4917 -565.2662 -565.2662 -556.4917 -565.2662 -714.6991 -440.3747 -565.2662 -440.3747 -565.2662 -556.4917 -714.6991 -565.2662 -565.2662 epsilon_cond 7.338215e-06 5.464858e-06 5.464858e-06 5.464858e-06 1.19607e-05 5.323585e-06 5.464858e-06 5.323585e-06 7.338215e-06 7.338215e-06 8.910429e-06 5.464858e-06 3.343013e-06 7.338215e-06 5.464858e-06 5.464858e-06 5.464858e-06 3.343013e-06 8.910429e-06 3.343013e-06 5.464858e-06 5.464858e-06 1.088778e-05 5.323585e-06 5.464858e-06 5.323585e-06 1.149999e-05 7.338215e-06 5.323585e-06 5.464858e-06 8.910429e-06 3.343013e-06 7.338215e-06 7.338215e-06 8.910429e-06 3.343013e-06 1.00566e-05 5.464858e-06 5.323585e-06 3.343013e-06 5.464858e-06 8.910429e-06 2.923828e-06 3.343013e-06 5.323585e-06 5.323585e-06 5.464858e-06 5.464858e-06 3.343013e-06 5.464858e-06 5.464858e-06 5.323585e-06 8.910429e-06 5.464858e-06 3.343013e-06 1.088778e-05 7.338215e-06 5.323585e-06 5.464858e-06 5.464858e-06 7.338215e-06 5.323585e-06 2.923828e-06 7.338215e-06 2.923828e-06 1.088778e-05 5.464858e-06 5.464858e-06 2.923828e-06 1.00566e-05 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.323585e-06 5.323585e-06 1.00566e-05 5.464858e-06 5.464858e-06 2.923828e-06 5.464858e-06 3.343013e-06 7.338215e-06 5.323585e-06 5.464858e-06 7.338215e-06 7.338215e-06 5.464858e-06 5.464858e-06 2.923828e-06 3.343013e-06 7.338215e-06 5.464858e-06 2.923828e-06 2.923828e-06 2.923828e-06 5.464858e-06 7.338215e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.323585e-06 5.464858e-06 7.338215e-06 5.464858e-06 5.464858e-06 2.923828e-06 5.323585e-06 5.464858e-06 5.323585e-06 5.323585e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.323585e-06 5.323585e-06 5.323585e-06 5.464858e-06 8.910429e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 3.343013e-06 2.923828e-06 5.464858e-06 5.464858e-06 3.343013e-06 5.464858e-06 5.464858e-06 5.464858e-06 3.343013e-06 7.338215e-06 2.923828e-06 2.923828e-06 5.464858e-06 5.323585e-06 5.464858e-06 8.910429e-06 5.464858e-06 3.343013e-06 5.464858e-06 5.464858e-06 8.910429e-06 5.464858e-06 8.910429e-06 3.343013e-06 7.338215e-06 5.323585e-06 2.923828e-06 5.323585e-06 5.464858e-06 5.323585e-06 5.464858e-06 5.464858e-06 3.343013e-06 7.338215e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 7.338215e-06 8.910429e-06 3.343013e-06 5.464858e-06 2.923828e-06 8.910429e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 2.923828e-06 7.338215e-06 7.338215e-06 3.343013e-06 2.923828e-06 3.343013e-06 5.464858e-06 5.464858e-06 5.323585e-06 5.323585e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.323585e-06 8.910429e-06 3.343013e-06 2.923828e-06 1.149999e-05 5.323585e-06 5.464858e-06 5.464858e-06 7.338215e-06 5.464858e-06 5.464858e-06 5.464858e-06 8.910429e-06 5.464858e-06 5.323585e-06 3.343013e-06 2.923828e-06 5.323585e-06 2.923828e-06 5.464858e-06 1.00566e-05 3.343013e-06 3.343013e-06 8.910429e-06 5.464858e-06 2.923828e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.323585e-06 5.464858e-06 5.464858e-06 3.343013e-06 5.464858e-06 7.338215e-06 7.338215e-06 3.343013e-06 5.323585e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 2.923828e-06 3.343013e-06 5.464858e-06 5.464858e-06 8.910429e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 5.464858e-06 8.910429e-06 5.464858e-06 5.464858e-06 3.343013e-06 7.338215e-06 3.343013e-06 2.923828e-06 1.00566e-05 5.323585e-06 7.338215e-06 1.00566e-05 7.338215e-06 3.343013e-06 1.088778e-05 8.910429e-06 5.464858e-06 2.923828e-06 3.343013e-06 3.343013e-06 3.343013e-06 2.923828e-06 1.088778e-05 5.323585e-06 3.343013e-06 8.910429e-06 8.910429e-06 5.464858e-06 7.338215e-06 5.464858e-06 3.343013e-06 3.343013e-06 5.464858e-06 2.923828e-06 5.464858e-06 7.338215e-06 5.464858e-06 8.910429e-06 7.338215e-06 7.338215e-06 3.343013e-06 5.464858e-06 5.323585e-06 5.464858e-06 5.464858e-06 5.323585e-06 5.464858e-06 7.338215e-06 2.923828e-06 5.464858e-06 2.923828e-06 5.464858e-06 5.323585e-06 7.338215e-06 5.464858e-06 5.464858e-06 mu 2.704779 w 0.3192816
## [1] "10 -714.704327098731" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -2055.56227925263" "10 -556.494707702432" "10 -565.269259237649" "10 -556.494707702432" "10 -714.704327098731" "10 -714.704327098731" "10 -918.483325685568" "10 -565.269259237649" "10 -457.034235967656" "10 -714.704327098731" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -457.034235967656" "10 -918.483325685568" "10 -457.034235967656" "10 -565.269259237649" "10 -565.269259237649" "10 -1431.98707372049" "10 -556.494707702432" "10 -565.269259237649" "10 -556.494707702432" "10 -1731.74811380431" "10 -714.704327098731" "10 -556.494707702432" "10 -565.269259237649" "10 -918.483325685568" "10 -457.034235967656" "10 -714.704327098731" "10 -714.704327098731" "10 -918.483325685568" "10 -457.034235967656" "10 -1159.49521810787" "10 -565.269259237649" "10 -556.494707702432" "10 -457.034235967656" "10 -565.269259237649" "10 -918.483325685568" "10 -440.376037258885"
## [44] "10 -457.034235967656" "10 -556.494707702432" "10 -556.494707702432" "10 -565.269259237649" "10 -565.269259237649" "10 -457.034235967656" "10 -565.269259237649" "10 -565.269259237649" "10 -556.494707702432" "10 -918.483325685568" "10 -565.269259237649" "10 -457.034235967656" "10 -1431.98707372049" "10 -714.704327098731" "10 -556.494707702432" "10 -565.269259237649" "10 -565.269259237649" "10 -714.704327098731" "10 -556.494707702432" "10 -440.376037258885" "10 -714.704327098731" "10 -440.376037258885" "10 -1431.98707372049" "10 -565.269259237649" "10 -565.269259237649" "10 -440.376037258885" "10 -1159.49521810787" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -556.494707702432" "10 -556.494707702432" "10 -1159.49521810787" "10 -565.269259237649" "10 -565.269259237649" "10 -440.376037258885" "10 -565.269259237649" "10 -457.034235967656" "10 -714.704327098731" "10 -556.494707702432" "10 -565.269259237649"
## [87] "10 -714.704327098731" "10 -714.704327098731" "10 -565.269259237649" "10 -565.269259237649" "10 -440.376037258885" "10 -457.034235967656" "10 -714.704327098731" "10 -565.269259237649" "10 -440.376037258885" "10 -440.376037258885" "10 -440.376037258885" "10 -565.269259237649" "10 -714.704327098731" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -556.494707702432" "10 -565.269259237649" "10 -714.704327098731" "10 -565.269259237649" "10 -565.269259237649" "10 -440.376037258885" "10 -556.494707702432" "10 -565.269259237649" "10 -556.494707702432" "10 -556.494707702432" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -556.494707702432" "10 -556.494707702432" "10 -556.494707702432" "10 -565.269259237649" "10 -918.483325685568" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -457.034235967656" "10 -440.376037258885" "10 -565.269259237649"
## [130] "10 -565.269259237649" "10 -457.034235967656" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -457.034235967656" "10 -714.704327098731" "10 -440.376037258885" "10 -440.376037258885" "10 -565.269259237649" "10 -556.494707702432" "10 -565.269259237649" "10 -918.483325685568" "10 -565.269259237649" "10 -457.034235967656" "10 -565.269259237649" "10 -565.269259237649" "10 -918.483325685568" "10 -565.269259237649" "10 -918.483325685568" "10 -457.034235967656" "10 -714.704327098731" "10 -556.494707702432" "10 -440.376037258885" "10 -556.494707702432" "10 -565.269259237649" "10 -556.494707702432" "10 -565.269259237649" "10 -565.269259237649" "10 -457.034235967656" "10 -714.704327098731" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -714.704327098731" "10 -918.483325685568" "10 -457.034235967656" "10 -565.269259237649" "10 -440.376037258885"
## [173] "10 -918.483325685568" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -440.376037258885" "10 -714.704327098731" "10 -714.704327098731" "10 -457.034235967656" "10 -440.376037258885" "10 -457.034235967656" "10 -565.269259237649" "10 -565.269259237649" "10 -556.494707702432" "10 -556.494707702432" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -556.494707702432" "10 -918.483325685568" "10 -457.034235967656" "10 -440.376037258885" "10 -1731.74811380431" "10 -556.494707702432" "10 -565.269259237649" "10 -565.269259237649" "10 -714.704327098731" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -918.483325685568" "10 -565.269259237649" "10 -556.494707702432" "10 -457.034235967656" "10 -440.376037258885" "10 -556.494707702432" "10 -440.376037258885" "10 -565.269259237649" "10 -1159.49521810787" "10 -457.034235967656"
## [216] "10 -457.034235967656" "10 -918.483325685568" "10 -565.269259237649" "10 -440.376037258885" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -556.494707702432" "10 -565.269259237649" "10 -565.269259237649" "10 -457.034235967656" "10 -565.269259237649" "10 -714.704327098731" "10 -714.704327098731" "10 -457.034235967656" "10 -556.494707702432" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -440.376037258885" "10 -457.034235967656" "10 -565.269259237649" "10 -565.269259237649" "10 -918.483325685568" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -565.269259237649" "10 -918.483325685568" "10 -565.269259237649" "10 -565.269259237649" "10 -457.034235967656" "10 -714.704327098731" "10 -457.034235967656" "10 -440.376037258885" "10 -1159.49521810787" "10 -556.494707702432" "10 -714.704327098731" "10 -1159.49521810787" "10 -714.704327098731" "10 -457.034235967656"
## [259] "10 -1431.98707372049" "10 -918.483325685568" "10 -565.269259237649" "10 -440.376037258885" "10 -457.034235967656" "10 -457.034235967656" "10 -457.034235967656" "10 -440.376037258885" "10 -1431.98707372049" "10 -556.494707702432" "10 -457.034235967656" "10 -918.483325685568" "10 -918.483325685568" "10 -565.269259237649" "10 -714.704327098731" "10 -565.269259237649" "10 -457.034235967656" "10 -457.034235967656" "10 -565.269259237649" "10 -440.376037258885" "10 -565.269259237649" "10 -714.704327098731" "10 -565.269259237649" "10 -918.483325685568" "10 -714.704327098731" "10 -714.704327098731" "10 -457.034235967656" "10 -565.269259237649" "10 -556.494707702432" "10 -565.269259237649" "10 -565.269259237649" "10 -556.494707702432" "10 -565.269259237649" "10 -714.704327098731" "10 -440.376037258885" "10 -565.269259237649" "10 -440.376037258885" "10 -565.269259237649" "10 -556.494707702432" "10 -714.704327098731" "10 -565.269259237649" "10 -565.269259237649"
## QQn -714.7063 -565.2704 -565.2704 -565.2704 -2055.571 -556.4958 -565.2704 -556.4958 -714.7063 -714.7063 -918.4864 -565.2704 -457.0348 -714.7063 -565.2704 -565.2704 -565.2704 -457.0348 -918.4864 -457.0348 -565.2704 -565.2704 -1431.993 -556.4958 -565.2704 -556.4958 -1731.756 -714.7063 -556.4958 -565.2704 -918.4864 -457.0348 -714.7063 -714.7063 -918.4864 -457.0348 -1159.5 -565.2704 -556.4958 -457.0348 -565.2704 -918.4864 -440.3765 -457.0348 -556.4958 -556.4958 -565.2704 -565.2704 -457.0348 -565.2704 -565.2704 -556.4958 -918.4864 -565.2704 -457.0348 -1431.993 -714.7063 -556.4958 -565.2704 -565.2704 -714.7063 -556.4958 -440.3765 -714.7063 -440.3765 -1431.993 -565.2704 -565.2704 -440.3765 -1159.5 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -556.4958 -556.4958 -1159.5 -565.2704 -565.2704 -440.3765 -565.2704 -457.0348 -714.7063 -556.4958 -565.2704 -714.7063 -714.7063 -565.2704 -565.2704 -440.3765 -457.0348 -714.7063 -565.2704 -440.3765 -440.3765 -440.3765 -565.2704 -714.7063 -565.2704 -565.2704 -565.2704 -556.4958 -565.2704 -714.7063 -565.2704 -565.2704 -440.3765 -556.4958 -565.2704 -556.4958 -556.4958 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -556.4958 -556.4958 -556.4958 -565.2704 -918.4864 -565.2704 -565.2704 -565.2704 -565.2704 -457.0348 -440.3765 -565.2704 -565.2704 -457.0348 -565.2704 -565.2704 -565.2704 -457.0348 -714.7063 -440.3765 -440.3765 -565.2704 -556.4958 -565.2704 -918.4864 -565.2704 -457.0348 -565.2704 -565.2704 -918.4864 -565.2704 -918.4864 -457.0348 -714.7063 -556.4958 -440.3765 -556.4958 -565.2704 -556.4958 -565.2704 -565.2704 -457.0348 -714.7063 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -714.7063 -918.4864 -457.0348 -565.2704 -440.3765 -918.4864 -565.2704 -565.2704 -565.2704 -565.2704 -440.3765 -714.7063 -714.7063 -457.0348 -440.3765 -457.0348 -565.2704 -565.2704 -556.4958 -556.4958 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -556.4958 -918.4864 -457.0348 -440.3765 -1731.756 -556.4958 -565.2704 -565.2704 -714.7063 -565.2704 -565.2704 -565.2704 -918.4864 -565.2704 -556.4958 -457.0348 -440.3765 -556.4958 -440.3765 -565.2704 -1159.5 -457.0348 -457.0348 -918.4864 -565.2704 -440.3765 -565.2704 -565.2704 -565.2704 -556.4958 -565.2704 -565.2704 -457.0348 -565.2704 -714.7063 -714.7063 -457.0348 -556.4958 -565.2704 -565.2704 -565.2704 -565.2704 -440.3765 -457.0348 -565.2704 -565.2704 -918.4864 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -918.4864 -565.2704 -565.2704 -457.0348 -714.7063 -457.0348 -440.3765 -1159.5 -556.4958 -714.7063 -1159.5 -714.7063 -457.0348 -1431.993 -918.4864 -565.2704 -440.3765 -457.0348 -457.0348 -457.0348 -440.3765 -1431.993 -556.4958 -457.0348 -918.4864 -918.4864 -565.2704 -714.7063 -565.2704 -457.0348 -457.0348 -565.2704 -440.3765 -565.2704 -714.7063 -565.2704 -918.4864 -714.7063 -714.7063 -457.0348 -565.2704 -556.4958 -565.2704 -565.2704 -556.4958 -565.2704 -714.7063 -440.3765 -565.2704 -440.3765 -565.2704 -556.4958 -714.7063 -565.2704 -565.2704 QQ -714.7043 -565.2693 -565.2693 -565.2693 -2055.562 -556.4947 -565.2693 -556.4947 -714.7043 -714.7043 -918.4833 -565.2693 -457.0342 -714.7043 -565.2693 -565.2693 -565.2693 -457.0342 -918.4833 -457.0342 -565.2693 -565.2693 -1431.987 -556.4947 -565.2693 -556.4947 -1731.748 -714.7043 -556.4947 -565.2693 -918.4833 -457.0342 -714.7043 -714.7043 -918.4833 -457.0342 -1159.495 -565.2693 -556.4947 -457.0342 -565.2693 -918.4833 -440.376 -457.0342 -556.4947 -556.4947 -565.2693 -565.2693 -457.0342 -565.2693 -565.2693 -556.4947 -918.4833 -565.2693 -457.0342 -1431.987 -714.7043 -556.4947 -565.2693 -565.2693 -714.7043 -556.4947 -440.376 -714.7043 -440.376 -1431.987 -565.2693 -565.2693 -440.376 -1159.495 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -556.4947 -556.4947 -1159.495 -565.2693 -565.2693 -440.376 -565.2693 -457.0342 -714.7043 -556.4947 -565.2693 -714.7043 -714.7043 -565.2693 -565.2693 -440.376 -457.0342 -714.7043 -565.2693 -440.376 -440.376 -440.376 -565.2693 -714.7043 -565.2693 -565.2693 -565.2693 -556.4947 -565.2693 -714.7043 -565.2693 -565.2693 -440.376 -556.4947 -565.2693 -556.4947 -556.4947 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -556.4947 -556.4947 -556.4947 -565.2693 -918.4833 -565.2693 -565.2693 -565.2693 -565.2693 -457.0342 -440.376 -565.2693 -565.2693 -457.0342 -565.2693 -565.2693 -565.2693 -457.0342 -714.7043 -440.376 -440.376 -565.2693 -556.4947 -565.2693 -918.4833 -565.2693 -457.0342 -565.2693 -565.2693 -918.4833 -565.2693 -918.4833 -457.0342 -714.7043 -556.4947 -440.376 -556.4947 -565.2693 -556.4947 -565.2693 -565.2693 -457.0342 -714.7043 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -714.7043 -918.4833 -457.0342 -565.2693 -440.376 -918.4833 -565.2693 -565.2693 -565.2693 -565.2693 -440.376 -714.7043 -714.7043 -457.0342 -440.376 -457.0342 -565.2693 -565.2693 -556.4947 -556.4947 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -556.4947 -918.4833 -457.0342 -440.376 -1731.748 -556.4947 -565.2693 -565.2693 -714.7043 -565.2693 -565.2693 -565.2693 -918.4833 -565.2693 -556.4947 -457.0342 -440.376 -556.4947 -440.376 -565.2693 -1159.495 -457.0342 -457.0342 -918.4833 -565.2693 -440.376 -565.2693 -565.2693 -565.2693 -556.4947 -565.2693 -565.2693 -457.0342 -565.2693 -714.7043 -714.7043 -457.0342 -556.4947 -565.2693 -565.2693 -565.2693 -565.2693 -440.376 -457.0342 -565.2693 -565.2693 -918.4833 -565.2693 -565.2693 -565.2693 -565.2693 -565.2693 -918.4833 -565.2693 -565.2693 -457.0342 -714.7043 -457.0342 -440.376 -1159.495 -556.4947 -714.7043 -1159.495 -714.7043 -457.0342 -1431.987 -918.4833 -565.2693 -440.376 -457.0342 -457.0342 -457.0342 -440.376 -1431.987 -556.4947 -457.0342 -918.4833 -918.4833 -565.2693 -714.7043 -565.2693 -457.0342 -457.0342 -565.2693 -440.376 -565.2693 -714.7043 -565.2693 -918.4833 -714.7043 -714.7043 -457.0342 -565.2693 -556.4947 -565.2693 -565.2693 -556.4947 -565.2693 -714.7043 -440.376 -565.2693 -440.376 -565.2693 -556.4947 -714.7043 -565.2693 -565.2693 epsilon_cond 2.726564e-06 2.030486e-06 2.030486e-06 2.030486e-06 4.444125e-06 1.977993e-06 2.030486e-06 1.977993e-06 2.726564e-06 2.726564e-06 3.310746e-06 2.030486e-06 1.242076e-06 2.726564e-06 2.030486e-06 2.030486e-06 2.030486e-06 1.242076e-06 3.310746e-06 1.242076e-06 2.030486e-06 2.030486e-06 4.045463e-06 1.977993e-06 2.030486e-06 1.977993e-06 4.272939e-06 2.726564e-06 1.977993e-06 2.030486e-06 3.310746e-06 1.242076e-06 2.726564e-06 2.726564e-06 3.310746e-06 1.242076e-06 3.736624e-06 2.030486e-06 1.977993e-06 1.242076e-06 2.030486e-06 3.310746e-06 1.08632e-06 1.242076e-06 1.977993e-06 1.977993e-06 2.030486e-06 2.030486e-06 1.242076e-06 2.030486e-06 2.030486e-06 1.977993e-06 3.310746e-06 2.030486e-06 1.242076e-06 4.045463e-06 2.726564e-06 1.977993e-06 2.030486e-06 2.030486e-06 2.726564e-06 1.977993e-06 1.08632e-06 2.726564e-06 1.08632e-06 4.045463e-06 2.030486e-06 2.030486e-06 1.08632e-06 3.736624e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 1.977993e-06 1.977993e-06 3.736624e-06 2.030486e-06 2.030486e-06 1.08632e-06 2.030486e-06 1.242076e-06 2.726564e-06 1.977993e-06 2.030486e-06 2.726564e-06 2.726564e-06 2.030486e-06 2.030486e-06 1.08632e-06 1.242076e-06 2.726564e-06 2.030486e-06 1.08632e-06 1.08632e-06 1.08632e-06 2.030486e-06 2.726564e-06 2.030486e-06 2.030486e-06 2.030486e-06 1.977993e-06 2.030486e-06 2.726564e-06 2.030486e-06 2.030486e-06 1.08632e-06 1.977993e-06 2.030486e-06 1.977993e-06 1.977993e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 1.977993e-06 1.977993e-06 1.977993e-06 2.030486e-06 3.310746e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 1.242076e-06 1.08632e-06 2.030486e-06 2.030486e-06 1.242076e-06 2.030486e-06 2.030486e-06 2.030486e-06 1.242076e-06 2.726564e-06 1.08632e-06 1.08632e-06 2.030486e-06 1.977993e-06 2.030486e-06 3.310746e-06 2.030486e-06 1.242076e-06 2.030486e-06 2.030486e-06 3.310746e-06 2.030486e-06 3.310746e-06 1.242076e-06 2.726564e-06 1.977993e-06 1.08632e-06 1.977993e-06 2.030486e-06 1.977993e-06 2.030486e-06 2.030486e-06 1.242076e-06 2.726564e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.726564e-06 3.310746e-06 1.242076e-06 2.030486e-06 1.08632e-06 3.310746e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 1.08632e-06 2.726564e-06 2.726564e-06 1.242076e-06 1.08632e-06 1.242076e-06 2.030486e-06 2.030486e-06 1.977993e-06 1.977993e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 1.977993e-06 3.310746e-06 1.242076e-06 1.08632e-06 4.272939e-06 1.977993e-06 2.030486e-06 2.030486e-06 2.726564e-06 2.030486e-06 2.030486e-06 2.030486e-06 3.310746e-06 2.030486e-06 1.977993e-06 1.242076e-06 1.08632e-06 1.977993e-06 1.08632e-06 2.030486e-06 3.736624e-06 1.242076e-06 1.242076e-06 3.310746e-06 2.030486e-06 1.08632e-06 2.030486e-06 2.030486e-06 2.030486e-06 1.977993e-06 2.030486e-06 2.030486e-06 1.242076e-06 2.030486e-06 2.726564e-06 2.726564e-06 1.242076e-06 1.977993e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 1.08632e-06 1.242076e-06 2.030486e-06 2.030486e-06 3.310746e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 2.030486e-06 3.310746e-06 2.030486e-06 2.030486e-06 1.242076e-06 2.726564e-06 1.242076e-06 1.08632e-06 3.736624e-06 1.977993e-06 2.726564e-06 3.736624e-06 2.726564e-06 1.242076e-06 4.045463e-06 3.310746e-06 2.030486e-06 1.08632e-06 1.242076e-06 1.242076e-06 1.242076e-06 1.08632e-06 4.045463e-06 1.977993e-06 1.242076e-06 3.310746e-06 3.310746e-06 2.030486e-06 2.726564e-06 2.030486e-06 1.242076e-06 1.242076e-06 2.030486e-06 1.08632e-06 2.030486e-06 2.726564e-06 2.030486e-06 3.310746e-06 2.726564e-06 2.726564e-06 1.242076e-06 2.030486e-06 1.977993e-06 2.030486e-06 2.030486e-06 1.977993e-06 2.030486e-06 2.726564e-06 1.08632e-06 2.030486e-06 1.08632e-06 2.030486e-06 1.977993e-06 2.726564e-06 2.030486e-06 2.030486e-06 mu 2.704765 w 0.3192779
## [1] "11 -714.706275791091" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -2055.57141446802" "11 -556.49580844735" "11 -565.270407011048" "11 -556.49580844735" "11 -714.706275791091" "11 -714.706275791091" "11 -918.486366561081" "11 -565.270407011048" "11 -457.03480363972" "11 -714.706275791091" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -457.03480363972" "11 -918.486366561081" "11 -457.03480363972" "11 -565.270407011048" "11 -565.270407011048" "11 -1431.99286679396" "11 -556.49580844735" "11 -565.270407011048" "11 -556.49580844735" "11 -1731.75551349063" "11 -714.706275791091" "11 -556.49580844735" "11 -565.270407011048" "11 -918.486366561081" "11 -457.03480363972" "11 -714.706275791091" "11 -714.706275791091" "11 -918.486366561081" "11 -457.03480363972" "11 -1159.49955072164" "11 -565.270407011048" "11 -556.49580844735" "11 -457.03480363972" "11 -565.270407011048" "11 -918.486366561081" "11 -440.376515648916"
## [44] "11 -457.03480363972" "11 -556.49580844735" "11 -556.49580844735" "11 -565.270407011048" "11 -565.270407011048" "11 -457.03480363972" "11 -565.270407011048" "11 -565.270407011048" "11 -556.49580844735" "11 -918.486366561081" "11 -565.270407011048" "11 -457.03480363972" "11 -1431.99286679396" "11 -714.706275791091" "11 -556.49580844735" "11 -565.270407011048" "11 -565.270407011048" "11 -714.706275791091" "11 -556.49580844735" "11 -440.376515648916" "11 -714.706275791091" "11 -440.376515648916" "11 -1431.99286679396" "11 -565.270407011048" "11 -565.270407011048" "11 -440.376515648916" "11 -1159.49955072164" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -556.49580844735" "11 -556.49580844735" "11 -1159.49955072164" "11 -565.270407011048" "11 -565.270407011048" "11 -440.376515648916" "11 -565.270407011048" "11 -457.03480363972" "11 -714.706275791091" "11 -556.49580844735" "11 -565.270407011048"
## [87] "11 -714.706275791091" "11 -714.706275791091" "11 -565.270407011048" "11 -565.270407011048" "11 -440.376515648916" "11 -457.03480363972" "11 -714.706275791091" "11 -565.270407011048" "11 -440.376515648916" "11 -440.376515648916" "11 -440.376515648916" "11 -565.270407011048" "11 -714.706275791091" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -556.49580844735" "11 -565.270407011048" "11 -714.706275791091" "11 -565.270407011048" "11 -565.270407011048" "11 -440.376515648916" "11 -556.49580844735" "11 -565.270407011048" "11 -556.49580844735" "11 -556.49580844735" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -556.49580844735" "11 -556.49580844735" "11 -556.49580844735" "11 -565.270407011048" "11 -918.486366561081" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -457.03480363972" "11 -440.376515648916" "11 -565.270407011048"
## [130] "11 -565.270407011048" "11 -457.03480363972" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -457.03480363972" "11 -714.706275791091" "11 -440.376515648916" "11 -440.376515648916" "11 -565.270407011048" "11 -556.49580844735" "11 -565.270407011048" "11 -918.486366561081" "11 -565.270407011048" "11 -457.03480363972" "11 -565.270407011048" "11 -565.270407011048" "11 -918.486366561081" "11 -565.270407011048" "11 -918.486366561081" "11 -457.03480363972" "11 -714.706275791091" "11 -556.49580844735" "11 -440.376515648916" "11 -556.49580844735" "11 -565.270407011048" "11 -556.49580844735" "11 -565.270407011048" "11 -565.270407011048" "11 -457.03480363972" "11 -714.706275791091" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -714.706275791091" "11 -918.486366561081" "11 -457.03480363972" "11 -565.270407011048" "11 -440.376515648916"
## [173] "11 -918.486366561081" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -440.376515648916" "11 -714.706275791091" "11 -714.706275791091" "11 -457.03480363972" "11 -440.376515648916" "11 -457.03480363972" "11 -565.270407011048" "11 -565.270407011048" "11 -556.49580844735" "11 -556.49580844735" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -556.49580844735" "11 -918.486366561081" "11 -457.03480363972" "11 -440.376515648916" "11 -1731.75551349063" "11 -556.49580844735" "11 -565.270407011048" "11 -565.270407011048" "11 -714.706275791091" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -918.486366561081" "11 -565.270407011048" "11 -556.49580844735" "11 -457.03480363972" "11 -440.376515648916" "11 -556.49580844735" "11 -440.376515648916" "11 -565.270407011048" "11 -1159.49955072164" "11 -457.03480363972"
## [216] "11 -457.03480363972" "11 -918.486366561081" "11 -565.270407011048" "11 -440.376515648916" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -556.49580844735" "11 -565.270407011048" "11 -565.270407011048" "11 -457.03480363972" "11 -565.270407011048" "11 -714.706275791091" "11 -714.706275791091" "11 -457.03480363972" "11 -556.49580844735" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -440.376515648916" "11 -457.03480363972" "11 -565.270407011048" "11 -565.270407011048" "11 -918.486366561081" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -565.270407011048" "11 -918.486366561081" "11 -565.270407011048" "11 -565.270407011048" "11 -457.03480363972" "11 -714.706275791091" "11 -457.03480363972" "11 -440.376515648916" "11 -1159.49955072164" "11 -556.49580844735" "11 -714.706275791091" "11 -1159.49955072164" "11 -714.706275791091" "11 -457.03480363972"
## [259] "11 -1431.99286679396" "11 -918.486366561081" "11 -565.270407011048" "11 -440.376515648916" "11 -457.03480363972" "11 -457.03480363972" "11 -457.03480363972" "11 -440.376515648916" "11 -1431.99286679396" "11 -556.49580844735" "11 -457.03480363972" "11 -918.486366561081" "11 -918.486366561081" "11 -565.270407011048" "11 -714.706275791091" "11 -565.270407011048" "11 -457.03480363972" "11 -457.03480363972" "11 -565.270407011048" "11 -440.376515648916" "11 -565.270407011048" "11 -714.706275791091" "11 -565.270407011048" "11 -918.486366561081" "11 -714.706275791091" "11 -714.706275791091" "11 -457.03480363972" "11 -565.270407011048" "11 -556.49580844735" "11 -565.270407011048" "11 -565.270407011048" "11 -556.49580844735" "11 -565.270407011048" "11 -714.706275791091" "11 -440.376515648916" "11 -565.270407011048" "11 -440.376515648916" "11 -565.270407011048" "11 -556.49580844735" "11 -714.706275791091" "11 -565.270407011048" "11 -565.270407011048"
## QQn -714.707 -565.2708 -565.2708 -565.2708 -2055.575 -556.4962 -565.2708 -556.4962 -714.707 -714.707 -918.4875 -565.2708 -457.035 -714.707 -565.2708 -565.2708 -565.2708 -457.035 -918.4875 -457.035 -565.2708 -565.2708 -1431.995 -556.4962 -565.2708 -556.4962 -1731.758 -714.707 -556.4962 -565.2708 -918.4875 -457.035 -714.707 -714.707 -918.4875 -457.035 -1159.501 -565.2708 -556.4962 -457.035 -565.2708 -918.4875 -440.3767 -457.035 -556.4962 -556.4962 -565.2708 -565.2708 -457.035 -565.2708 -565.2708 -556.4962 -918.4875 -565.2708 -457.035 -1431.995 -714.707 -556.4962 -565.2708 -565.2708 -714.707 -556.4962 -440.3767 -714.707 -440.3767 -1431.995 -565.2708 -565.2708 -440.3767 -1159.501 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -556.4962 -556.4962 -1159.501 -565.2708 -565.2708 -440.3767 -565.2708 -457.035 -714.707 -556.4962 -565.2708 -714.707 -714.707 -565.2708 -565.2708 -440.3767 -457.035 -714.707 -565.2708 -440.3767 -440.3767 -440.3767 -565.2708 -714.707 -565.2708 -565.2708 -565.2708 -556.4962 -565.2708 -714.707 -565.2708 -565.2708 -440.3767 -556.4962 -565.2708 -556.4962 -556.4962 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -556.4962 -556.4962 -556.4962 -565.2708 -918.4875 -565.2708 -565.2708 -565.2708 -565.2708 -457.035 -440.3767 -565.2708 -565.2708 -457.035 -565.2708 -565.2708 -565.2708 -457.035 -714.707 -440.3767 -440.3767 -565.2708 -556.4962 -565.2708 -918.4875 -565.2708 -457.035 -565.2708 -565.2708 -918.4875 -565.2708 -918.4875 -457.035 -714.707 -556.4962 -440.3767 -556.4962 -565.2708 -556.4962 -565.2708 -565.2708 -457.035 -714.707 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -714.707 -918.4875 -457.035 -565.2708 -440.3767 -918.4875 -565.2708 -565.2708 -565.2708 -565.2708 -440.3767 -714.707 -714.707 -457.035 -440.3767 -457.035 -565.2708 -565.2708 -556.4962 -556.4962 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -556.4962 -918.4875 -457.035 -440.3767 -1731.758 -556.4962 -565.2708 -565.2708 -714.707 -565.2708 -565.2708 -565.2708 -918.4875 -565.2708 -556.4962 -457.035 -440.3767 -556.4962 -440.3767 -565.2708 -1159.501 -457.035 -457.035 -918.4875 -565.2708 -440.3767 -565.2708 -565.2708 -565.2708 -556.4962 -565.2708 -565.2708 -457.035 -565.2708 -714.707 -714.707 -457.035 -556.4962 -565.2708 -565.2708 -565.2708 -565.2708 -440.3767 -457.035 -565.2708 -565.2708 -918.4875 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -918.4875 -565.2708 -565.2708 -457.035 -714.707 -457.035 -440.3767 -1159.501 -556.4962 -714.707 -1159.501 -714.707 -457.035 -1431.995 -918.4875 -565.2708 -440.3767 -457.035 -457.035 -457.035 -440.3767 -1431.995 -556.4962 -457.035 -918.4875 -918.4875 -565.2708 -714.707 -565.2708 -457.035 -457.035 -565.2708 -440.3767 -565.2708 -714.707 -565.2708 -918.4875 -714.707 -714.707 -457.035 -565.2708 -556.4962 -565.2708 -565.2708 -556.4962 -565.2708 -714.707 -440.3767 -565.2708 -440.3767 -565.2708 -556.4962 -714.707 -565.2708 -565.2708 QQ -714.7063 -565.2704 -565.2704 -565.2704 -2055.571 -556.4958 -565.2704 -556.4958 -714.7063 -714.7063 -918.4864 -565.2704 -457.0348 -714.7063 -565.2704 -565.2704 -565.2704 -457.0348 -918.4864 -457.0348 -565.2704 -565.2704 -1431.993 -556.4958 -565.2704 -556.4958 -1731.756 -714.7063 -556.4958 -565.2704 -918.4864 -457.0348 -714.7063 -714.7063 -918.4864 -457.0348 -1159.5 -565.2704 -556.4958 -457.0348 -565.2704 -918.4864 -440.3765 -457.0348 -556.4958 -556.4958 -565.2704 -565.2704 -457.0348 -565.2704 -565.2704 -556.4958 -918.4864 -565.2704 -457.0348 -1431.993 -714.7063 -556.4958 -565.2704 -565.2704 -714.7063 -556.4958 -440.3765 -714.7063 -440.3765 -1431.993 -565.2704 -565.2704 -440.3765 -1159.5 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -556.4958 -556.4958 -1159.5 -565.2704 -565.2704 -440.3765 -565.2704 -457.0348 -714.7063 -556.4958 -565.2704 -714.7063 -714.7063 -565.2704 -565.2704 -440.3765 -457.0348 -714.7063 -565.2704 -440.3765 -440.3765 -440.3765 -565.2704 -714.7063 -565.2704 -565.2704 -565.2704 -556.4958 -565.2704 -714.7063 -565.2704 -565.2704 -440.3765 -556.4958 -565.2704 -556.4958 -556.4958 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -556.4958 -556.4958 -556.4958 -565.2704 -918.4864 -565.2704 -565.2704 -565.2704 -565.2704 -457.0348 -440.3765 -565.2704 -565.2704 -457.0348 -565.2704 -565.2704 -565.2704 -457.0348 -714.7063 -440.3765 -440.3765 -565.2704 -556.4958 -565.2704 -918.4864 -565.2704 -457.0348 -565.2704 -565.2704 -918.4864 -565.2704 -918.4864 -457.0348 -714.7063 -556.4958 -440.3765 -556.4958 -565.2704 -556.4958 -565.2704 -565.2704 -457.0348 -714.7063 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -714.7063 -918.4864 -457.0348 -565.2704 -440.3765 -918.4864 -565.2704 -565.2704 -565.2704 -565.2704 -440.3765 -714.7063 -714.7063 -457.0348 -440.3765 -457.0348 -565.2704 -565.2704 -556.4958 -556.4958 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -556.4958 -918.4864 -457.0348 -440.3765 -1731.756 -556.4958 -565.2704 -565.2704 -714.7063 -565.2704 -565.2704 -565.2704 -918.4864 -565.2704 -556.4958 -457.0348 -440.3765 -556.4958 -440.3765 -565.2704 -1159.5 -457.0348 -457.0348 -918.4864 -565.2704 -440.3765 -565.2704 -565.2704 -565.2704 -556.4958 -565.2704 -565.2704 -457.0348 -565.2704 -714.7063 -714.7063 -457.0348 -556.4958 -565.2704 -565.2704 -565.2704 -565.2704 -440.3765 -457.0348 -565.2704 -565.2704 -918.4864 -565.2704 -565.2704 -565.2704 -565.2704 -565.2704 -918.4864 -565.2704 -565.2704 -457.0348 -714.7063 -457.0348 -440.3765 -1159.5 -556.4958 -714.7063 -1159.5 -714.7063 -457.0348 -1431.993 -918.4864 -565.2704 -440.3765 -457.0348 -457.0348 -457.0348 -440.3765 -1431.993 -556.4958 -457.0348 -918.4864 -918.4864 -565.2704 -714.7063 -565.2704 -457.0348 -457.0348 -565.2704 -440.3765 -565.2704 -714.7063 -565.2704 -918.4864 -714.7063 -714.7063 -457.0348 -565.2704 -556.4958 -565.2704 -565.2704 -556.4958 -565.2704 -714.7063 -440.3765 -565.2704 -440.3765 -565.2704 -556.4958 -714.7063 -565.2704 -565.2704 epsilon_cond 1.013111e-06 7.544663e-07 7.544663e-07 7.544663e-07 1.651313e-06 7.349614e-07 7.544663e-07 7.349614e-07 1.013111e-06 1.013111e-06 1.230179e-06 7.544663e-07 4.615132e-07 1.013111e-06 7.544663e-07 7.544663e-07 7.544663e-07 4.615132e-07 1.230179e-06 4.615132e-07 7.544663e-07 7.544663e-07 1.50318e-06 7.349614e-07 7.544663e-07 7.349614e-07 1.587705e-06 1.013111e-06 7.349614e-07 7.544663e-07 1.230179e-06 4.615132e-07 1.013111e-06 1.013111e-06 1.230179e-06 4.615132e-07 1.388424e-06 7.544663e-07 7.349614e-07 4.615132e-07 7.544663e-07 1.230179e-06 4.036383e-07 4.615132e-07 7.349614e-07 7.349614e-07 7.544663e-07 7.544663e-07 4.615132e-07 7.544663e-07 7.544663e-07 7.349614e-07 1.230179e-06 7.544663e-07 4.615132e-07 1.50318e-06 1.013111e-06 7.349614e-07 7.544663e-07 7.544663e-07 1.013111e-06 7.349614e-07 4.036383e-07 1.013111e-06 4.036383e-07 1.50318e-06 7.544663e-07 7.544663e-07 4.036383e-07 1.388424e-06 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.349614e-07 7.349614e-07 1.388424e-06 7.544663e-07 7.544663e-07 4.036383e-07 7.544663e-07 4.615132e-07 1.013111e-06 7.349614e-07 7.544663e-07 1.013111e-06 1.013111e-06 7.544663e-07 7.544663e-07 4.036383e-07 4.615132e-07 1.013111e-06 7.544663e-07 4.036383e-07 4.036383e-07 4.036383e-07 7.544663e-07 1.013111e-06 7.544663e-07 7.544663e-07 7.544663e-07 7.349614e-07 7.544663e-07 1.013111e-06 7.544663e-07 7.544663e-07 4.036383e-07 7.349614e-07 7.544663e-07 7.349614e-07 7.349614e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.349614e-07 7.349614e-07 7.349614e-07 7.544663e-07 1.230179e-06 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 4.615132e-07 4.036383e-07 7.544663e-07 7.544663e-07 4.615132e-07 7.544663e-07 7.544663e-07 7.544663e-07 4.615132e-07 1.013111e-06 4.036383e-07 4.036383e-07 7.544663e-07 7.349614e-07 7.544663e-07 1.230179e-06 7.544663e-07 4.615132e-07 7.544663e-07 7.544663e-07 1.230179e-06 7.544663e-07 1.230179e-06 4.615132e-07 1.013111e-06 7.349614e-07 4.036383e-07 7.349614e-07 7.544663e-07 7.349614e-07 7.544663e-07 7.544663e-07 4.615132e-07 1.013111e-06 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 1.013111e-06 1.230179e-06 4.615132e-07 7.544663e-07 4.036383e-07 1.230179e-06 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 4.036383e-07 1.013111e-06 1.013111e-06 4.615132e-07 4.036383e-07 4.615132e-07 7.544663e-07 7.544663e-07 7.349614e-07 7.349614e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.349614e-07 1.230179e-06 4.615132e-07 4.036383e-07 1.587705e-06 7.349614e-07 7.544663e-07 7.544663e-07 1.013111e-06 7.544663e-07 7.544663e-07 7.544663e-07 1.230179e-06 7.544663e-07 7.349614e-07 4.615132e-07 4.036383e-07 7.349614e-07 4.036383e-07 7.544663e-07 1.388424e-06 4.615132e-07 4.615132e-07 1.230179e-06 7.544663e-07 4.036383e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.349614e-07 7.544663e-07 7.544663e-07 4.615132e-07 7.544663e-07 1.013111e-06 1.013111e-06 4.615132e-07 7.349614e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 4.036383e-07 4.615132e-07 7.544663e-07 7.544663e-07 1.230179e-06 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 7.544663e-07 1.230179e-06 7.544663e-07 7.544663e-07 4.615132e-07 1.013111e-06 4.615132e-07 4.036383e-07 1.388424e-06 7.349614e-07 1.013111e-06 1.388424e-06 1.013111e-06 4.615132e-07 1.50318e-06 1.230179e-06 7.544663e-07 4.036383e-07 4.615132e-07 4.615132e-07 4.615132e-07 4.036383e-07 1.50318e-06 7.349614e-07 4.615132e-07 1.230179e-06 1.230179e-06 7.544663e-07 1.013111e-06 7.544663e-07 4.615132e-07 4.615132e-07 7.544663e-07 4.036383e-07 7.544663e-07 1.013111e-06 7.544663e-07 1.230179e-06 1.013111e-06 1.013111e-06 4.615132e-07 7.544663e-07 7.349614e-07 7.544663e-07 7.544663e-07 7.349614e-07 7.544663e-07 1.013111e-06 4.036383e-07 7.544663e-07 4.036383e-07 7.544663e-07 7.349614e-07 1.013111e-06 7.544663e-07 7.544663e-07 mu 2.704759 w 0.3192766
## [1] "12 -714.706999868857" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -2055.57480886483" "12 -556.49621745061" "12 -565.27083348883" "12 -556.49621745061" "12 -714.706999868857" "12 -714.706999868857" "12 -918.487496464788" "12 -565.27083348883" "12 -457.035014567419" "12 -714.706999868857" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -457.035014567419" "12 -918.487496464788" "12 -457.035014567419" "12 -565.27083348883" "12 -565.27083348883" "12 -1431.99501934055" "12 -556.49621745061" "12 -565.27083348883" "12 -556.49621745061" "12 -1731.75826301142" "12 -714.706999868857" "12 -556.49621745061" "12 -565.27083348883" "12 -918.487496464788" "12 -457.035014567419" "12 -714.706999868857" "12 -714.706999868857" "12 -918.487496464788" "12 -457.035014567419" "12 -1159.50116060061" "12 -565.27083348883" "12 -556.49621745061" "12 -457.035014567419" "12 -565.27083348883" "12 -918.487496464788" "12 -440.376693401808"
## [44] "12 -457.035014567419" "12 -556.49621745061" "12 -556.49621745061" "12 -565.27083348883" "12 -565.27083348883" "12 -457.035014567419" "12 -565.27083348883" "12 -565.27083348883" "12 -556.49621745061" "12 -918.487496464788" "12 -565.27083348883" "12 -457.035014567419" "12 -1431.99501934055" "12 -714.706999868857" "12 -556.49621745061" "12 -565.27083348883" "12 -565.27083348883" "12 -714.706999868857" "12 -556.49621745061" "12 -440.376693401808" "12 -714.706999868857" "12 -440.376693401808" "12 -1431.99501934055" "12 -565.27083348883" "12 -565.27083348883" "12 -440.376693401808" "12 -1159.50116060061" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -556.49621745061" "12 -556.49621745061" "12 -1159.50116060061" "12 -565.27083348883" "12 -565.27083348883" "12 -440.376693401808" "12 -565.27083348883" "12 -457.035014567419" "12 -714.706999868857" "12 -556.49621745061" "12 -565.27083348883"
## [87] "12 -714.706999868857" "12 -714.706999868857" "12 -565.27083348883" "12 -565.27083348883" "12 -440.376693401808" "12 -457.035014567419" "12 -714.706999868857" "12 -565.27083348883" "12 -440.376693401808" "12 -440.376693401808" "12 -440.376693401808" "12 -565.27083348883" "12 -714.706999868857" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -556.49621745061" "12 -565.27083348883" "12 -714.706999868857" "12 -565.27083348883" "12 -565.27083348883" "12 -440.376693401808" "12 -556.49621745061" "12 -565.27083348883" "12 -556.49621745061" "12 -556.49621745061" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -556.49621745061" "12 -556.49621745061" "12 -556.49621745061" "12 -565.27083348883" "12 -918.487496464788" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -457.035014567419" "12 -440.376693401808" "12 -565.27083348883"
## [130] "12 -565.27083348883" "12 -457.035014567419" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -457.035014567419" "12 -714.706999868857" "12 -440.376693401808" "12 -440.376693401808" "12 -565.27083348883" "12 -556.49621745061" "12 -565.27083348883" "12 -918.487496464788" "12 -565.27083348883" "12 -457.035014567419" "12 -565.27083348883" "12 -565.27083348883" "12 -918.487496464788" "12 -565.27083348883" "12 -918.487496464788" "12 -457.035014567419" "12 -714.706999868857" "12 -556.49621745061" "12 -440.376693401808" "12 -556.49621745061" "12 -565.27083348883" "12 -556.49621745061" "12 -565.27083348883" "12 -565.27083348883" "12 -457.035014567419" "12 -714.706999868857" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -714.706999868857" "12 -918.487496464788" "12 -457.035014567419" "12 -565.27083348883" "12 -440.376693401808"
## [173] "12 -918.487496464788" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -440.376693401808" "12 -714.706999868857" "12 -714.706999868857" "12 -457.035014567419" "12 -440.376693401808" "12 -457.035014567419" "12 -565.27083348883" "12 -565.27083348883" "12 -556.49621745061" "12 -556.49621745061" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -556.49621745061" "12 -918.487496464788" "12 -457.035014567419" "12 -440.376693401808" "12 -1731.75826301142" "12 -556.49621745061" "12 -565.27083348883" "12 -565.27083348883" "12 -714.706999868857" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -918.487496464788" "12 -565.27083348883" "12 -556.49621745061" "12 -457.035014567419" "12 -440.376693401808" "12 -556.49621745061" "12 -440.376693401808" "12 -565.27083348883" "12 -1159.50116060061" "12 -457.035014567419"
## [216] "12 -457.035014567419" "12 -918.487496464788" "12 -565.27083348883" "12 -440.376693401808" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -556.49621745061" "12 -565.27083348883" "12 -565.27083348883" "12 -457.035014567419" "12 -565.27083348883" "12 -714.706999868857" "12 -714.706999868857" "12 -457.035014567419" "12 -556.49621745061" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -440.376693401808" "12 -457.035014567419" "12 -565.27083348883" "12 -565.27083348883" "12 -918.487496464788" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -565.27083348883" "12 -918.487496464788" "12 -565.27083348883" "12 -565.27083348883" "12 -457.035014567419" "12 -714.706999868857" "12 -457.035014567419" "12 -440.376693401808" "12 -1159.50116060061" "12 -556.49621745061" "12 -714.706999868857" "12 -1159.50116060061" "12 -714.706999868857" "12 -457.035014567419"
## [259] "12 -1431.99501934055" "12 -918.487496464788" "12 -565.27083348883" "12 -440.376693401808" "12 -457.035014567419" "12 -457.035014567419" "12 -457.035014567419" "12 -440.376693401808" "12 -1431.99501934055" "12 -556.49621745061" "12 -457.035014567419" "12 -918.487496464788" "12 -918.487496464788" "12 -565.27083348883" "12 -714.706999868857" "12 -565.27083348883" "12 -457.035014567419" "12 -457.035014567419" "12 -565.27083348883" "12 -440.376693401808" "12 -565.27083348883" "12 -714.706999868857" "12 -565.27083348883" "12 -918.487496464788" "12 -714.706999868857" "12 -714.706999868857" "12 -457.035014567419" "12 -565.27083348883" "12 -556.49621745061" "12 -565.27083348883" "12 -565.27083348883" "12 -556.49621745061" "12 -565.27083348883" "12 -714.706999868857" "12 -440.376693401808" "12 -565.27083348883" "12 -440.376693401808" "12 -565.27083348883" "12 -556.49621745061" "12 -714.706999868857" "12 -565.27083348883" "12 -565.27083348883"
## QQn -714.7073 -565.271 -565.271 -565.271 -2055.576 -556.4964 -565.271 -556.4964 -714.7073 -714.7073 -918.4879 -565.271 -457.0351 -714.7073 -565.271 -565.271 -565.271 -457.0351 -918.4879 -457.0351 -565.271 -565.271 -1431.996 -556.4964 -565.271 -556.4964 -1731.759 -714.7073 -556.4964 -565.271 -918.4879 -457.0351 -714.7073 -714.7073 -918.4879 -457.0351 -1159.502 -565.271 -556.4964 -457.0351 -565.271 -918.4879 -440.3768 -457.0351 -556.4964 -556.4964 -565.271 -565.271 -457.0351 -565.271 -565.271 -556.4964 -918.4879 -565.271 -457.0351 -1431.996 -714.7073 -556.4964 -565.271 -565.271 -714.7073 -556.4964 -440.3768 -714.7073 -440.3768 -1431.996 -565.271 -565.271 -440.3768 -1159.502 -565.271 -565.271 -565.271 -565.271 -565.271 -556.4964 -556.4964 -1159.502 -565.271 -565.271 -440.3768 -565.271 -457.0351 -714.7073 -556.4964 -565.271 -714.7073 -714.7073 -565.271 -565.271 -440.3768 -457.0351 -714.7073 -565.271 -440.3768 -440.3768 -440.3768 -565.271 -714.7073 -565.271 -565.271 -565.271 -556.4964 -565.271 -714.7073 -565.271 -565.271 -440.3768 -556.4964 -565.271 -556.4964 -556.4964 -565.271 -565.271 -565.271 -565.271 -565.271 -556.4964 -556.4964 -556.4964 -565.271 -918.4879 -565.271 -565.271 -565.271 -565.271 -457.0351 -440.3768 -565.271 -565.271 -457.0351 -565.271 -565.271 -565.271 -457.0351 -714.7073 -440.3768 -440.3768 -565.271 -556.4964 -565.271 -918.4879 -565.271 -457.0351 -565.271 -565.271 -918.4879 -565.271 -918.4879 -457.0351 -714.7073 -556.4964 -440.3768 -556.4964 -565.271 -556.4964 -565.271 -565.271 -457.0351 -714.7073 -565.271 -565.271 -565.271 -565.271 -565.271 -565.271 -565.271 -714.7073 -918.4879 -457.0351 -565.271 -440.3768 -918.4879 -565.271 -565.271 -565.271 -565.271 -440.3768 -714.7073 -714.7073 -457.0351 -440.3768 -457.0351 -565.271 -565.271 -556.4964 -556.4964 -565.271 -565.271 -565.271 -565.271 -565.271 -565.271 -556.4964 -918.4879 -457.0351 -440.3768 -1731.759 -556.4964 -565.271 -565.271 -714.7073 -565.271 -565.271 -565.271 -918.4879 -565.271 -556.4964 -457.0351 -440.3768 -556.4964 -440.3768 -565.271 -1159.502 -457.0351 -457.0351 -918.4879 -565.271 -440.3768 -565.271 -565.271 -565.271 -556.4964 -565.271 -565.271 -457.0351 -565.271 -714.7073 -714.7073 -457.0351 -556.4964 -565.271 -565.271 -565.271 -565.271 -440.3768 -457.0351 -565.271 -565.271 -918.4879 -565.271 -565.271 -565.271 -565.271 -565.271 -918.4879 -565.271 -565.271 -457.0351 -714.7073 -457.0351 -440.3768 -1159.502 -556.4964 -714.7073 -1159.502 -714.7073 -457.0351 -1431.996 -918.4879 -565.271 -440.3768 -457.0351 -457.0351 -457.0351 -440.3768 -1431.996 -556.4964 -457.0351 -918.4879 -918.4879 -565.271 -714.7073 -565.271 -457.0351 -457.0351 -565.271 -440.3768 -565.271 -714.7073 -565.271 -918.4879 -714.7073 -714.7073 -457.0351 -565.271 -556.4964 -565.271 -565.271 -556.4964 -565.271 -714.7073 -440.3768 -565.271 -440.3768 -565.271 -556.4964 -714.7073 -565.271 -565.271 QQ -714.707 -565.2708 -565.2708 -565.2708 -2055.575 -556.4962 -565.2708 -556.4962 -714.707 -714.707 -918.4875 -565.2708 -457.035 -714.707 -565.2708 -565.2708 -565.2708 -457.035 -918.4875 -457.035 -565.2708 -565.2708 -1431.995 -556.4962 -565.2708 -556.4962 -1731.758 -714.707 -556.4962 -565.2708 -918.4875 -457.035 -714.707 -714.707 -918.4875 -457.035 -1159.501 -565.2708 -556.4962 -457.035 -565.2708 -918.4875 -440.3767 -457.035 -556.4962 -556.4962 -565.2708 -565.2708 -457.035 -565.2708 -565.2708 -556.4962 -918.4875 -565.2708 -457.035 -1431.995 -714.707 -556.4962 -565.2708 -565.2708 -714.707 -556.4962 -440.3767 -714.707 -440.3767 -1431.995 -565.2708 -565.2708 -440.3767 -1159.501 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -556.4962 -556.4962 -1159.501 -565.2708 -565.2708 -440.3767 -565.2708 -457.035 -714.707 -556.4962 -565.2708 -714.707 -714.707 -565.2708 -565.2708 -440.3767 -457.035 -714.707 -565.2708 -440.3767 -440.3767 -440.3767 -565.2708 -714.707 -565.2708 -565.2708 -565.2708 -556.4962 -565.2708 -714.707 -565.2708 -565.2708 -440.3767 -556.4962 -565.2708 -556.4962 -556.4962 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -556.4962 -556.4962 -556.4962 -565.2708 -918.4875 -565.2708 -565.2708 -565.2708 -565.2708 -457.035 -440.3767 -565.2708 -565.2708 -457.035 -565.2708 -565.2708 -565.2708 -457.035 -714.707 -440.3767 -440.3767 -565.2708 -556.4962 -565.2708 -918.4875 -565.2708 -457.035 -565.2708 -565.2708 -918.4875 -565.2708 -918.4875 -457.035 -714.707 -556.4962 -440.3767 -556.4962 -565.2708 -556.4962 -565.2708 -565.2708 -457.035 -714.707 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -714.707 -918.4875 -457.035 -565.2708 -440.3767 -918.4875 -565.2708 -565.2708 -565.2708 -565.2708 -440.3767 -714.707 -714.707 -457.035 -440.3767 -457.035 -565.2708 -565.2708 -556.4962 -556.4962 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -556.4962 -918.4875 -457.035 -440.3767 -1731.758 -556.4962 -565.2708 -565.2708 -714.707 -565.2708 -565.2708 -565.2708 -918.4875 -565.2708 -556.4962 -457.035 -440.3767 -556.4962 -440.3767 -565.2708 -1159.501 -457.035 -457.035 -918.4875 -565.2708 -440.3767 -565.2708 -565.2708 -565.2708 -556.4962 -565.2708 -565.2708 -457.035 -565.2708 -714.707 -714.707 -457.035 -556.4962 -565.2708 -565.2708 -565.2708 -565.2708 -440.3767 -457.035 -565.2708 -565.2708 -918.4875 -565.2708 -565.2708 -565.2708 -565.2708 -565.2708 -918.4875 -565.2708 -565.2708 -457.035 -714.707 -457.035 -440.3767 -1159.501 -556.4962 -714.707 -1159.501 -714.707 -457.035 -1431.995 -918.4875 -565.2708 -440.3767 -457.035 -457.035 -457.035 -440.3767 -1431.995 -556.4962 -457.035 -918.4875 -918.4875 -565.2708 -714.707 -565.2708 -457.035 -457.035 -565.2708 -440.3767 -565.2708 -714.707 -565.2708 -918.4875 -714.707 -714.707 -457.035 -565.2708 -556.4962 -565.2708 -565.2708 -556.4962 -565.2708 -714.707 -440.3767 -565.2708 -440.3767 -565.2708 -556.4962 -714.707 -565.2708 -565.2708 epsilon_cond 3.764478e-07 2.803411e-07 2.803411e-07 2.803411e-07 6.135888e-07 2.730936e-07 2.803411e-07 2.730936e-07 3.764478e-07 3.764478e-07 4.57105e-07 2.803411e-07 1.714864e-07 3.764478e-07 2.803411e-07 2.803411e-07 2.803411e-07 1.714864e-07 4.57105e-07 1.714864e-07 2.803411e-07 2.803411e-07 5.585462e-07 2.730936e-07 2.803411e-07 2.730936e-07 5.899536e-07 3.764478e-07 2.730936e-07 2.803411e-07 4.57105e-07 1.714864e-07 3.764478e-07 3.764478e-07 4.57105e-07 1.714864e-07 5.159053e-07 2.803411e-07 2.730936e-07 1.714864e-07 2.803411e-07 4.57105e-07 1.499813e-07 1.714864e-07 2.730936e-07 2.730936e-07 2.803411e-07 2.803411e-07 1.714864e-07 2.803411e-07 2.803411e-07 2.730936e-07 4.57105e-07 2.803411e-07 1.714864e-07 5.585462e-07 3.764478e-07 2.730936e-07 2.803411e-07 2.803411e-07 3.764478e-07 2.730936e-07 1.499813e-07 3.764478e-07 1.499813e-07 5.585462e-07 2.803411e-07 2.803411e-07 1.499813e-07 5.159053e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.730936e-07 2.730936e-07 5.159053e-07 2.803411e-07 2.803411e-07 1.499813e-07 2.803411e-07 1.714864e-07 3.764478e-07 2.730936e-07 2.803411e-07 3.764478e-07 3.764478e-07 2.803411e-07 2.803411e-07 1.499813e-07 1.714864e-07 3.764478e-07 2.803411e-07 1.499813e-07 1.499813e-07 1.499813e-07 2.803411e-07 3.764478e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.730936e-07 2.803411e-07 3.764478e-07 2.803411e-07 2.803411e-07 1.499813e-07 2.730936e-07 2.803411e-07 2.730936e-07 2.730936e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.730936e-07 2.730936e-07 2.730936e-07 2.803411e-07 4.57105e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 1.714864e-07 1.499813e-07 2.803411e-07 2.803411e-07 1.714864e-07 2.803411e-07 2.803411e-07 2.803411e-07 1.714864e-07 3.764478e-07 1.499813e-07 1.499813e-07 2.803411e-07 2.730936e-07 2.803411e-07 4.57105e-07 2.803411e-07 1.714864e-07 2.803411e-07 2.803411e-07 4.57105e-07 2.803411e-07 4.57105e-07 1.714864e-07 3.764478e-07 2.730936e-07 1.499813e-07 2.730936e-07 2.803411e-07 2.730936e-07 2.803411e-07 2.803411e-07 1.714864e-07 3.764478e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 3.764478e-07 4.57105e-07 1.714864e-07 2.803411e-07 1.499813e-07 4.57105e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 1.499813e-07 3.764478e-07 3.764478e-07 1.714864e-07 1.499813e-07 1.714864e-07 2.803411e-07 2.803411e-07 2.730936e-07 2.730936e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.730936e-07 4.57105e-07 1.714864e-07 1.499813e-07 5.899536e-07 2.730936e-07 2.803411e-07 2.803411e-07 3.764478e-07 2.803411e-07 2.803411e-07 2.803411e-07 4.57105e-07 2.803411e-07 2.730936e-07 1.714864e-07 1.499813e-07 2.730936e-07 1.499813e-07 2.803411e-07 5.159053e-07 1.714864e-07 1.714864e-07 4.57105e-07 2.803411e-07 1.499813e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.730936e-07 2.803411e-07 2.803411e-07 1.714864e-07 2.803411e-07 3.764478e-07 3.764478e-07 1.714864e-07 2.730936e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 1.499813e-07 1.714864e-07 2.803411e-07 2.803411e-07 4.57105e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 2.803411e-07 4.57105e-07 2.803411e-07 2.803411e-07 1.714864e-07 3.764478e-07 1.714864e-07 1.499813e-07 5.159053e-07 2.730936e-07 3.764478e-07 5.159053e-07 3.764478e-07 1.714864e-07 5.585462e-07 4.57105e-07 2.803411e-07 1.499813e-07 1.714864e-07 1.714864e-07 1.714864e-07 1.499813e-07 5.585462e-07 2.730936e-07 1.714864e-07 4.57105e-07 4.57105e-07 2.803411e-07 3.764478e-07 2.803411e-07 1.714864e-07 1.714864e-07 2.803411e-07 1.499813e-07 2.803411e-07 3.764478e-07 2.803411e-07 4.57105e-07 3.764478e-07 3.764478e-07 1.714864e-07 2.803411e-07 2.730936e-07 2.803411e-07 2.803411e-07 2.730936e-07 2.803411e-07 3.764478e-07 1.499813e-07 2.803411e-07 1.499813e-07 2.803411e-07 2.730936e-07 3.764478e-07 2.803411e-07 2.803411e-07 mu 2.704757 w 0.3192761
## [1] "13 -714.707268918809" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -2055.57607014337" "13 -556.496369426182" "13 -565.270991957531" "13 -556.496369426182" "13 -714.707268918809" "13 -714.707268918809" "13 -918.48791631024" "13 -565.270991957531" "13 -457.035092942709" "13 -714.707268918809" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -457.035092942709" "13 -918.48791631024" "13 -457.035092942709" "13 -565.270991957531" "13 -565.270991957531" "13 -1431.99581917635" "13 -556.496369426182" "13 -565.270991957531" "13 -556.496369426182" "13 -1731.759284669" "13 -714.707268918809" "13 -556.496369426182" "13 -565.270991957531" "13 -918.48791631024" "13 -457.035092942709" "13 -714.707268918809" "13 -714.707268918809" "13 -918.48791631024" "13 -457.035092942709" "13 -1159.50175879373" "13 -565.270991957531" "13 -556.496369426182" "13 -457.035092942709" "13 -565.270991957531" "13 -918.48791631024" "13 -440.376759450107"
## [44] "13 -457.035092942709" "13 -556.496369426182" "13 -556.496369426182" "13 -565.270991957531" "13 -565.270991957531" "13 -457.035092942709" "13 -565.270991957531" "13 -565.270991957531" "13 -556.496369426182" "13 -918.48791631024" "13 -565.270991957531" "13 -457.035092942709" "13 -1431.99581917635" "13 -714.707268918809" "13 -556.496369426182" "13 -565.270991957531" "13 -565.270991957531" "13 -714.707268918809" "13 -556.496369426182" "13 -440.376759450107" "13 -714.707268918809" "13 -440.376759450107" "13 -1431.99581917635" "13 -565.270991957531" "13 -565.270991957531" "13 -440.376759450107" "13 -1159.50175879373" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -556.496369426182" "13 -556.496369426182" "13 -1159.50175879373" "13 -565.270991957531" "13 -565.270991957531" "13 -440.376759450107" "13 -565.270991957531" "13 -457.035092942709" "13 -714.707268918809" "13 -556.496369426182" "13 -565.270991957531"
## [87] "13 -714.707268918809" "13 -714.707268918809" "13 -565.270991957531" "13 -565.270991957531" "13 -440.376759450107" "13 -457.035092942709" "13 -714.707268918809" "13 -565.270991957531" "13 -440.376759450107" "13 -440.376759450107" "13 -440.376759450107" "13 -565.270991957531" "13 -714.707268918809" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -556.496369426182" "13 -565.270991957531" "13 -714.707268918809" "13 -565.270991957531" "13 -565.270991957531" "13 -440.376759450107" "13 -556.496369426182" "13 -565.270991957531" "13 -556.496369426182" "13 -556.496369426182" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -556.496369426182" "13 -556.496369426182" "13 -556.496369426182" "13 -565.270991957531" "13 -918.48791631024" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -457.035092942709" "13 -440.376759450107" "13 -565.270991957531"
## [130] "13 -565.270991957531" "13 -457.035092942709" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -457.035092942709" "13 -714.707268918809" "13 -440.376759450107" "13 -440.376759450107" "13 -565.270991957531" "13 -556.496369426182" "13 -565.270991957531" "13 -918.48791631024" "13 -565.270991957531" "13 -457.035092942709" "13 -565.270991957531" "13 -565.270991957531" "13 -918.48791631024" "13 -565.270991957531" "13 -918.48791631024" "13 -457.035092942709" "13 -714.707268918809" "13 -556.496369426182" "13 -440.376759450107" "13 -556.496369426182" "13 -565.270991957531" "13 -556.496369426182" "13 -565.270991957531" "13 -565.270991957531" "13 -457.035092942709" "13 -714.707268918809" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -714.707268918809" "13 -918.48791631024" "13 -457.035092942709" "13 -565.270991957531" "13 -440.376759450107"
## [173] "13 -918.48791631024" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -440.376759450107" "13 -714.707268918809" "13 -714.707268918809" "13 -457.035092942709" "13 -440.376759450107" "13 -457.035092942709" "13 -565.270991957531" "13 -565.270991957531" "13 -556.496369426182" "13 -556.496369426182" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -556.496369426182" "13 -918.48791631024" "13 -457.035092942709" "13 -440.376759450107" "13 -1731.759284669" "13 -556.496369426182" "13 -565.270991957531" "13 -565.270991957531" "13 -714.707268918809" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -918.48791631024" "13 -565.270991957531" "13 -556.496369426182" "13 -457.035092942709" "13 -440.376759450107" "13 -556.496369426182" "13 -440.376759450107" "13 -565.270991957531" "13 -1159.50175879373" "13 -457.035092942709"
## [216] "13 -457.035092942709" "13 -918.48791631024" "13 -565.270991957531" "13 -440.376759450107" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -556.496369426182" "13 -565.270991957531" "13 -565.270991957531" "13 -457.035092942709" "13 -565.270991957531" "13 -714.707268918809" "13 -714.707268918809" "13 -457.035092942709" "13 -556.496369426182" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -440.376759450107" "13 -457.035092942709" "13 -565.270991957531" "13 -565.270991957531" "13 -918.48791631024" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -565.270991957531" "13 -918.48791631024" "13 -565.270991957531" "13 -565.270991957531" "13 -457.035092942709" "13 -714.707268918809" "13 -457.035092942709" "13 -440.376759450107" "13 -1159.50175879373" "13 -556.496369426182" "13 -714.707268918809" "13 -1159.50175879373" "13 -714.707268918809" "13 -457.035092942709"
## [259] "13 -1431.99581917635" "13 -918.48791631024" "13 -565.270991957531" "13 -440.376759450107" "13 -457.035092942709" "13 -457.035092942709" "13 -457.035092942709" "13 -440.376759450107" "13 -1431.99581917635" "13 -556.496369426182" "13 -457.035092942709" "13 -918.48791631024" "13 -918.48791631024" "13 -565.270991957531" "13 -714.707268918809" "13 -565.270991957531" "13 -457.035092942709" "13 -457.035092942709" "13 -565.270991957531" "13 -440.376759450107" "13 -565.270991957531" "13 -714.707268918809" "13 -565.270991957531" "13 -918.48791631024" "13 -714.707268918809" "13 -714.707268918809" "13 -457.035092942709" "13 -565.270991957531" "13 -556.496369426182" "13 -565.270991957531" "13 -565.270991957531" "13 -556.496369426182" "13 -565.270991957531" "13 -714.707268918809" "13 -440.376759450107" "13 -565.270991957531" "13 -440.376759450107" "13 -565.270991957531" "13 -556.496369426182" "13 -714.707268918809" "13 -565.270991957531" "13 -565.270991957531"
## QQn -714.7074 -565.2711 -565.2711 -565.2711 -2055.577 -556.4964 -565.2711 -556.4964 -714.7074 -714.7074 -918.4881 -565.2711 -457.0351 -714.7074 -565.2711 -565.2711 -565.2711 -457.0351 -918.4881 -457.0351 -565.2711 -565.2711 -1431.996 -556.4964 -565.2711 -556.4964 -1731.76 -714.7074 -556.4964 -565.2711 -918.4881 -457.0351 -714.7074 -714.7074 -918.4881 -457.0351 -1159.502 -565.2711 -556.4964 -457.0351 -565.2711 -918.4881 -440.3768 -457.0351 -556.4964 -556.4964 -565.2711 -565.2711 -457.0351 -565.2711 -565.2711 -556.4964 -918.4881 -565.2711 -457.0351 -1431.996 -714.7074 -556.4964 -565.2711 -565.2711 -714.7074 -556.4964 -440.3768 -714.7074 -440.3768 -1431.996 -565.2711 -565.2711 -440.3768 -1159.502 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4964 -556.4964 -1159.502 -565.2711 -565.2711 -440.3768 -565.2711 -457.0351 -714.7074 -556.4964 -565.2711 -714.7074 -714.7074 -565.2711 -565.2711 -440.3768 -457.0351 -714.7074 -565.2711 -440.3768 -440.3768 -440.3768 -565.2711 -714.7074 -565.2711 -565.2711 -565.2711 -556.4964 -565.2711 -714.7074 -565.2711 -565.2711 -440.3768 -556.4964 -565.2711 -556.4964 -556.4964 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4964 -556.4964 -556.4964 -565.2711 -918.4881 -565.2711 -565.2711 -565.2711 -565.2711 -457.0351 -440.3768 -565.2711 -565.2711 -457.0351 -565.2711 -565.2711 -565.2711 -457.0351 -714.7074 -440.3768 -440.3768 -565.2711 -556.4964 -565.2711 -918.4881 -565.2711 -457.0351 -565.2711 -565.2711 -918.4881 -565.2711 -918.4881 -457.0351 -714.7074 -556.4964 -440.3768 -556.4964 -565.2711 -556.4964 -565.2711 -565.2711 -457.0351 -714.7074 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -714.7074 -918.4881 -457.0351 -565.2711 -440.3768 -918.4881 -565.2711 -565.2711 -565.2711 -565.2711 -440.3768 -714.7074 -714.7074 -457.0351 -440.3768 -457.0351 -565.2711 -565.2711 -556.4964 -556.4964 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4964 -918.4881 -457.0351 -440.3768 -1731.76 -556.4964 -565.2711 -565.2711 -714.7074 -565.2711 -565.2711 -565.2711 -918.4881 -565.2711 -556.4964 -457.0351 -440.3768 -556.4964 -440.3768 -565.2711 -1159.502 -457.0351 -457.0351 -918.4881 -565.2711 -440.3768 -565.2711 -565.2711 -565.2711 -556.4964 -565.2711 -565.2711 -457.0351 -565.2711 -714.7074 -714.7074 -457.0351 -556.4964 -565.2711 -565.2711 -565.2711 -565.2711 -440.3768 -457.0351 -565.2711 -565.2711 -918.4881 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -918.4881 -565.2711 -565.2711 -457.0351 -714.7074 -457.0351 -440.3768 -1159.502 -556.4964 -714.7074 -1159.502 -714.7074 -457.0351 -1431.996 -918.4881 -565.2711 -440.3768 -457.0351 -457.0351 -457.0351 -440.3768 -1431.996 -556.4964 -457.0351 -918.4881 -918.4881 -565.2711 -714.7074 -565.2711 -457.0351 -457.0351 -565.2711 -440.3768 -565.2711 -714.7074 -565.2711 -918.4881 -714.7074 -714.7074 -457.0351 -565.2711 -556.4964 -565.2711 -565.2711 -556.4964 -565.2711 -714.7074 -440.3768 -565.2711 -440.3768 -565.2711 -556.4964 -714.7074 -565.2711 -565.2711 QQ -714.7073 -565.271 -565.271 -565.271 -2055.576 -556.4964 -565.271 -556.4964 -714.7073 -714.7073 -918.4879 -565.271 -457.0351 -714.7073 -565.271 -565.271 -565.271 -457.0351 -918.4879 -457.0351 -565.271 -565.271 -1431.996 -556.4964 -565.271 -556.4964 -1731.759 -714.7073 -556.4964 -565.271 -918.4879 -457.0351 -714.7073 -714.7073 -918.4879 -457.0351 -1159.502 -565.271 -556.4964 -457.0351 -565.271 -918.4879 -440.3768 -457.0351 -556.4964 -556.4964 -565.271 -565.271 -457.0351 -565.271 -565.271 -556.4964 -918.4879 -565.271 -457.0351 -1431.996 -714.7073 -556.4964 -565.271 -565.271 -714.7073 -556.4964 -440.3768 -714.7073 -440.3768 -1431.996 -565.271 -565.271 -440.3768 -1159.502 -565.271 -565.271 -565.271 -565.271 -565.271 -556.4964 -556.4964 -1159.502 -565.271 -565.271 -440.3768 -565.271 -457.0351 -714.7073 -556.4964 -565.271 -714.7073 -714.7073 -565.271 -565.271 -440.3768 -457.0351 -714.7073 -565.271 -440.3768 -440.3768 -440.3768 -565.271 -714.7073 -565.271 -565.271 -565.271 -556.4964 -565.271 -714.7073 -565.271 -565.271 -440.3768 -556.4964 -565.271 -556.4964 -556.4964 -565.271 -565.271 -565.271 -565.271 -565.271 -556.4964 -556.4964 -556.4964 -565.271 -918.4879 -565.271 -565.271 -565.271 -565.271 -457.0351 -440.3768 -565.271 -565.271 -457.0351 -565.271 -565.271 -565.271 -457.0351 -714.7073 -440.3768 -440.3768 -565.271 -556.4964 -565.271 -918.4879 -565.271 -457.0351 -565.271 -565.271 -918.4879 -565.271 -918.4879 -457.0351 -714.7073 -556.4964 -440.3768 -556.4964 -565.271 -556.4964 -565.271 -565.271 -457.0351 -714.7073 -565.271 -565.271 -565.271 -565.271 -565.271 -565.271 -565.271 -714.7073 -918.4879 -457.0351 -565.271 -440.3768 -918.4879 -565.271 -565.271 -565.271 -565.271 -440.3768 -714.7073 -714.7073 -457.0351 -440.3768 -457.0351 -565.271 -565.271 -556.4964 -556.4964 -565.271 -565.271 -565.271 -565.271 -565.271 -565.271 -556.4964 -918.4879 -457.0351 -440.3768 -1731.759 -556.4964 -565.271 -565.271 -714.7073 -565.271 -565.271 -565.271 -918.4879 -565.271 -556.4964 -457.0351 -440.3768 -556.4964 -440.3768 -565.271 -1159.502 -457.0351 -457.0351 -918.4879 -565.271 -440.3768 -565.271 -565.271 -565.271 -556.4964 -565.271 -565.271 -457.0351 -565.271 -714.7073 -714.7073 -457.0351 -556.4964 -565.271 -565.271 -565.271 -565.271 -440.3768 -457.0351 -565.271 -565.271 -918.4879 -565.271 -565.271 -565.271 -565.271 -565.271 -918.4879 -565.271 -565.271 -457.0351 -714.7073 -457.0351 -440.3768 -1159.502 -556.4964 -714.7073 -1159.502 -714.7073 -457.0351 -1431.996 -918.4879 -565.271 -440.3768 -457.0351 -457.0351 -457.0351 -440.3768 -1431.996 -556.4964 -457.0351 -918.4879 -918.4879 -565.271 -714.7073 -565.271 -457.0351 -457.0351 -565.271 -440.3768 -565.271 -714.7073 -565.271 -918.4879 -714.7073 -714.7073 -457.0351 -565.271 -556.4964 -565.271 -565.271 -556.4964 -565.271 -714.7073 -440.3768 -565.271 -440.3768 -565.271 -556.4964 -714.7073 -565.271 -565.271 epsilon_cond 1.398796e-07 1.041685e-07 1.041685e-07 1.041685e-07 2.279961e-07 1.014754e-07 1.041685e-07 1.014754e-07 1.398796e-07 1.398796e-07 1.698501e-07 1.041685e-07 6.372042e-08 1.398796e-07 1.041685e-07 1.041685e-07 1.041685e-07 6.372042e-08 1.698501e-07 6.372042e-08 1.041685e-07 1.041685e-07 2.075435e-07 1.014754e-07 1.041685e-07 1.014754e-07 2.192138e-07 1.398796e-07 1.014754e-07 1.041685e-07 1.698501e-07 6.372042e-08 1.398796e-07 1.398796e-07 1.698501e-07 6.372042e-08 1.91699e-07 1.041685e-07 1.014754e-07 6.372042e-08 1.041685e-07 1.698501e-07 5.572962e-08 6.372042e-08 1.014754e-07 1.014754e-07 1.041685e-07 1.041685e-07 6.372042e-08 1.041685e-07 1.041685e-07 1.014754e-07 1.698501e-07 1.041685e-07 6.372042e-08 2.075435e-07 1.398796e-07 1.014754e-07 1.041685e-07 1.041685e-07 1.398796e-07 1.014754e-07 5.572962e-08 1.398796e-07 5.572962e-08 2.075435e-07 1.041685e-07 1.041685e-07 5.572962e-08 1.91699e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.014754e-07 1.014754e-07 1.91699e-07 1.041685e-07 1.041685e-07 5.572962e-08 1.041685e-07 6.372042e-08 1.398796e-07 1.014754e-07 1.041685e-07 1.398796e-07 1.398796e-07 1.041685e-07 1.041685e-07 5.572962e-08 6.372042e-08 1.398796e-07 1.041685e-07 5.572962e-08 5.572962e-08 5.572962e-08 1.041685e-07 1.398796e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.014754e-07 1.041685e-07 1.398796e-07 1.041685e-07 1.041685e-07 5.572962e-08 1.014754e-07 1.041685e-07 1.014754e-07 1.014754e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.014754e-07 1.014754e-07 1.014754e-07 1.041685e-07 1.698501e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 6.372042e-08 5.572962e-08 1.041685e-07 1.041685e-07 6.372042e-08 1.041685e-07 1.041685e-07 1.041685e-07 6.372042e-08 1.398796e-07 5.572962e-08 5.572962e-08 1.041685e-07 1.014754e-07 1.041685e-07 1.698501e-07 1.041685e-07 6.372042e-08 1.041685e-07 1.041685e-07 1.698501e-07 1.041685e-07 1.698501e-07 6.372042e-08 1.398796e-07 1.014754e-07 5.572962e-08 1.014754e-07 1.041685e-07 1.014754e-07 1.041685e-07 1.041685e-07 6.372042e-08 1.398796e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.398796e-07 1.698501e-07 6.372042e-08 1.041685e-07 5.572962e-08 1.698501e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 5.572962e-08 1.398796e-07 1.398796e-07 6.372042e-08 5.572962e-08 6.372042e-08 1.041685e-07 1.041685e-07 1.014754e-07 1.014754e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.014754e-07 1.698501e-07 6.372042e-08 5.572962e-08 2.192138e-07 1.014754e-07 1.041685e-07 1.041685e-07 1.398796e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.698501e-07 1.041685e-07 1.014754e-07 6.372042e-08 5.572962e-08 1.014754e-07 5.572962e-08 1.041685e-07 1.91699e-07 6.372042e-08 6.372042e-08 1.698501e-07 1.041685e-07 5.572962e-08 1.041685e-07 1.041685e-07 1.041685e-07 1.014754e-07 1.041685e-07 1.041685e-07 6.372042e-08 1.041685e-07 1.398796e-07 1.398796e-07 6.372042e-08 1.014754e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 5.572962e-08 6.372042e-08 1.041685e-07 1.041685e-07 1.698501e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.041685e-07 1.698501e-07 1.041685e-07 1.041685e-07 6.372042e-08 1.398796e-07 6.372042e-08 5.572962e-08 1.91699e-07 1.014754e-07 1.398796e-07 1.91699e-07 1.398796e-07 6.372042e-08 2.075435e-07 1.698501e-07 1.041685e-07 5.572962e-08 6.372042e-08 6.372042e-08 6.372042e-08 5.572962e-08 2.075435e-07 1.014754e-07 6.372042e-08 1.698501e-07 1.698501e-07 1.041685e-07 1.398796e-07 1.041685e-07 6.372042e-08 6.372042e-08 1.041685e-07 5.572962e-08 1.041685e-07 1.398796e-07 1.041685e-07 1.698501e-07 1.398796e-07 1.398796e-07 6.372042e-08 1.041685e-07 1.014754e-07 1.041685e-07 1.041685e-07 1.014754e-07 1.041685e-07 1.398796e-07 5.572962e-08 1.041685e-07 5.572962e-08 1.041685e-07 1.014754e-07 1.398796e-07 1.041685e-07 1.041685e-07 mu 2.704757 w 0.3192759
## [1] "14 -714.707368891812" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -2055.57653880686" "14 -556.496425896907" "14 -565.271050840958" "14 -556.496425896907" "14 -714.707368891812" "14 -714.707368891812" "14 -918.48807231556" "14 -565.271050840958" "14 -457.035122065177" "14 -714.707368891812" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -457.035122065177" "14 -918.48807231556" "14 -457.035122065177" "14 -565.271050840958" "14 -565.271050840958" "14 -1431.99611637779" "14 -556.496425896907" "14 -565.271050840958" "14 -556.496425896907" "14 -1731.75966429457" "14 -714.707368891812" "14 -556.496425896907" "14 -565.271050840958" "14 -918.48807231556" "14 -457.035122065177" "14 -714.707368891812" "14 -714.707368891812" "14 -918.48807231556" "14 -457.035122065177" "14 -1159.50198106915" "14 -565.271050840958" "14 -556.496425896907" "14 -457.035122065177" "14 -565.271050840958" "14 -918.48807231556" "14 -440.376783992136"
## [44] "14 -457.035122065177" "14 -556.496425896907" "14 -556.496425896907" "14 -565.271050840958" "14 -565.271050840958" "14 -457.035122065177" "14 -565.271050840958" "14 -565.271050840958" "14 -556.496425896907" "14 -918.48807231556" "14 -565.271050840958" "14 -457.035122065177" "14 -1431.99611637779" "14 -714.707368891812" "14 -556.496425896907" "14 -565.271050840958" "14 -565.271050840958" "14 -714.707368891812" "14 -556.496425896907" "14 -440.376783992136" "14 -714.707368891812" "14 -440.376783992136" "14 -1431.99611637779" "14 -565.271050840958" "14 -565.271050840958" "14 -440.376783992136" "14 -1159.50198106915" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -556.496425896907" "14 -556.496425896907" "14 -1159.50198106915" "14 -565.271050840958" "14 -565.271050840958" "14 -440.376783992136" "14 -565.271050840958" "14 -457.035122065177" "14 -714.707368891812" "14 -556.496425896907" "14 -565.271050840958"
## [87] "14 -714.707368891812" "14 -714.707368891812" "14 -565.271050840958" "14 -565.271050840958" "14 -440.376783992136" "14 -457.035122065177" "14 -714.707368891812" "14 -565.271050840958" "14 -440.376783992136" "14 -440.376783992136" "14 -440.376783992136" "14 -565.271050840958" "14 -714.707368891812" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -556.496425896907" "14 -565.271050840958" "14 -714.707368891812" "14 -565.271050840958" "14 -565.271050840958" "14 -440.376783992136" "14 -556.496425896907" "14 -565.271050840958" "14 -556.496425896907" "14 -556.496425896907" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -556.496425896907" "14 -556.496425896907" "14 -556.496425896907" "14 -565.271050840958" "14 -918.48807231556" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -457.035122065177" "14 -440.376783992136" "14 -565.271050840958"
## [130] "14 -565.271050840958" "14 -457.035122065177" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -457.035122065177" "14 -714.707368891812" "14 -440.376783992136" "14 -440.376783992136" "14 -565.271050840958" "14 -556.496425896907" "14 -565.271050840958" "14 -918.48807231556" "14 -565.271050840958" "14 -457.035122065177" "14 -565.271050840958" "14 -565.271050840958" "14 -918.48807231556" "14 -565.271050840958" "14 -918.48807231556" "14 -457.035122065177" "14 -714.707368891812" "14 -556.496425896907" "14 -440.376783992136" "14 -556.496425896907" "14 -565.271050840958" "14 -556.496425896907" "14 -565.271050840958" "14 -565.271050840958" "14 -457.035122065177" "14 -714.707368891812" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -714.707368891812" "14 -918.48807231556" "14 -457.035122065177" "14 -565.271050840958" "14 -440.376783992136"
## [173] "14 -918.48807231556" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -440.376783992136" "14 -714.707368891812" "14 -714.707368891812" "14 -457.035122065177" "14 -440.376783992136" "14 -457.035122065177" "14 -565.271050840958" "14 -565.271050840958" "14 -556.496425896907" "14 -556.496425896907" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -556.496425896907" "14 -918.48807231556" "14 -457.035122065177" "14 -440.376783992136" "14 -1731.75966429457" "14 -556.496425896907" "14 -565.271050840958" "14 -565.271050840958" "14 -714.707368891812" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -918.48807231556" "14 -565.271050840958" "14 -556.496425896907" "14 -457.035122065177" "14 -440.376783992136" "14 -556.496425896907" "14 -440.376783992136" "14 -565.271050840958" "14 -1159.50198106915" "14 -457.035122065177"
## [216] "14 -457.035122065177" "14 -918.48807231556" "14 -565.271050840958" "14 -440.376783992136" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -556.496425896907" "14 -565.271050840958" "14 -565.271050840958" "14 -457.035122065177" "14 -565.271050840958" "14 -714.707368891812" "14 -714.707368891812" "14 -457.035122065177" "14 -556.496425896907" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -440.376783992136" "14 -457.035122065177" "14 -565.271050840958" "14 -565.271050840958" "14 -918.48807231556" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -565.271050840958" "14 -918.48807231556" "14 -565.271050840958" "14 -565.271050840958" "14 -457.035122065177" "14 -714.707368891812" "14 -457.035122065177" "14 -440.376783992136" "14 -1159.50198106915" "14 -556.496425896907" "14 -714.707368891812" "14 -1159.50198106915" "14 -714.707368891812" "14 -457.035122065177"
## [259] "14 -1431.99611637779" "14 -918.48807231556" "14 -565.271050840958" "14 -440.376783992136" "14 -457.035122065177" "14 -457.035122065177" "14 -457.035122065177" "14 -440.376783992136" "14 -1431.99611637779" "14 -556.496425896907" "14 -457.035122065177" "14 -918.48807231556" "14 -918.48807231556" "14 -565.271050840958" "14 -714.707368891812" "14 -565.271050840958" "14 -457.035122065177" "14 -457.035122065177" "14 -565.271050840958" "14 -440.376783992136" "14 -565.271050840958" "14 -714.707368891812" "14 -565.271050840958" "14 -918.48807231556" "14 -714.707368891812" "14 -714.707368891812" "14 -457.035122065177" "14 -565.271050840958" "14 -556.496425896907" "14 -565.271050840958" "14 -565.271050840958" "14 -556.496425896907" "14 -565.271050840958" "14 -714.707368891812" "14 -440.376783992136" "14 -565.271050840958" "14 -440.376783992136" "14 -565.271050840958" "14 -556.496425896907" "14 -714.707368891812" "14 -565.271050840958" "14 -565.271050840958"
## QQn -714.7074 -565.2711 -565.2711 -565.2711 -2055.577 -556.4964 -565.2711 -556.4964 -714.7074 -714.7074 -918.4881 -565.2711 -457.0351 -714.7074 -565.2711 -565.2711 -565.2711 -457.0351 -918.4881 -457.0351 -565.2711 -565.2711 -1431.996 -556.4964 -565.2711 -556.4964 -1731.76 -714.7074 -556.4964 -565.2711 -918.4881 -457.0351 -714.7074 -714.7074 -918.4881 -457.0351 -1159.502 -565.2711 -556.4964 -457.0351 -565.2711 -918.4881 -440.3768 -457.0351 -556.4964 -556.4964 -565.2711 -565.2711 -457.0351 -565.2711 -565.2711 -556.4964 -918.4881 -565.2711 -457.0351 -1431.996 -714.7074 -556.4964 -565.2711 -565.2711 -714.7074 -556.4964 -440.3768 -714.7074 -440.3768 -1431.996 -565.2711 -565.2711 -440.3768 -1159.502 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4964 -556.4964 -1159.502 -565.2711 -565.2711 -440.3768 -565.2711 -457.0351 -714.7074 -556.4964 -565.2711 -714.7074 -714.7074 -565.2711 -565.2711 -440.3768 -457.0351 -714.7074 -565.2711 -440.3768 -440.3768 -440.3768 -565.2711 -714.7074 -565.2711 -565.2711 -565.2711 -556.4964 -565.2711 -714.7074 -565.2711 -565.2711 -440.3768 -556.4964 -565.2711 -556.4964 -556.4964 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4964 -556.4964 -556.4964 -565.2711 -918.4881 -565.2711 -565.2711 -565.2711 -565.2711 -457.0351 -440.3768 -565.2711 -565.2711 -457.0351 -565.2711 -565.2711 -565.2711 -457.0351 -714.7074 -440.3768 -440.3768 -565.2711 -556.4964 -565.2711 -918.4881 -565.2711 -457.0351 -565.2711 -565.2711 -918.4881 -565.2711 -918.4881 -457.0351 -714.7074 -556.4964 -440.3768 -556.4964 -565.2711 -556.4964 -565.2711 -565.2711 -457.0351 -714.7074 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -714.7074 -918.4881 -457.0351 -565.2711 -440.3768 -918.4881 -565.2711 -565.2711 -565.2711 -565.2711 -440.3768 -714.7074 -714.7074 -457.0351 -440.3768 -457.0351 -565.2711 -565.2711 -556.4964 -556.4964 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4964 -918.4881 -457.0351 -440.3768 -1731.76 -556.4964 -565.2711 -565.2711 -714.7074 -565.2711 -565.2711 -565.2711 -918.4881 -565.2711 -556.4964 -457.0351 -440.3768 -556.4964 -440.3768 -565.2711 -1159.502 -457.0351 -457.0351 -918.4881 -565.2711 -440.3768 -565.2711 -565.2711 -565.2711 -556.4964 -565.2711 -565.2711 -457.0351 -565.2711 -714.7074 -714.7074 -457.0351 -556.4964 -565.2711 -565.2711 -565.2711 -565.2711 -440.3768 -457.0351 -565.2711 -565.2711 -918.4881 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -918.4881 -565.2711 -565.2711 -457.0351 -714.7074 -457.0351 -440.3768 -1159.502 -556.4964 -714.7074 -1159.502 -714.7074 -457.0351 -1431.996 -918.4881 -565.2711 -440.3768 -457.0351 -457.0351 -457.0351 -440.3768 -1431.996 -556.4964 -457.0351 -918.4881 -918.4881 -565.2711 -714.7074 -565.2711 -457.0351 -457.0351 -565.2711 -440.3768 -565.2711 -714.7074 -565.2711 -918.4881 -714.7074 -714.7074 -457.0351 -565.2711 -556.4964 -565.2711 -565.2711 -556.4964 -565.2711 -714.7074 -440.3768 -565.2711 -440.3768 -565.2711 -556.4964 -714.7074 -565.2711 -565.2711 QQ -714.7074 -565.2711 -565.2711 -565.2711 -2055.577 -556.4964 -565.2711 -556.4964 -714.7074 -714.7074 -918.4881 -565.2711 -457.0351 -714.7074 -565.2711 -565.2711 -565.2711 -457.0351 -918.4881 -457.0351 -565.2711 -565.2711 -1431.996 -556.4964 -565.2711 -556.4964 -1731.76 -714.7074 -556.4964 -565.2711 -918.4881 -457.0351 -714.7074 -714.7074 -918.4881 -457.0351 -1159.502 -565.2711 -556.4964 -457.0351 -565.2711 -918.4881 -440.3768 -457.0351 -556.4964 -556.4964 -565.2711 -565.2711 -457.0351 -565.2711 -565.2711 -556.4964 -918.4881 -565.2711 -457.0351 -1431.996 -714.7074 -556.4964 -565.2711 -565.2711 -714.7074 -556.4964 -440.3768 -714.7074 -440.3768 -1431.996 -565.2711 -565.2711 -440.3768 -1159.502 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4964 -556.4964 -1159.502 -565.2711 -565.2711 -440.3768 -565.2711 -457.0351 -714.7074 -556.4964 -565.2711 -714.7074 -714.7074 -565.2711 -565.2711 -440.3768 -457.0351 -714.7074 -565.2711 -440.3768 -440.3768 -440.3768 -565.2711 -714.7074 -565.2711 -565.2711 -565.2711 -556.4964 -565.2711 -714.7074 -565.2711 -565.2711 -440.3768 -556.4964 -565.2711 -556.4964 -556.4964 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4964 -556.4964 -556.4964 -565.2711 -918.4881 -565.2711 -565.2711 -565.2711 -565.2711 -457.0351 -440.3768 -565.2711 -565.2711 -457.0351 -565.2711 -565.2711 -565.2711 -457.0351 -714.7074 -440.3768 -440.3768 -565.2711 -556.4964 -565.2711 -918.4881 -565.2711 -457.0351 -565.2711 -565.2711 -918.4881 -565.2711 -918.4881 -457.0351 -714.7074 -556.4964 -440.3768 -556.4964 -565.2711 -556.4964 -565.2711 -565.2711 -457.0351 -714.7074 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -714.7074 -918.4881 -457.0351 -565.2711 -440.3768 -918.4881 -565.2711 -565.2711 -565.2711 -565.2711 -440.3768 -714.7074 -714.7074 -457.0351 -440.3768 -457.0351 -565.2711 -565.2711 -556.4964 -556.4964 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4964 -918.4881 -457.0351 -440.3768 -1731.76 -556.4964 -565.2711 -565.2711 -714.7074 -565.2711 -565.2711 -565.2711 -918.4881 -565.2711 -556.4964 -457.0351 -440.3768 -556.4964 -440.3768 -565.2711 -1159.502 -457.0351 -457.0351 -918.4881 -565.2711 -440.3768 -565.2711 -565.2711 -565.2711 -556.4964 -565.2711 -565.2711 -457.0351 -565.2711 -714.7074 -714.7074 -457.0351 -556.4964 -565.2711 -565.2711 -565.2711 -565.2711 -440.3768 -457.0351 -565.2711 -565.2711 -918.4881 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -918.4881 -565.2711 -565.2711 -457.0351 -714.7074 -457.0351 -440.3768 -1159.502 -556.4964 -714.7074 -1159.502 -714.7074 -457.0351 -1431.996 -918.4881 -565.2711 -440.3768 -457.0351 -457.0351 -457.0351 -440.3768 -1431.996 -556.4964 -457.0351 -918.4881 -918.4881 -565.2711 -714.7074 -565.2711 -457.0351 -457.0351 -565.2711 -440.3768 -565.2711 -714.7074 -565.2711 -918.4881 -714.7074 -714.7074 -457.0351 -565.2711 -556.4964 -565.2711 -565.2711 -556.4964 -565.2711 -714.7074 -440.3768 -565.2711 -440.3768 -565.2711 -556.4964 -714.7074 -565.2711 -565.2711 epsilon_cond 5.197627e-08 3.870677e-08 3.870677e-08 3.870677e-08 8.471848e-08 3.770609e-08 3.870677e-08 3.770609e-08 5.197627e-08 5.197627e-08 6.311267e-08 3.870677e-08 2.367713e-08 5.197627e-08 3.870677e-08 3.870677e-08 3.870677e-08 2.367713e-08 6.311267e-08 2.367713e-08 3.870677e-08 3.870677e-08 7.711871e-08 3.770609e-08 3.870677e-08 3.770609e-08 8.145514e-08 5.197627e-08 3.770609e-08 3.870677e-08 6.311267e-08 2.367713e-08 5.197627e-08 5.197627e-08 6.311267e-08 2.367713e-08 7.123126e-08 3.870677e-08 3.770609e-08 2.367713e-08 3.870677e-08 6.311267e-08 2.070791e-08 2.367713e-08 3.770609e-08 3.770609e-08 3.870677e-08 3.870677e-08 2.367713e-08 3.870677e-08 3.870677e-08 3.770609e-08 6.311267e-08 3.870677e-08 2.367713e-08 7.711871e-08 5.197627e-08 3.770609e-08 3.870677e-08 3.870677e-08 5.197627e-08 3.770609e-08 2.070791e-08 5.197627e-08 2.070791e-08 7.711871e-08 3.870677e-08 3.870677e-08 2.070791e-08 7.123126e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.770609e-08 3.770609e-08 7.123126e-08 3.870677e-08 3.870677e-08 2.070791e-08 3.870677e-08 2.367713e-08 5.197627e-08 3.770609e-08 3.870677e-08 5.197627e-08 5.197627e-08 3.870677e-08 3.870677e-08 2.070791e-08 2.367713e-08 5.197627e-08 3.870677e-08 2.070791e-08 2.070791e-08 2.070791e-08 3.870677e-08 5.197627e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.770609e-08 3.870677e-08 5.197627e-08 3.870677e-08 3.870677e-08 2.070791e-08 3.770609e-08 3.870677e-08 3.770609e-08 3.770609e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.770609e-08 3.770609e-08 3.770609e-08 3.870677e-08 6.311267e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 2.367713e-08 2.070791e-08 3.870677e-08 3.870677e-08 2.367713e-08 3.870677e-08 3.870677e-08 3.870677e-08 2.367713e-08 5.197627e-08 2.070791e-08 2.070791e-08 3.870677e-08 3.770609e-08 3.870677e-08 6.311267e-08 3.870677e-08 2.367713e-08 3.870677e-08 3.870677e-08 6.311267e-08 3.870677e-08 6.311267e-08 2.367713e-08 5.197627e-08 3.770609e-08 2.070791e-08 3.770609e-08 3.870677e-08 3.770609e-08 3.870677e-08 3.870677e-08 2.367713e-08 5.197627e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 5.197627e-08 6.311267e-08 2.367713e-08 3.870677e-08 2.070791e-08 6.311267e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 2.070791e-08 5.197627e-08 5.197627e-08 2.367713e-08 2.070791e-08 2.367713e-08 3.870677e-08 3.870677e-08 3.770609e-08 3.770609e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.770609e-08 6.311267e-08 2.367713e-08 2.070791e-08 8.145514e-08 3.770609e-08 3.870677e-08 3.870677e-08 5.197627e-08 3.870677e-08 3.870677e-08 3.870677e-08 6.311267e-08 3.870677e-08 3.770609e-08 2.367713e-08 2.070791e-08 3.770609e-08 2.070791e-08 3.870677e-08 7.123126e-08 2.367713e-08 2.367713e-08 6.311267e-08 3.870677e-08 2.070791e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.770609e-08 3.870677e-08 3.870677e-08 2.367713e-08 3.870677e-08 5.197627e-08 5.197627e-08 2.367713e-08 3.770609e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 2.070791e-08 2.367713e-08 3.870677e-08 3.870677e-08 6.311267e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 3.870677e-08 6.311267e-08 3.870677e-08 3.870677e-08 2.367713e-08 5.197627e-08 2.367713e-08 2.070791e-08 7.123126e-08 3.770609e-08 5.197627e-08 7.123126e-08 5.197627e-08 2.367713e-08 7.711871e-08 6.311267e-08 3.870677e-08 2.070791e-08 2.367713e-08 2.367713e-08 2.367713e-08 2.070791e-08 7.711871e-08 3.770609e-08 2.367713e-08 6.311267e-08 6.311267e-08 3.870677e-08 5.197627e-08 3.870677e-08 2.367713e-08 2.367713e-08 3.870677e-08 2.070791e-08 3.870677e-08 5.197627e-08 3.870677e-08 6.311267e-08 5.197627e-08 5.197627e-08 2.367713e-08 3.870677e-08 3.770609e-08 3.870677e-08 3.870677e-08 3.770609e-08 3.870677e-08 5.197627e-08 2.070791e-08 3.870677e-08 2.070791e-08 3.870677e-08 3.770609e-08 5.197627e-08 3.870677e-08 3.870677e-08 mu 2.704756 w 0.3192758
## [1] "15 -714.707406039638" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -2055.57671295219" "15 -556.496446880213" "15 -565.271072720773" "15 -556.496446880213" "15 -714.707406039638" "15 -714.707406039638" "15 -918.488130283796" "15 -565.271072720773" "15 -457.035132886455" "15 -714.707406039638" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -457.035132886455" "15 -918.488130283796" "15 -457.035132886455" "15 -565.271072720773" "15 -565.271072720773" "15 -1431.9962268115" "15 -556.496446880213" "15 -565.271072720773" "15 -556.496446880213" "15 -1731.75980535531" "15 -714.707406039638" "15 -556.496446880213" "15 -565.271072720773" "15 -918.488130283796" "15 -457.035132886455" "15 -714.707406039638" "15 -714.707406039638" "15 -918.488130283796" "15 -457.035132886455" "15 -1159.50206366194" "15 -565.271072720773" "15 -556.496446880213" "15 -457.035132886455" "15 -565.271072720773" "15 -918.488130283796" "15 -440.376793111419"
## [44] "15 -457.035132886455" "15 -556.496446880213" "15 -556.496446880213" "15 -565.271072720773" "15 -565.271072720773" "15 -457.035132886455" "15 -565.271072720773" "15 -565.271072720773" "15 -556.496446880213" "15 -918.488130283796" "15 -565.271072720773" "15 -457.035132886455" "15 -1431.9962268115" "15 -714.707406039638" "15 -556.496446880213" "15 -565.271072720773" "15 -565.271072720773" "15 -714.707406039638" "15 -556.496446880213" "15 -440.376793111419" "15 -714.707406039638" "15 -440.376793111419" "15 -1431.9962268115" "15 -565.271072720773" "15 -565.271072720773" "15 -440.376793111419" "15 -1159.50206366194" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -556.496446880213" "15 -556.496446880213" "15 -1159.50206366194" "15 -565.271072720773" "15 -565.271072720773" "15 -440.376793111419" "15 -565.271072720773" "15 -457.035132886455" "15 -714.707406039638" "15 -556.496446880213" "15 -565.271072720773"
## [87] "15 -714.707406039638" "15 -714.707406039638" "15 -565.271072720773" "15 -565.271072720773" "15 -440.376793111419" "15 -457.035132886455" "15 -714.707406039638" "15 -565.271072720773" "15 -440.376793111419" "15 -440.376793111419" "15 -440.376793111419" "15 -565.271072720773" "15 -714.707406039638" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -556.496446880213" "15 -565.271072720773" "15 -714.707406039638" "15 -565.271072720773" "15 -565.271072720773" "15 -440.376793111419" "15 -556.496446880213" "15 -565.271072720773" "15 -556.496446880213" "15 -556.496446880213" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -556.496446880213" "15 -556.496446880213" "15 -556.496446880213" "15 -565.271072720773" "15 -918.488130283796" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -457.035132886455" "15 -440.376793111419" "15 -565.271072720773"
## [130] "15 -565.271072720773" "15 -457.035132886455" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -457.035132886455" "15 -714.707406039638" "15 -440.376793111419" "15 -440.376793111419" "15 -565.271072720773" "15 -556.496446880213" "15 -565.271072720773" "15 -918.488130283796" "15 -565.271072720773" "15 -457.035132886455" "15 -565.271072720773" "15 -565.271072720773" "15 -918.488130283796" "15 -565.271072720773" "15 -918.488130283796" "15 -457.035132886455" "15 -714.707406039638" "15 -556.496446880213" "15 -440.376793111419" "15 -556.496446880213" "15 -565.271072720773" "15 -556.496446880213" "15 -565.271072720773" "15 -565.271072720773" "15 -457.035132886455" "15 -714.707406039638" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -714.707406039638" "15 -918.488130283796" "15 -457.035132886455" "15 -565.271072720773" "15 -440.376793111419"
## [173] "15 -918.488130283796" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -440.376793111419" "15 -714.707406039638" "15 -714.707406039638" "15 -457.035132886455" "15 -440.376793111419" "15 -457.035132886455" "15 -565.271072720773" "15 -565.271072720773" "15 -556.496446880213" "15 -556.496446880213" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -556.496446880213" "15 -918.488130283796" "15 -457.035132886455" "15 -440.376793111419" "15 -1731.75980535531" "15 -556.496446880213" "15 -565.271072720773" "15 -565.271072720773" "15 -714.707406039638" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -918.488130283796" "15 -565.271072720773" "15 -556.496446880213" "15 -457.035132886455" "15 -440.376793111419" "15 -556.496446880213" "15 -440.376793111419" "15 -565.271072720773" "15 -1159.50206366194" "15 -457.035132886455"
## [216] "15 -457.035132886455" "15 -918.488130283796" "15 -565.271072720773" "15 -440.376793111419" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -556.496446880213" "15 -565.271072720773" "15 -565.271072720773" "15 -457.035132886455" "15 -565.271072720773" "15 -714.707406039638" "15 -714.707406039638" "15 -457.035132886455" "15 -556.496446880213" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -440.376793111419" "15 -457.035132886455" "15 -565.271072720773" "15 -565.271072720773" "15 -918.488130283796" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -565.271072720773" "15 -918.488130283796" "15 -565.271072720773" "15 -565.271072720773" "15 -457.035132886455" "15 -714.707406039638" "15 -457.035132886455" "15 -440.376793111419" "15 -1159.50206366194" "15 -556.496446880213" "15 -714.707406039638" "15 -1159.50206366194" "15 -714.707406039638" "15 -457.035132886455"
## [259] "15 -1431.9962268115" "15 -918.488130283796" "15 -565.271072720773" "15 -440.376793111419" "15 -457.035132886455" "15 -457.035132886455" "15 -457.035132886455" "15 -440.376793111419" "15 -1431.9962268115" "15 -556.496446880213" "15 -457.035132886455" "15 -918.488130283796" "15 -918.488130283796" "15 -565.271072720773" "15 -714.707406039638" "15 -565.271072720773" "15 -457.035132886455" "15 -457.035132886455" "15 -565.271072720773" "15 -440.376793111419" "15 -565.271072720773" "15 -714.707406039638" "15 -565.271072720773" "15 -918.488130283796" "15 -714.707406039638" "15 -714.707406039638" "15 -457.035132886455" "15 -565.271072720773" "15 -556.496446880213" "15 -565.271072720773" "15 -565.271072720773" "15 -556.496446880213" "15 -565.271072720773" "15 -714.707406039638" "15 -440.376793111419" "15 -565.271072720773" "15 -440.376793111419" "15 -565.271072720773" "15 -556.496446880213" "15 -714.707406039638" "15 -565.271072720773" "15 -565.271072720773"
## QQn -714.7074 -565.2711 -565.2711 -565.2711 -2055.577 -556.4965 -565.2711 -556.4965 -714.7074 -714.7074 -918.4882 -565.2711 -457.0351 -714.7074 -565.2711 -565.2711 -565.2711 -457.0351 -918.4882 -457.0351 -565.2711 -565.2711 -1431.996 -556.4965 -565.2711 -556.4965 -1731.76 -714.7074 -556.4965 -565.2711 -918.4882 -457.0351 -714.7074 -714.7074 -918.4882 -457.0351 -1159.502 -565.2711 -556.4965 -457.0351 -565.2711 -918.4882 -440.3768 -457.0351 -556.4965 -556.4965 -565.2711 -565.2711 -457.0351 -565.2711 -565.2711 -556.4965 -918.4882 -565.2711 -457.0351 -1431.996 -714.7074 -556.4965 -565.2711 -565.2711 -714.7074 -556.4965 -440.3768 -714.7074 -440.3768 -1431.996 -565.2711 -565.2711 -440.3768 -1159.502 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4965 -556.4965 -1159.502 -565.2711 -565.2711 -440.3768 -565.2711 -457.0351 -714.7074 -556.4965 -565.2711 -714.7074 -714.7074 -565.2711 -565.2711 -440.3768 -457.0351 -714.7074 -565.2711 -440.3768 -440.3768 -440.3768 -565.2711 -714.7074 -565.2711 -565.2711 -565.2711 -556.4965 -565.2711 -714.7074 -565.2711 -565.2711 -440.3768 -556.4965 -565.2711 -556.4965 -556.4965 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4965 -556.4965 -556.4965 -565.2711 -918.4882 -565.2711 -565.2711 -565.2711 -565.2711 -457.0351 -440.3768 -565.2711 -565.2711 -457.0351 -565.2711 -565.2711 -565.2711 -457.0351 -714.7074 -440.3768 -440.3768 -565.2711 -556.4965 -565.2711 -918.4882 -565.2711 -457.0351 -565.2711 -565.2711 -918.4882 -565.2711 -918.4882 -457.0351 -714.7074 -556.4965 -440.3768 -556.4965 -565.2711 -556.4965 -565.2711 -565.2711 -457.0351 -714.7074 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -714.7074 -918.4882 -457.0351 -565.2711 -440.3768 -918.4882 -565.2711 -565.2711 -565.2711 -565.2711 -440.3768 -714.7074 -714.7074 -457.0351 -440.3768 -457.0351 -565.2711 -565.2711 -556.4965 -556.4965 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4965 -918.4882 -457.0351 -440.3768 -1731.76 -556.4965 -565.2711 -565.2711 -714.7074 -565.2711 -565.2711 -565.2711 -918.4882 -565.2711 -556.4965 -457.0351 -440.3768 -556.4965 -440.3768 -565.2711 -1159.502 -457.0351 -457.0351 -918.4882 -565.2711 -440.3768 -565.2711 -565.2711 -565.2711 -556.4965 -565.2711 -565.2711 -457.0351 -565.2711 -714.7074 -714.7074 -457.0351 -556.4965 -565.2711 -565.2711 -565.2711 -565.2711 -440.3768 -457.0351 -565.2711 -565.2711 -918.4882 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -918.4882 -565.2711 -565.2711 -457.0351 -714.7074 -457.0351 -440.3768 -1159.502 -556.4965 -714.7074 -1159.502 -714.7074 -457.0351 -1431.996 -918.4882 -565.2711 -440.3768 -457.0351 -457.0351 -457.0351 -440.3768 -1431.996 -556.4965 -457.0351 -918.4882 -918.4882 -565.2711 -714.7074 -565.2711 -457.0351 -457.0351 -565.2711 -440.3768 -565.2711 -714.7074 -565.2711 -918.4882 -714.7074 -714.7074 -457.0351 -565.2711 -556.4965 -565.2711 -565.2711 -556.4965 -565.2711 -714.7074 -440.3768 -565.2711 -440.3768 -565.2711 -556.4965 -714.7074 -565.2711 -565.2711 QQ -714.7074 -565.2711 -565.2711 -565.2711 -2055.577 -556.4964 -565.2711 -556.4964 -714.7074 -714.7074 -918.4881 -565.2711 -457.0351 -714.7074 -565.2711 -565.2711 -565.2711 -457.0351 -918.4881 -457.0351 -565.2711 -565.2711 -1431.996 -556.4964 -565.2711 -556.4964 -1731.76 -714.7074 -556.4964 -565.2711 -918.4881 -457.0351 -714.7074 -714.7074 -918.4881 -457.0351 -1159.502 -565.2711 -556.4964 -457.0351 -565.2711 -918.4881 -440.3768 -457.0351 -556.4964 -556.4964 -565.2711 -565.2711 -457.0351 -565.2711 -565.2711 -556.4964 -918.4881 -565.2711 -457.0351 -1431.996 -714.7074 -556.4964 -565.2711 -565.2711 -714.7074 -556.4964 -440.3768 -714.7074 -440.3768 -1431.996 -565.2711 -565.2711 -440.3768 -1159.502 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4964 -556.4964 -1159.502 -565.2711 -565.2711 -440.3768 -565.2711 -457.0351 -714.7074 -556.4964 -565.2711 -714.7074 -714.7074 -565.2711 -565.2711 -440.3768 -457.0351 -714.7074 -565.2711 -440.3768 -440.3768 -440.3768 -565.2711 -714.7074 -565.2711 -565.2711 -565.2711 -556.4964 -565.2711 -714.7074 -565.2711 -565.2711 -440.3768 -556.4964 -565.2711 -556.4964 -556.4964 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4964 -556.4964 -556.4964 -565.2711 -918.4881 -565.2711 -565.2711 -565.2711 -565.2711 -457.0351 -440.3768 -565.2711 -565.2711 -457.0351 -565.2711 -565.2711 -565.2711 -457.0351 -714.7074 -440.3768 -440.3768 -565.2711 -556.4964 -565.2711 -918.4881 -565.2711 -457.0351 -565.2711 -565.2711 -918.4881 -565.2711 -918.4881 -457.0351 -714.7074 -556.4964 -440.3768 -556.4964 -565.2711 -556.4964 -565.2711 -565.2711 -457.0351 -714.7074 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -714.7074 -918.4881 -457.0351 -565.2711 -440.3768 -918.4881 -565.2711 -565.2711 -565.2711 -565.2711 -440.3768 -714.7074 -714.7074 -457.0351 -440.3768 -457.0351 -565.2711 -565.2711 -556.4964 -556.4964 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4964 -918.4881 -457.0351 -440.3768 -1731.76 -556.4964 -565.2711 -565.2711 -714.7074 -565.2711 -565.2711 -565.2711 -918.4881 -565.2711 -556.4964 -457.0351 -440.3768 -556.4964 -440.3768 -565.2711 -1159.502 -457.0351 -457.0351 -918.4881 -565.2711 -440.3768 -565.2711 -565.2711 -565.2711 -556.4964 -565.2711 -565.2711 -457.0351 -565.2711 -714.7074 -714.7074 -457.0351 -556.4964 -565.2711 -565.2711 -565.2711 -565.2711 -440.3768 -457.0351 -565.2711 -565.2711 -918.4881 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -918.4881 -565.2711 -565.2711 -457.0351 -714.7074 -457.0351 -440.3768 -1159.502 -556.4964 -714.7074 -1159.502 -714.7074 -457.0351 -1431.996 -918.4881 -565.2711 -440.3768 -457.0351 -457.0351 -457.0351 -440.3768 -1431.996 -556.4964 -457.0351 -918.4881 -918.4881 -565.2711 -714.7074 -565.2711 -457.0351 -457.0351 -565.2711 -440.3768 -565.2711 -714.7074 -565.2711 -918.4881 -714.7074 -714.7074 -457.0351 -565.2711 -556.4964 -565.2711 -565.2711 -556.4964 -565.2711 -714.7074 -440.3768 -565.2711 -440.3768 -565.2711 -556.4964 -714.7074 -565.2711 -565.2711 epsilon_cond 1.931328e-08 1.438261e-08 1.438261e-08 1.438261e-08 3.147959e-08 1.401078e-08 1.438261e-08 1.401078e-08 1.931328e-08 1.931328e-08 2.345133e-08 1.438261e-08 8.79792e-09 1.931328e-08 1.438261e-08 1.438261e-08 1.438261e-08 8.79792e-09 2.345133e-08 8.79792e-09 1.438261e-08 1.438261e-08 2.865567e-08 1.401078e-08 1.438261e-08 1.401078e-08 3.026701e-08 1.931328e-08 1.401078e-08 1.438261e-08 2.345133e-08 8.79792e-09 1.931328e-08 1.931328e-08 2.345133e-08 8.79792e-09 2.646803e-08 1.438261e-08 1.401078e-08 8.79792e-09 1.438261e-08 2.345133e-08 7.694619e-09 8.79792e-09 1.401078e-08 1.401078e-08 1.438261e-08 1.438261e-08 8.79792e-09 1.438261e-08 1.438261e-08 1.401078e-08 2.345133e-08 1.438261e-08 8.79792e-09 2.865567e-08 1.931328e-08 1.401078e-08 1.438261e-08 1.438261e-08 1.931328e-08 1.401078e-08 7.694619e-09 1.931328e-08 7.694619e-09 2.865567e-08 1.438261e-08 1.438261e-08 7.694619e-09 2.646803e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.401078e-08 1.401078e-08 2.646803e-08 1.438261e-08 1.438261e-08 7.694619e-09 1.438261e-08 8.79792e-09 1.931328e-08 1.401078e-08 1.438261e-08 1.931328e-08 1.931328e-08 1.438261e-08 1.438261e-08 7.694619e-09 8.79792e-09 1.931328e-08 1.438261e-08 7.694619e-09 7.694619e-09 7.694619e-09 1.438261e-08 1.931328e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.401078e-08 1.438261e-08 1.931328e-08 1.438261e-08 1.438261e-08 7.694619e-09 1.401078e-08 1.438261e-08 1.401078e-08 1.401078e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.401078e-08 1.401078e-08 1.401078e-08 1.438261e-08 2.345133e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 8.79792e-09 7.694619e-09 1.438261e-08 1.438261e-08 8.79792e-09 1.438261e-08 1.438261e-08 1.438261e-08 8.79792e-09 1.931328e-08 7.694619e-09 7.694619e-09 1.438261e-08 1.401078e-08 1.438261e-08 2.345133e-08 1.438261e-08 8.79792e-09 1.438261e-08 1.438261e-08 2.345133e-08 1.438261e-08 2.345133e-08 8.79792e-09 1.931328e-08 1.401078e-08 7.694619e-09 1.401078e-08 1.438261e-08 1.401078e-08 1.438261e-08 1.438261e-08 8.79792e-09 1.931328e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.931328e-08 2.345133e-08 8.79792e-09 1.438261e-08 7.694619e-09 2.345133e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 7.694619e-09 1.931328e-08 1.931328e-08 8.79792e-09 7.694619e-09 8.79792e-09 1.438261e-08 1.438261e-08 1.401078e-08 1.401078e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.401078e-08 2.345133e-08 8.79792e-09 7.694619e-09 3.026701e-08 1.401078e-08 1.438261e-08 1.438261e-08 1.931328e-08 1.438261e-08 1.438261e-08 1.438261e-08 2.345133e-08 1.438261e-08 1.401078e-08 8.79792e-09 7.694619e-09 1.401078e-08 7.694619e-09 1.438261e-08 2.646803e-08 8.79792e-09 8.79792e-09 2.345133e-08 1.438261e-08 7.694619e-09 1.438261e-08 1.438261e-08 1.438261e-08 1.401078e-08 1.438261e-08 1.438261e-08 8.79792e-09 1.438261e-08 1.931328e-08 1.931328e-08 8.79792e-09 1.401078e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 7.694619e-09 8.79792e-09 1.438261e-08 1.438261e-08 2.345133e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 1.438261e-08 2.345133e-08 1.438261e-08 1.438261e-08 8.79792e-09 1.931328e-08 8.79792e-09 7.694619e-09 2.646803e-08 1.401078e-08 1.931328e-08 2.646803e-08 1.931328e-08 8.79792e-09 2.865567e-08 2.345133e-08 1.438261e-08 7.694619e-09 8.79792e-09 8.79792e-09 8.79792e-09 7.694619e-09 2.865567e-08 1.401078e-08 8.79792e-09 2.345133e-08 2.345133e-08 1.438261e-08 1.931328e-08 1.438261e-08 8.79792e-09 8.79792e-09 1.438261e-08 7.694619e-09 1.438261e-08 1.931328e-08 1.438261e-08 2.345133e-08 1.931328e-08 1.931328e-08 8.79792e-09 1.438261e-08 1.401078e-08 1.438261e-08 1.438261e-08 1.401078e-08 1.438261e-08 1.931328e-08 7.694619e-09 1.438261e-08 7.694619e-09 1.438261e-08 1.401078e-08 1.931328e-08 1.438261e-08 1.438261e-08 mu 2.704756 w 0.3192758
## [1] "16 -714.707419842984" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -2055.57677766089" "16 -556.496454677163" "16 -565.271080850848" "16 -556.496454677163" "16 -714.707419842984" "16 -714.707419842984" "16 -918.488151823565" "16 -565.271080850848" "16 -457.035136907414" "16 -714.707419842984" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -457.035136907414" "16 -918.488151823565" "16 -457.035136907414" "16 -565.271080850848" "16 -565.271080850848" "16 -1431.99626784632" "16 -556.496454677163" "16 -565.271080850848" "16 -556.496454677163" "16 -1731.7598577705" "16 -714.707419842984" "16 -556.496454677163" "16 -565.271080850848" "16 -918.488151823565" "16 -457.035136907414" "16 -714.707419842984" "16 -714.707419842984" "16 -918.488151823565" "16 -457.035136907414" "16 -1159.50209435167" "16 -565.271080850848" "16 -556.496454677163" "16 -457.035136907414" "16 -565.271080850848" "16 -918.488151823565" "16 -440.376796499951"
## [44] "16 -457.035136907414" "16 -556.496454677163" "16 -556.496454677163" "16 -565.271080850848" "16 -565.271080850848" "16 -457.035136907414" "16 -565.271080850848" "16 -565.271080850848" "16 -556.496454677163" "16 -918.488151823565" "16 -565.271080850848" "16 -457.035136907414" "16 -1431.99626784632" "16 -714.707419842984" "16 -556.496454677163" "16 -565.271080850848" "16 -565.271080850848" "16 -714.707419842984" "16 -556.496454677163" "16 -440.376796499951" "16 -714.707419842984" "16 -440.376796499951" "16 -1431.99626784632" "16 -565.271080850848" "16 -565.271080850848" "16 -440.376796499951" "16 -1159.50209435167" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -556.496454677163" "16 -556.496454677163" "16 -1159.50209435167" "16 -565.271080850848" "16 -565.271080850848" "16 -440.376796499951" "16 -565.271080850848" "16 -457.035136907414" "16 -714.707419842984" "16 -556.496454677163" "16 -565.271080850848"
## [87] "16 -714.707419842984" "16 -714.707419842984" "16 -565.271080850848" "16 -565.271080850848" "16 -440.376796499951" "16 -457.035136907414" "16 -714.707419842984" "16 -565.271080850848" "16 -440.376796499951" "16 -440.376796499951" "16 -440.376796499951" "16 -565.271080850848" "16 -714.707419842984" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -556.496454677163" "16 -565.271080850848" "16 -714.707419842984" "16 -565.271080850848" "16 -565.271080850848" "16 -440.376796499951" "16 -556.496454677163" "16 -565.271080850848" "16 -556.496454677163" "16 -556.496454677163" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -556.496454677163" "16 -556.496454677163" "16 -556.496454677163" "16 -565.271080850848" "16 -918.488151823565" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -457.035136907414" "16 -440.376796499951" "16 -565.271080850848"
## [130] "16 -565.271080850848" "16 -457.035136907414" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -457.035136907414" "16 -714.707419842984" "16 -440.376796499951" "16 -440.376796499951" "16 -565.271080850848" "16 -556.496454677163" "16 -565.271080850848" "16 -918.488151823565" "16 -565.271080850848" "16 -457.035136907414" "16 -565.271080850848" "16 -565.271080850848" "16 -918.488151823565" "16 -565.271080850848" "16 -918.488151823565" "16 -457.035136907414" "16 -714.707419842984" "16 -556.496454677163" "16 -440.376796499951" "16 -556.496454677163" "16 -565.271080850848" "16 -556.496454677163" "16 -565.271080850848" "16 -565.271080850848" "16 -457.035136907414" "16 -714.707419842984" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -714.707419842984" "16 -918.488151823565" "16 -457.035136907414" "16 -565.271080850848" "16 -440.376796499951"
## [173] "16 -918.488151823565" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -440.376796499951" "16 -714.707419842984" "16 -714.707419842984" "16 -457.035136907414" "16 -440.376796499951" "16 -457.035136907414" "16 -565.271080850848" "16 -565.271080850848" "16 -556.496454677163" "16 -556.496454677163" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -556.496454677163" "16 -918.488151823565" "16 -457.035136907414" "16 -440.376796499951" "16 -1731.7598577705" "16 -556.496454677163" "16 -565.271080850848" "16 -565.271080850848" "16 -714.707419842984" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -918.488151823565" "16 -565.271080850848" "16 -556.496454677163" "16 -457.035136907414" "16 -440.376796499951" "16 -556.496454677163" "16 -440.376796499951" "16 -565.271080850848" "16 -1159.50209435167" "16 -457.035136907414"
## [216] "16 -457.035136907414" "16 -918.488151823565" "16 -565.271080850848" "16 -440.376796499951" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -556.496454677163" "16 -565.271080850848" "16 -565.271080850848" "16 -457.035136907414" "16 -565.271080850848" "16 -714.707419842984" "16 -714.707419842984" "16 -457.035136907414" "16 -556.496454677163" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -440.376796499951" "16 -457.035136907414" "16 -565.271080850848" "16 -565.271080850848" "16 -918.488151823565" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -565.271080850848" "16 -918.488151823565" "16 -565.271080850848" "16 -565.271080850848" "16 -457.035136907414" "16 -714.707419842984" "16 -457.035136907414" "16 -440.376796499951" "16 -1159.50209435167" "16 -556.496454677163" "16 -714.707419842984" "16 -1159.50209435167" "16 -714.707419842984" "16 -457.035136907414"
## [259] "16 -1431.99626784632" "16 -918.488151823565" "16 -565.271080850848" "16 -440.376796499951" "16 -457.035136907414" "16 -457.035136907414" "16 -457.035136907414" "16 -440.376796499951" "16 -1431.99626784632" "16 -556.496454677163" "16 -457.035136907414" "16 -918.488151823565" "16 -918.488151823565" "16 -565.271080850848" "16 -714.707419842984" "16 -565.271080850848" "16 -457.035136907414" "16 -457.035136907414" "16 -565.271080850848" "16 -440.376796499951" "16 -565.271080850848" "16 -714.707419842984" "16 -565.271080850848" "16 -918.488151823565" "16 -714.707419842984" "16 -714.707419842984" "16 -457.035136907414" "16 -565.271080850848" "16 -556.496454677163" "16 -565.271080850848" "16 -565.271080850848" "16 -556.496454677163" "16 -565.271080850848" "16 -714.707419842984" "16 -440.376796499951" "16 -565.271080850848" "16 -440.376796499951" "16 -565.271080850848" "16 -556.496454677163" "16 -714.707419842984" "16 -565.271080850848" "16 -565.271080850848"
## QQn -714.7074 -565.2711 -565.2711 -565.2711 -2055.577 -556.4965 -565.2711 -556.4965 -714.7074 -714.7074 -918.4882 -565.2711 -457.0351 -714.7074 -565.2711 -565.2711 -565.2711 -457.0351 -918.4882 -457.0351 -565.2711 -565.2711 -1431.996 -556.4965 -565.2711 -556.4965 -1731.76 -714.7074 -556.4965 -565.2711 -918.4882 -457.0351 -714.7074 -714.7074 -918.4882 -457.0351 -1159.502 -565.2711 -556.4965 -457.0351 -565.2711 -918.4882 -440.3768 -457.0351 -556.4965 -556.4965 -565.2711 -565.2711 -457.0351 -565.2711 -565.2711 -556.4965 -918.4882 -565.2711 -457.0351 -1431.996 -714.7074 -556.4965 -565.2711 -565.2711 -714.7074 -556.4965 -440.3768 -714.7074 -440.3768 -1431.996 -565.2711 -565.2711 -440.3768 -1159.502 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4965 -556.4965 -1159.502 -565.2711 -565.2711 -440.3768 -565.2711 -457.0351 -714.7074 -556.4965 -565.2711 -714.7074 -714.7074 -565.2711 -565.2711 -440.3768 -457.0351 -714.7074 -565.2711 -440.3768 -440.3768 -440.3768 -565.2711 -714.7074 -565.2711 -565.2711 -565.2711 -556.4965 -565.2711 -714.7074 -565.2711 -565.2711 -440.3768 -556.4965 -565.2711 -556.4965 -556.4965 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4965 -556.4965 -556.4965 -565.2711 -918.4882 -565.2711 -565.2711 -565.2711 -565.2711 -457.0351 -440.3768 -565.2711 -565.2711 -457.0351 -565.2711 -565.2711 -565.2711 -457.0351 -714.7074 -440.3768 -440.3768 -565.2711 -556.4965 -565.2711 -918.4882 -565.2711 -457.0351 -565.2711 -565.2711 -918.4882 -565.2711 -918.4882 -457.0351 -714.7074 -556.4965 -440.3768 -556.4965 -565.2711 -556.4965 -565.2711 -565.2711 -457.0351 -714.7074 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -714.7074 -918.4882 -457.0351 -565.2711 -440.3768 -918.4882 -565.2711 -565.2711 -565.2711 -565.2711 -440.3768 -714.7074 -714.7074 -457.0351 -440.3768 -457.0351 -565.2711 -565.2711 -556.4965 -556.4965 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4965 -918.4882 -457.0351 -440.3768 -1731.76 -556.4965 -565.2711 -565.2711 -714.7074 -565.2711 -565.2711 -565.2711 -918.4882 -565.2711 -556.4965 -457.0351 -440.3768 -556.4965 -440.3768 -565.2711 -1159.502 -457.0351 -457.0351 -918.4882 -565.2711 -440.3768 -565.2711 -565.2711 -565.2711 -556.4965 -565.2711 -565.2711 -457.0351 -565.2711 -714.7074 -714.7074 -457.0351 -556.4965 -565.2711 -565.2711 -565.2711 -565.2711 -440.3768 -457.0351 -565.2711 -565.2711 -918.4882 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -918.4882 -565.2711 -565.2711 -457.0351 -714.7074 -457.0351 -440.3768 -1159.502 -556.4965 -714.7074 -1159.502 -714.7074 -457.0351 -1431.996 -918.4882 -565.2711 -440.3768 -457.0351 -457.0351 -457.0351 -440.3768 -1431.996 -556.4965 -457.0351 -918.4882 -918.4882 -565.2711 -714.7074 -565.2711 -457.0351 -457.0351 -565.2711 -440.3768 -565.2711 -714.7074 -565.2711 -918.4882 -714.7074 -714.7074 -457.0351 -565.2711 -556.4965 -565.2711 -565.2711 -556.4965 -565.2711 -714.7074 -440.3768 -565.2711 -440.3768 -565.2711 -556.4965 -714.7074 -565.2711 -565.2711 QQ -714.7074 -565.2711 -565.2711 -565.2711 -2055.577 -556.4965 -565.2711 -556.4965 -714.7074 -714.7074 -918.4882 -565.2711 -457.0351 -714.7074 -565.2711 -565.2711 -565.2711 -457.0351 -918.4882 -457.0351 -565.2711 -565.2711 -1431.996 -556.4965 -565.2711 -556.4965 -1731.76 -714.7074 -556.4965 -565.2711 -918.4882 -457.0351 -714.7074 -714.7074 -918.4882 -457.0351 -1159.502 -565.2711 -556.4965 -457.0351 -565.2711 -918.4882 -440.3768 -457.0351 -556.4965 -556.4965 -565.2711 -565.2711 -457.0351 -565.2711 -565.2711 -556.4965 -918.4882 -565.2711 -457.0351 -1431.996 -714.7074 -556.4965 -565.2711 -565.2711 -714.7074 -556.4965 -440.3768 -714.7074 -440.3768 -1431.996 -565.2711 -565.2711 -440.3768 -1159.502 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4965 -556.4965 -1159.502 -565.2711 -565.2711 -440.3768 -565.2711 -457.0351 -714.7074 -556.4965 -565.2711 -714.7074 -714.7074 -565.2711 -565.2711 -440.3768 -457.0351 -714.7074 -565.2711 -440.3768 -440.3768 -440.3768 -565.2711 -714.7074 -565.2711 -565.2711 -565.2711 -556.4965 -565.2711 -714.7074 -565.2711 -565.2711 -440.3768 -556.4965 -565.2711 -556.4965 -556.4965 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4965 -556.4965 -556.4965 -565.2711 -918.4882 -565.2711 -565.2711 -565.2711 -565.2711 -457.0351 -440.3768 -565.2711 -565.2711 -457.0351 -565.2711 -565.2711 -565.2711 -457.0351 -714.7074 -440.3768 -440.3768 -565.2711 -556.4965 -565.2711 -918.4882 -565.2711 -457.0351 -565.2711 -565.2711 -918.4882 -565.2711 -918.4882 -457.0351 -714.7074 -556.4965 -440.3768 -556.4965 -565.2711 -556.4965 -565.2711 -565.2711 -457.0351 -714.7074 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -714.7074 -918.4882 -457.0351 -565.2711 -440.3768 -918.4882 -565.2711 -565.2711 -565.2711 -565.2711 -440.3768 -714.7074 -714.7074 -457.0351 -440.3768 -457.0351 -565.2711 -565.2711 -556.4965 -556.4965 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -556.4965 -918.4882 -457.0351 -440.3768 -1731.76 -556.4965 -565.2711 -565.2711 -714.7074 -565.2711 -565.2711 -565.2711 -918.4882 -565.2711 -556.4965 -457.0351 -440.3768 -556.4965 -440.3768 -565.2711 -1159.502 -457.0351 -457.0351 -918.4882 -565.2711 -440.3768 -565.2711 -565.2711 -565.2711 -556.4965 -565.2711 -565.2711 -457.0351 -565.2711 -714.7074 -714.7074 -457.0351 -556.4965 -565.2711 -565.2711 -565.2711 -565.2711 -440.3768 -457.0351 -565.2711 -565.2711 -918.4882 -565.2711 -565.2711 -565.2711 -565.2711 -565.2711 -918.4882 -565.2711 -565.2711 -457.0351 -714.7074 -457.0351 -440.3768 -1159.502 -556.4965 -714.7074 -1159.502 -714.7074 -457.0351 -1431.996 -918.4882 -565.2711 -440.3768 -457.0351 -457.0351 -457.0351 -440.3768 -1431.996 -556.4965 -457.0351 -918.4882 -918.4882 -565.2711 -714.7074 -565.2711 -457.0351 -457.0351 -565.2711 -440.3768 -565.2711 -714.7074 -565.2711 -918.4882 -714.7074 -714.7074 -457.0351 -565.2711 -556.4965 -565.2711 -565.2711 -556.4965 -565.2711 -714.7074 -440.3768 -565.2711 -440.3768 -565.2711 -556.4965 -714.7074 -565.2711 -565.2711 epsilon_cond 7.176401e-09 5.344276e-09 5.344276e-09 5.344276e-09 1.169715e-08 5.206111e-09 5.344276e-09 5.206111e-09 7.176401e-09 7.176401e-09 8.714014e-09 5.344276e-09 3.269111e-09 7.176401e-09 5.344276e-09 5.344276e-09 5.344276e-09 3.269111e-09 8.714014e-09 3.269111e-09 5.344276e-09 5.344276e-09 1.064785e-08 5.206111e-09 5.344276e-09 5.206111e-09 1.124658e-08 7.176401e-09 5.206111e-09 5.344276e-09 8.714014e-09 3.269111e-09 7.176401e-09 7.176401e-09 8.714014e-09 3.269111e-09 9.834959e-09 5.344276e-09 5.206111e-09 3.269111e-09 5.344276e-09 8.714014e-09 2.859153e-09 3.269111e-09 5.206111e-09 5.206111e-09 5.344276e-09 5.344276e-09 3.269111e-09 5.344276e-09 5.344276e-09 5.206111e-09 8.714014e-09 5.344276e-09 3.269111e-09 1.064785e-08 7.176401e-09 5.206111e-09 5.344276e-09 5.344276e-09 7.176401e-09 5.206111e-09 2.859153e-09 7.176401e-09 2.859153e-09 1.064785e-08 5.344276e-09 5.344276e-09 2.859153e-09 9.834959e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.206111e-09 5.206111e-09 9.834959e-09 5.344276e-09 5.344276e-09 2.859153e-09 5.344276e-09 3.269111e-09 7.176401e-09 5.206111e-09 5.344276e-09 7.176401e-09 7.176401e-09 5.344276e-09 5.344276e-09 2.859153e-09 3.269111e-09 7.176401e-09 5.344276e-09 2.859153e-09 2.859153e-09 2.859153e-09 5.344276e-09 7.176401e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.206111e-09 5.344276e-09 7.176401e-09 5.344276e-09 5.344276e-09 2.859153e-09 5.206111e-09 5.344276e-09 5.206111e-09 5.206111e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.206111e-09 5.206111e-09 5.206111e-09 5.344276e-09 8.714014e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 3.269111e-09 2.859153e-09 5.344276e-09 5.344276e-09 3.269111e-09 5.344276e-09 5.344276e-09 5.344276e-09 3.269111e-09 7.176401e-09 2.859153e-09 2.859153e-09 5.344276e-09 5.206111e-09 5.344276e-09 8.714014e-09 5.344276e-09 3.269111e-09 5.344276e-09 5.344276e-09 8.714014e-09 5.344276e-09 8.714014e-09 3.269111e-09 7.176401e-09 5.206111e-09 2.859153e-09 5.206111e-09 5.344276e-09 5.206111e-09 5.344276e-09 5.344276e-09 3.269111e-09 7.176401e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 7.176401e-09 8.714014e-09 3.269111e-09 5.344276e-09 2.859153e-09 8.714014e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 2.859153e-09 7.176401e-09 7.176401e-09 3.269111e-09 2.859153e-09 3.269111e-09 5.344276e-09 5.344276e-09 5.206111e-09 5.206111e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.206111e-09 8.714014e-09 3.269111e-09 2.859153e-09 1.124658e-08 5.206111e-09 5.344276e-09 5.344276e-09 7.176401e-09 5.344276e-09 5.344276e-09 5.344276e-09 8.714014e-09 5.344276e-09 5.206111e-09 3.269111e-09 2.859153e-09 5.206111e-09 2.859153e-09 5.344276e-09 9.834959e-09 3.269111e-09 3.269111e-09 8.714014e-09 5.344276e-09 2.859153e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.206111e-09 5.344276e-09 5.344276e-09 3.269111e-09 5.344276e-09 7.176401e-09 7.176401e-09 3.269111e-09 5.206111e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 2.859153e-09 3.269111e-09 5.344276e-09 5.344276e-09 8.714014e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 5.344276e-09 8.714014e-09 5.344276e-09 5.344276e-09 3.269111e-09 7.176401e-09 3.269111e-09 2.859153e-09 9.834959e-09 5.206111e-09 7.176401e-09 9.834959e-09 7.176401e-09 3.269111e-09 1.064785e-08 8.714014e-09 5.344276e-09 2.859153e-09 3.269111e-09 3.269111e-09 3.269111e-09 2.859153e-09 1.064785e-08 5.206111e-09 3.269111e-09 8.714014e-09 8.714014e-09 5.344276e-09 7.176401e-09 5.344276e-09 3.269111e-09 3.269111e-09 5.344276e-09 2.859153e-09 5.344276e-09 7.176401e-09 5.344276e-09 8.714014e-09 7.176401e-09 7.176401e-09 3.269111e-09 5.344276e-09 5.206111e-09 5.344276e-09 5.344276e-09 5.206111e-09 5.344276e-09 7.176401e-09 2.859153e-09 5.344276e-09 2.859153e-09 5.344276e-09 5.206111e-09 7.176401e-09 5.344276e-09 5.344276e-09 mu 2.704756 w 0.3192758
## [1] "17 -714.707424972011" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -2055.57680170529" "17 -556.496457574345" "17 -565.271083871812" "17 -556.496457574345" "17 -714.707424972011" "17 -714.707424972011" "17 -918.488159827284" "17 -565.271083871812" "17 -457.035138401513" "17 -714.707424972011" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -457.035138401513" "17 -918.488159827284" "17 -457.035138401513" "17 -565.271083871812" "17 -565.271083871812" "17 -1431.996283094" "17 -556.496457574345" "17 -565.271083871812" "17 -556.496457574345" "17 -1731.75987724688" "17 -714.707424972011" "17 -556.496457574345" "17 -565.271083871812" "17 -918.488159827284" "17 -457.035138401513" "17 -714.707424972011" "17 -714.707424972011" "17 -918.488159827284" "17 -457.035138401513" "17 -1159.50210575533" "17 -565.271083871812" "17 -556.496457574345" "17 -457.035138401513" "17 -565.271083871812" "17 -918.488159827284" "17 -440.376797759056"
## [44] "17 -457.035138401513" "17 -556.496457574345" "17 -556.496457574345" "17 -565.271083871812" "17 -565.271083871812" "17 -457.035138401513" "17 -565.271083871812" "17 -565.271083871812" "17 -556.496457574345" "17 -918.488159827284" "17 -565.271083871812" "17 -457.035138401513" "17 -1431.996283094" "17 -714.707424972011" "17 -556.496457574345" "17 -565.271083871812" "17 -565.271083871812" "17 -714.707424972011" "17 -556.496457574345" "17 -440.376797759056" "17 -714.707424972011" "17 -440.376797759056" "17 -1431.996283094" "17 -565.271083871812" "17 -565.271083871812" "17 -440.376797759056" "17 -1159.50210575533" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -556.496457574345" "17 -556.496457574345" "17 -1159.50210575533" "17 -565.271083871812" "17 -565.271083871812" "17 -440.376797759056" "17 -565.271083871812" "17 -457.035138401513" "17 -714.707424972011" "17 -556.496457574345" "17 -565.271083871812"
## [87] "17 -714.707424972011" "17 -714.707424972011" "17 -565.271083871812" "17 -565.271083871812" "17 -440.376797759056" "17 -457.035138401513" "17 -714.707424972011" "17 -565.271083871812" "17 -440.376797759056" "17 -440.376797759056" "17 -440.376797759056" "17 -565.271083871812" "17 -714.707424972011" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -556.496457574345" "17 -565.271083871812" "17 -714.707424972011" "17 -565.271083871812" "17 -565.271083871812" "17 -440.376797759056" "17 -556.496457574345" "17 -565.271083871812" "17 -556.496457574345" "17 -556.496457574345" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -556.496457574345" "17 -556.496457574345" "17 -556.496457574345" "17 -565.271083871812" "17 -918.488159827284" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -457.035138401513" "17 -440.376797759056" "17 -565.271083871812"
## [130] "17 -565.271083871812" "17 -457.035138401513" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -457.035138401513" "17 -714.707424972011" "17 -440.376797759056" "17 -440.376797759056" "17 -565.271083871812" "17 -556.496457574345" "17 -565.271083871812" "17 -918.488159827284" "17 -565.271083871812" "17 -457.035138401513" "17 -565.271083871812" "17 -565.271083871812" "17 -918.488159827284" "17 -565.271083871812" "17 -918.488159827284" "17 -457.035138401513" "17 -714.707424972011" "17 -556.496457574345" "17 -440.376797759056" "17 -556.496457574345" "17 -565.271083871812" "17 -556.496457574345" "17 -565.271083871812" "17 -565.271083871812" "17 -457.035138401513" "17 -714.707424972011" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -714.707424972011" "17 -918.488159827284" "17 -457.035138401513" "17 -565.271083871812" "17 -440.376797759056"
## [173] "17 -918.488159827284" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -440.376797759056" "17 -714.707424972011" "17 -714.707424972011" "17 -457.035138401513" "17 -440.376797759056" "17 -457.035138401513" "17 -565.271083871812" "17 -565.271083871812" "17 -556.496457574345" "17 -556.496457574345" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -556.496457574345" "17 -918.488159827284" "17 -457.035138401513" "17 -440.376797759056" "17 -1731.75987724688" "17 -556.496457574345" "17 -565.271083871812" "17 -565.271083871812" "17 -714.707424972011" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -918.488159827284" "17 -565.271083871812" "17 -556.496457574345" "17 -457.035138401513" "17 -440.376797759056" "17 -556.496457574345" "17 -440.376797759056" "17 -565.271083871812" "17 -1159.50210575533" "17 -457.035138401513"
## [216] "17 -457.035138401513" "17 -918.488159827284" "17 -565.271083871812" "17 -440.376797759056" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -556.496457574345" "17 -565.271083871812" "17 -565.271083871812" "17 -457.035138401513" "17 -565.271083871812" "17 -714.707424972011" "17 -714.707424972011" "17 -457.035138401513" "17 -556.496457574345" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -440.376797759056" "17 -457.035138401513" "17 -565.271083871812" "17 -565.271083871812" "17 -918.488159827284" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -565.271083871812" "17 -918.488159827284" "17 -565.271083871812" "17 -565.271083871812" "17 -457.035138401513" "17 -714.707424972011" "17 -457.035138401513" "17 -440.376797759056" "17 -1159.50210575533" "17 -556.496457574345" "17 -714.707424972011" "17 -1159.50210575533" "17 -714.707424972011" "17 -457.035138401513"
## [259] "17 -1431.996283094" "17 -918.488159827284" "17 -565.271083871812" "17 -440.376797759056" "17 -457.035138401513" "17 -457.035138401513" "17 -457.035138401513" "17 -440.376797759056" "17 -1431.996283094" "17 -556.496457574345" "17 -457.035138401513" "17 -918.488159827284" "17 -918.488159827284" "17 -565.271083871812" "17 -714.707424972011" "17 -565.271083871812" "17 -457.035138401513" "17 -457.035138401513" "17 -565.271083871812" "17 -440.376797759056" "17 -565.271083871812" "17 -714.707424972011" "17 -565.271083871812" "17 -918.488159827284" "17 -714.707424972011" "17 -714.707424972011" "17 -457.035138401513" "17 -565.271083871812" "17 -556.496457574345" "17 -565.271083871812" "17 -565.271083871812" "17 -556.496457574345" "17 -565.271083871812" "17 -714.707424972011" "17 -440.376797759056" "17 -565.271083871812" "17 -440.376797759056" "17 -565.271083871812" "17 -556.496457574345" "17 -714.707424972011" "17 -565.271083871812" "17 -565.271083871812"
#Plot final estimate over data
layout(matrix(c(1,2,3),3,1), widths=c(1,1,1), heights=c(1,1,3))
plot(QQ.out[1:s],type="l", xlim=c(1,max(10,s)), las=1, ylab="Q", lwd=2)
par(mar=c(5,4,1.5,0.5))
xx = seq(0,10,length=11)
yy = w*ddeg(xx) + (1-w)*dpois(xx, mu)
plot(xx, yy, type="l", ylim=c(0,1), main=paste("s =",s," Q =", round(QQ.out[s],4)," w=",w," mu=",mu), lwd=2, col="red", lty=2, xlab="x", ylab="Density")
points(x, rep(0,n), col="red")
legend(6,0.22,c("Truth","Estimate"),col=c("black","red"), lty=c(1,2), bty="n")
Provide you maximum likelihood estimates \(\hat{\omega}\), \(\hat{\lambda}\), \(\hat{\mu}\) and \(\hat{\tau}\), rounded to two decimal places.
\(w = 0.09, lambda = 3.05, mu = 0.79, tau = 0.38\)
Are the initial values appropriate?
The starting values of four parameters, \(w\), \(\lambda\), \(\mu\) and \(\tau\), need to be specified, and the context of the problem provides some useful clues.
Because the lognormal component corresponds to the “normal” components, and we expect the majority of the observations to be in this class, it makes sense to bias the weights so that \(w \le 1/2\). For example, we could use \(w = 0.1\) (but other values that satisfy \(w \le 1/2\) would be reasonable too).
For the same reason, a reasonable starting values for \(\mu\) and \(\tau\) correspond to their maximum likelihood estimators under the simpler log-Gaussian model. Since a random variable follows a log-Gaussian distribution if and only if its logarithm follows a Gaussian distribution, we can use \(\mu = mean(log(x))\) and \(\tau = sd(log(x))\) as our starting values.
Finally, because the defective components should have shorter lifespan than normal components, it makes sense to take \(1/\lambda1\) (which is the mean of the first component) to be a small fraction of the overall mean of the data (we use \(5%\) of the overall mean, but other similar values would all be reasonable).
In summary, you should expect an initialization such as this one:
w = 0.1
mu = mean(log(x))
tau = sd(log(x))
lambda = 20/mean(x)
Are the observation-specific weights \(v_{i,k}\) computed correctly (E step)?
In this case it is easy to see that \(v_{i,1}^{(t+1)} \propto w^{(t)} \lambda^{(t)} \exp\left\{ - \lambda^{(t)} x_i \right\}\) and \(v_{i,2}^{(t+1)} \propto \left(1-w^{(t)}\right) \frac{1}{\sqrt{2\pi} \tau^{(t)} x_i} \exp\left\{ - \frac{1}{2 } \left( \frac{\log(x_i) - \mu^{(t)}}{\tau^{(t)}} \right)^2\right\}\).
Hence, the code for the E step could look something like
## E step
v = array(0, dim=c(n,2))
v[,1] = log(w) + dexp(x, lambda, log=TRUE)
v[,2] = log(1-w) + dlnorm(x, mu, tau, log=TRUE)
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,])))
}
Remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R. For example, the calculation could be vectorized to increase efficiency.
Are the formulas for the maximum of the QQ functions correct (M step)?
In this case
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Computing the derivatives and setting them to zero yields
\(\hat{w}^{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} v_{i,1}\)
\(\hat{\lambda}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,1}}{\sum_{i=1}^{n} v_{i,1} x_{i}}\)
\(\hat{\mu}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,2} \log(x_i)}{\sum_{i=1}^{n} v_{i,2}}\)
\(\hat{\tau}^{(t+1)} = \sqrt{\frac{\sum_{i=1}^{n} v_{i,2}\left( \log x_i - \hat{\mu}^{(t+1)} \right)^2}{\sum_{i=1}^{n} v_{i,2}}}\)
Hence, the code for this section might look something like:
## M step
w = mean(v[,1])
lambda = sum(v[,1])/sum(v[,1]*x)
mu = sum(v[,2]*log(x))/sum(v[,2])
tau = sqrt(sum(v[,2]*(log(x) - mu)^2)/sum(v[,2]))
However, remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R.
Is the converge check correct?
As noted before,
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Hence, the convergence check might look something like
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(x[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(x[i], mu, tau, log=TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
## Error in if (abs(QQn - QQ)/abs(QQn) < epsilon) {: missing value where TRUE/FALSE needed
QQ = QQn
Are the estimates of the parameters generated by the algorithm correct?
The point estimates, rounded to two decimal places, are \(\hat{w}=0.09\), \(\hat{\lambda} = 3.05\), \(\hat{\mu} = 0.78\) and \(\hat{\tau}=0.38\).
Provide the EM algorithm to fit the mixture model
\[\begin{align} f(x) = w \lambda \exp\left\{ -\lambda x \right\} + (1-w) \frac{1}{\sqrt{2\pi} \tau x} \exp\left\{ - \frac{1}{2 \tau^2} \left( \log(x) - \mu \right)^2\right\} \\ \quad\quad\quad x>0. \end{align}\]
## Read fuses.csv
df = read.csv("data/fuses.csv", header = FALSE)
x = df$V1
n = nrow(df)
## Initialize the parameters
w = 1/2 #Assign equal weight to each component to start with
mu = mean(log(x)) #Random cluster centers randomly spread over the support of the data
tau = sd(log(x)) #Initial standard deviation
lambda = 1/mu
## E step
v = array(0, dim=c(n,KK))
v[,1] = log(w) + dexp(x, lambda, log=TRUE) #Compute the log of the weights
v[,2] = log(1-w) + dlnorm(x, mu, tau, log=TRUE) #Compute the log of the weights
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,]))) #Go from logs to actual weights in a numerically stable manner
}
## M step
# Weights
w = mean(v[,1])
lambda = 0
denom = 0
for(i in 1:n){
denom = denom + v[i,1]*x[i]
}
lambda = sum(v[,1])/denom
for(i in 1:n){
mu = mu + v[i,2]*log(x[i])
}
mu = mu/sum(v[,2])
# Standard deviations
tau = 0
for(i in 1:n){
tau = tau + v[i,2]*(log(x[i]) - mu)^2
}
tau = sqrt(tau/sum(v[,2]))
##Check convergence
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(x[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(x[i], mu, tau, log=TRUE))
}
QQn
## [1] -752.2876
Provide you maximum likelihood estimates \(\hat{\omega}\), \(\hat{\lambda}\), \(\hat{\mu}\) and \(\hat{\tau}\), rounded to two decimal places.
print(paste('w =', round(w,2))) #0.09
## [1] "w = 0.23"
print(paste('lambda =', round(lambda,2))) #3.05
## [1] "lambda = 0.76"
print(paste('mu =', round(mu,2))) #0.78
## [1] "mu = 0.81"
print(paste('tau =', round(tau,2))) #0.38
## [1] "tau = 0.42"
Are the initial values appropriate?
The starting values of four parameters, \(w\), \(\lambda\), \(\mu\) and \(\tau\), need to be specified, and the context of the problem provides some useful clues.
Because the lognormal component corresponds to the “normal” components, and we expect the majority of the observations to be in this class, it makes sense to bias the weights so that \(w \le 1/2\). For example, we could use \(w = 0.1\) (but other values that satisfy \(w \le 1/2\) would be reasonable too).
For the same reason, a reasonable starting values for \(\mu\) and \(\tau\) correspond to their maximum likelihood estimators under the simpler log-Gaussian model. Since a random variable follows a log-Gaussian distribution if and only if its logarithm follows a Gaussian distribution, we can use \(\mu = mean(log(x))\) and \(\tau = sd(log(x))\) as our starting values.
Finally, because the defective components should have shorter lifespan than normal components, it makes sense to take \(1/\lambda1\) (which is the mean of the first component) to be a small fraction of the overall mean of the data (we use \(5%\) of the overall mean, but other similar values would all be reasonable).
In summary, you should expect an initialization such as this one:
w = 0.1
mu = mean(log(x))
tau = sd(log(x))
lambda = 20/mean(x)
Are the observation-specific weights \(v_{i,k}\) computed correctly (E step)?
In this case it is easy to see that \(v_{i,1}^{(t+1)} \propto w^{(t)} \lambda^{(t)} \exp\left\{ - \lambda^{(t)} x_i \right\}\) and \(v_{i,2}^{(t+1)} \propto \left(1-w^{(t)}\right) \frac{1}{\sqrt{2\pi} \tau^{(t)} x_i} \exp\left\{ - \frac{1}{2 } \left( \frac{\log(x_i) - \mu^{(t)}}{\tau^{(t)}} \right)^2\right\}\).
Hence, the code for the E step could look something like
## E step
v = array(0, dim=c(n,2))
v[,1] = log(w) + dexp(x, lambda, log=TRUE)
v[,2] = log(1-w) + dlnorm(x, mu, tau, log=TRUE)
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,])))
}
Remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R. For example, the calculation could be vectorized to increase efficiency.
Are the formulas for the maximum of the QQ functions correct (M step)?
In this case
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Computing the derivatives and setting them to zero yields
\(\hat{w}^{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} v_{i,1}\)
\(\hat{\lambda}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,1}}{\sum_{i=1}^{n} v_{i,1} x_{i}}\)
\(\hat{\mu}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,2} \log(x_i)}{\sum_{i=1}^{n} v_{i,2}}\)
\(\hat{\tau}^{(t+1)} = \sqrt{\frac{\sum_{i=1}^{n} v_{i,2}\left( \log x_i - \hat{\mu}^{(t+1)} \right)^2}{\sum_{i=1}^{n} v_{i,2}}}\)
Hence, the code for this section might look something like:
## M step
w = mean(v[,1])
lambda = sum(v[,1])/sum(v[,1]*x)
mu = sum(v[,2]*log(x))/sum(v[,2])
tau = sqrt(sum(v[,2]*(log(x) - mu)^2)/sum(v[,2]))
However, remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R.
Is the converge check correct?
As noted before,
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Hence, the convergence check might look something like
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(x[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(x[i], mu, tau, log=TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
## Error in if (abs(QQn - QQ)/abs(QQn) < epsilon) {: missing value where TRUE/FALSE needed
QQ = QQn
paste('QQ =', QQ)
## [1] "QQ = -609.819618783712"
paste('QQn =', QQn)
## [1] "QQn = -609.819618783712"
Are the estimates of the parameters generated by the algorithm correct?
The point estimates, rounded to two decimal places, are \(\hat{w}=0.09\), \(\hat{\lambda} = 3.05\), \(\hat{\mu} = 0.78\) and \(\hat{\tau}=0.38\).
Provide the EM algorithm to fit the mixture model
\[\begin{align} f(x) = w \lambda \exp\left\{ -\lambda x \right\} + (1-w) \frac{1}{\sqrt{2\pi} \tau x} \exp\left\{ - \frac{1}{2 \tau^2} \left( \log(x) - \mu \right)^2\right\} \\ \quad\quad\quad x>0. \end{align}\]
#### Peer-graded Assignment: The EM algorithm for Mixture Models
## Clear the environment and load required libraries
rm(list = ls())
set.seed(81196)
## Read data
#setwd("c:/Users/homeuk/Downloads/")
data = read.csv(file = 'data/fuses.csv', header = FALSE)
x = data$V1
n = length(x)
kk = 2
# Plot the true density
par(mfrow = c(1, 1))
d <- density(x)
plot(d)
## Run the actual EM algorithm
## Initialize the parameters
w = 0.01 # Assign small weight to exponential
lambda = rexp(1, rate = 0.01) # random from exponential with very small rate
mu = mean(log(x)) # Initial mean
tau = sd(log(x)) # Initial tau
s = 0
sw = FALSE
QQ = -Inf
QQ.out = NULL
epsilon = 10^(-5)
## Checking convergence of the algorithm
while(!sw){
## E step
v = array(0, dim=c(400,2))
v[,1] = log(w) + dexp(x, lambda, log=TRUE) #Compute the log of the weights
v[,2] = log(1-w) + dlnorm(x, mu, tau, log=TRUE) #Compute the log of the weights
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,]))) #Go from logs to actual weights in a numerically stable manner
}
## M step
# Weights
w = mean(v[,1])
# Lambda
lambda = 1/(sum(v[,1]*x)/sum(v[,1]))
# mu
mu = sum(v[,2]*log(x))/sum(v[,2])
# Tau
tau = sqrt(sum(v[,2]*(log(x)-mu)^2)/sum(v[,2]))
##Check convergence
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(x[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(x[i], mu, tau, log=TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
QQ.out = c(QQ.out, QQ)
s = s + 1
print(paste(s, QQn))
#Plot current estimate over data
layout(matrix(c(1, 2), 2, 1), widths = c(1, 1), heights = c(1.3, 3))
par(mar = c(3.1, 4.1, 0.5, 0.5))
plot(QQ.out[1:s], type = "l", xlim = c(1, max(10, s)), las = 1, ylab = "Q", lwd = 2)
xx = seq(0.5, 10, length = 400)
yy = w*dexp(xx, lambda) + (1-w)*dlnorm(xx, mu, tau)
plot(xx, yy, type = "l", ylim = c(0, max(yy)), xlab = "x", ylab = "Final density")
}
## [1] "1 -668.109725991385"
## [1] "2 -630.660888730552"
## [1] "3 -586.40387413649"
## [1] "4 -566.277173750214"
## [1] "5 -558.843231331294"
## [1] "6 -558.548167687689"
## [1] "7 -559.914760618764"
## [1] "8 -561.122246576285"
## [1] "9 -561.991995534681"
## [1] "10 -562.595668147502"
## [1] "11 -563.012570448622"
## [1] "12 -563.301028121497"
## [1] "13 -563.501195538212"
## [1] "14 -563.640453553695"
## [1] "15 -563.737529842777"
## [1] "16 -563.805301269067"
## [1] "17 -563.852664689737"
## [1] "18 -563.885790778198"
## [1] "19 -563.908971758411"
## [1] "20 -563.925199538106"
## [1] "21 -563.936562802693"
## [1] "22 -563.944521265872"
## [1] "23 -563.95009585621"
Provide you maximum likelihood estimates \(\hat{\omega}\), \(\hat{\lambda}\), \(\hat{\mu}\) and \(\hat{\tau}\), rounded to two decimal places.
#c(w_hat,lambda_hat,mu_hat,tau_hat)
#[1] 0.09 3.05 0.78 0.38
paste('w =', w)
## [1] "w = 0.0873206264257876"
paste('lambda =', lambda)
## [1] "lambda = 3.05418255411755"
paste('mu =', mu)
## [1] "mu = 0.782448696213251"
paste('tau =', tau)
## [1] "tau = 0.379038560187694"
Are the initial values appropriate?
The starting values of four parameters, \(w\), \(\lambda\), \(\mu\) and \(\tau\), need to be specified, and the context of the problem provides some useful clues.
Because the lognormal component corresponds to the “normal” components, and we expect the majority of the observations to be in this class, it makes sense to bias the weights so that \(w \le 1/2\). For example, we could use \(w = 0.1\) (but other values that satisfy \(w \le 1/2\) would be reasonable too).
For the same reason, a reasonable starting values for \(\mu\) and \(\tau\) correspond to their maximum likelihood estimators under the simpler log-Gaussian model. Since a random variable follows a log-Gaussian distribution if and only if its logarithm follows a Gaussian distribution, we can use \(\mu = mean(log(x))\) and \(\tau = sd(log(x))\) as our starting values.
Finally, because the defective components should have shorter lifespan than normal components, it makes sense to take \(1/\lambda1\) (which is the mean of the first component) to be a small fraction of the overall mean of the data (we use \(5%\) of the overall mean, but other similar values would all be reasonable).
In summary, you should expect an initialization such as this one:
w = 0.1
mu = mean(log(x))
tau = sd(log(x))
lambda = 20/mean(x)
Are the observation-specific weights \(v_{i,k}\) computed correctly (E step)?
In this case it is easy to see that \(v_{i,1}^{(t+1)} \propto w^{(t)} \lambda^{(t)} \exp\left\{ - \lambda^{(t)} x_i \right\}\) and \(v_{i,2}^{(t+1)} \propto \left(1-w^{(t)}\right) \frac{1}{\sqrt{2\pi} \tau^{(t)} x_i} \exp\left\{ - \frac{1}{2 } \left( \frac{\log(x_i) - \mu^{(t)}}{\tau^{(t)}} \right)^2\right\}\).
Hence, the code for the E step could look something like
## E step
v = array(0, dim=c(n,2))
v[,1] = log(w) + dexp(x, lambda, log=TRUE)
v[,2] = log(1-w) + dlnorm(x, mu, tau, log=TRUE)
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,])))
}
Remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R. For example, the calculation could be vectorized to increase efficiency.
Are the formulas for the maximum of the QQ functions correct (M step)?
In this case
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Computing the derivatives and setting them to zero yields
\(\hat{w}^{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} v_{i,1}\)
\(\hat{\lambda}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,1}}{\sum_{i=1}^{n} v_{i,1} x_{i}}\)
\(\hat{\mu}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,2} \log(x_i)}{\sum_{i=1}^{n} v_{i,2}}\)
\(\hat{\tau}^{(t+1)} = \sqrt{\frac{\sum_{i=1}^{n} v_{i,2}\left( \log x_i - \hat{\mu}^{(t+1)} \right)^2}{\sum_{i=1}^{n} v_{i,2}}}\)
Hence, the code for this section might look something like:
## M step
w = mean(v[,1])
lambda = sum(v[,1])/sum(v[,1]*x)
mu = sum(v[,2]*log(x))/sum(v[,2])
tau = sqrt(sum(v[,2]*(log(x) - mu)^2)/sum(v[,2]))
However, remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R.
Is the converge check correct?
As noted before,
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Hence, the convergence check might look something like
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(x[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(x[i], mu, tau, log=TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
Are the estimates of the parameters generated by the algorithm correct?
The point estimates, rounded to two decimal places, are \(\hat{w}=0.09\), \(\hat{\lambda} = 3.05\), \(\hat{\mu} = 0.78\) and \(\hat{\tau}=0.38\).
Provide the EM algorithm to fit the mixture model
\[\begin{align} f(x) = w \lambda \exp\left\{ -\lambda x \right\} + (1-w) \frac{1}{\sqrt{2\pi} \tau x} \exp\left\{ - \frac{1}{2 \tau^2} \left( \log(x) - \mu \right)^2\right\} \\ \quad\quad\quad x>0. \end{align}\]
Fuses <- read.csv(file = "data/fuses.csv")
set.seed(81196)
x = Fuses$X1.062163
w.hat = 1/2 #Assign equal weight to each component to start with
lambda.hat = mean(x) #Random cluster centers randomly spread over the support of the data
KK = 2
n = nrow(Fuses)
mu.hat = rnorm(1, mean(x), sd(x))
tau.hat = sd(x)
s = 0
sw = FALSE
QQ = -Inf
QQ.out = NULL
epsilon = 10^(-5)
while(!sw){
## E step
v = array(0, dim=c(n,KK))
v[,1] = w.hat * dexp(x, lambda.hat)/
(w.hat * dexp(x, lambda.hat) + (1 - w.hat) * dnorm(log(x),mu.hat,tau.hat)/x)
v[,2] = (1 - w.hat) * dnorm(log(x),mu.hat,tau.hat)/x/
(w.hat * dexp(x, lambda.hat) + (1 - w.hat) * dnorm(log(x),mu.hat,tau.hat)/x)
## M step
# Weights
w.hat = sum(v[,1])/(sum(v[,1]) + sum(v[,2]))
lambda.hat = sum(v[,1])/sum(v[,1] * x)
tau.hat = sqrt(sum(v[,2]*(log(x)-mu.hat)^2)/sum(v[,2]))
mu.hat = sum(v[,2]*log(x))/(tau.hat^2*sum(v[,2]))
##Check convergence
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w.hat) + log(lambda.hat) - lambda.hat * x[i]) +
v[i,2]*(log(1-w.hat) - log(sqrt(2*pi)) -log(tau.hat*x[i]) - (log(x[i]) - mu.hat)^2/(2*tau.hat^2))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
QQ.out = c(QQ.out, QQ)
s = s + 1
print(paste(s, QQn))
}
## [1] "1 -993.026052454063"
## [1] "2 -1105.58393644319"
## [1] "3 -1053.36573088291"
## [1] "4 -950.505676711176"
## [1] "5 -1613.1514734706"
## [1] "6 -788.097283660817"
## [1] "7 -814.889068941685"
## [1] "8 -744.369768459847"
## [1] "9 -742.195621078797"
## [1] "10 -733.505486034079"
## [1] "11 -729.435523950399"
## [1] "12 -724.880145038897"
## [1] "13 -722.172044622557"
## [1] "14 -719.033708766766"
## [1] "15 -717.644882443281"
## [1] "16 -715.170449849595"
## [1] "17 -714.811383978633"
## [1] "18 -712.494599975998"
## [1] "19 -712.88202091211"
## [1] "20 -710.495601470911"
## [1] "21 -710.792057566296"
## [1] "22 -709.691416855008"
## [1] "23 -709.701583321717"
## [1] "24 -709.600354705148"
## [1] "25 -709.602639108189"
Provide you maximum likelihood estimates \(\hat{\omega}\), \(\hat{\lambda}\), \(\hat{\mu}\) and \(\hat{\tau}\), rounded to two decimal places.
w.hat = 1.00
lambda.hat = 0.46
mu.hat = 2.15
tau.hat = 0.63
paste('w.hat =', w.hat)
## [1] "w.hat = 1"
paste('lambda.hat =', lambda.hat)
## [1] "lambda.hat = 0.46"
paste('mu.hat =', mu.hat)
## [1] "mu.hat = 2.15"
paste('tau.hat =', tau.hat)
## [1] "tau.hat = 0.63"
Are the initial values appropriate?
The starting values of four parameters, \(w\), \(\lambda\), \(\mu\) and \(\tau\), need to be specified, and the context of the problem provides some useful clues.
Because the lognormal component corresponds to the “normal” components, and we expect the majority of the observations to be in this class, it makes sense to bias the weights so that \(w \le 1/2\). For example, we could use \(w = 0.1\) (but other values that satisfy \(w \le 1/2\) would be reasonable too).
For the same reason, a reasonable starting values for \(\mu\) and \(\tau\) correspond to their maximum likelihood estimators under the simpler log-Gaussian model. Since a random variable follows a log-Gaussian distribution if and only if its logarithm follows a Gaussian distribution, we can use \(\mu = mean(log(x))\) and \(\tau = sd(log(x))\) as our starting values.
Finally, because the defective components should have shorter lifespan than normal components, it makes sense to take \(1/\lambda1\) (which is the mean of the first component) to be a small fraction of the overall mean of the data (we use \(5%\) of the overall mean, but other similar values would all be reasonable).
In summary, you should expect an initialization such as this one:
w = 0.1
mu = mean(log(x))
tau = sd(log(x))
lambda = 20/mean(x)
Are the observation-specific weights \(v_{i,k}\) computed correctly (E step)?
In this case it is easy to see that \(v_{i,1}^{(t+1)} \propto w^{(t)} \lambda^{(t)} \exp\left\{ - \lambda^{(t)} x_i \right\}\) and \(v_{i,2}^{(t+1)} \propto \left(1-w^{(t)}\right) \frac{1}{\sqrt{2\pi} \tau^{(t)} x_i} \exp\left\{ - \frac{1}{2 } \left( \frac{\log(x_i) - \mu^{(t)}}{\tau^{(t)}} \right)^2\right\}\).
Hence, the code for the E step could look something like
## E step
v = array(0, dim=c(n,2))
v[,1] = log(w) + dexp(x, lambda, log=TRUE)
v[,2] = log(1-w) + dlnorm(x, mu, tau, log=TRUE)
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,])))
}
Remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R. For example, the calculation could be vectorized to increase efficiency.
Are the formulas for the maximum of the QQ functions correct (M step)?
In this case
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Computing the derivatives and setting them to zero yields
\(\hat{w}^{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} v_{i,1}\)
\(\hat{\lambda}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,1}}{\sum_{i=1}^{n} v_{i,1} x_{i}}\)
\(\hat{\mu}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,2} \log(x_i)}{\sum_{i=1}^{n} v_{i,2}}\)
\(\hat{\tau}^{(t+1)} = \sqrt{\frac{\sum_{i=1}^{n} v_{i,2}\left( \log x_i - \hat{\mu}^{(t+1)} \right)^2}{\sum_{i=1}^{n} v_{i,2}}}\)
Hence, the code for this section might look something like:
## M step
w = mean(v[,1])
lambda = sum(v[,1])/sum(v[,1]*x)
mu = sum(v[,2]*log(x))/sum(v[,2])
tau = sqrt(sum(v[,2]*(log(x) - mu)^2)/sum(v[,2]))
However, remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R.
Is the converge check correct?
As noted before,
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Hence, the convergence check might look something like
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(x[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(x[i], mu, tau, log=TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
Are the estimates of the parameters generated by the algorithm correct?
The point estimates, rounded to two decimal places, are \(\hat{w}=0.09\), \(\hat{\lambda} = 3.05\), \(\hat{\mu} = 0.78\) and \(\hat{\tau}=0.38\).
Provide the EM algorithm to fit the mixture model
\[\begin{align} f(x) = w \lambda \exp\left\{ -\lambda x \right\} + (1-w) \frac{1}{\sqrt{2\pi} \tau x} \exp\left\{ - \frac{1}{2 \tau^2} \left( \log(x) - \mu \right)^2\right\} \\ \quad\quad\quad x>0. \end{align}\]
library(readr)
## Clear the environment and load required libraries
rm(list=ls())
set.seed(81196) # So that results are reproducible (same simulated data every time)
fuses <- read_csv(file = "data/fuses.csv", col_names = F)
colnames(fuses) <- "life"
yy.true = density(fuses$life)$y
plot(yy.true, type = "l")
KK = 2
n = nrow(fuses)
w = 0.5 # Assign equal weight to each component to start with
sigma = sd(fuses$life) #Initial standard deviation
mu = rnorm(KK, mean(fuses$life), sigma) # initial mu
# Plot the initial guess for the density
xx = seq(min(fuses$life), max(fuses$life), length.out = n)
yy.guess = w*dexp(xx, 1/mu[1]) + (1-w)*dlnorm(xx, mu[2], sigma)
plot(xx, yy.guess, type="l", ylim=c(0, max(yy.guess)), xlab="x", ylab="Initial density")
points(fuses$life, rep(0,n), col="red")
s = 0
sw = FALSE
QQ = -Inf
QQ.out = NULL
epsilon = 10^(-5)
# Helper function lookup table, used when updating means
f <- list()
f[[1]] <- function(x){x} # at exponential component pass x as is
f[[2]] <- log # at log-normal component take log of x
##Checking convergence of the algorithm
while(!sw){
## E step
v = array(0, dim=c(n,KK))
v[,1] = log(w) + dexp(fuses$life, 1/mu[1], log = T) # lambda = 1/mu[1]
v[,2] = log(1-w) + dlnorm(fuses$life, mu[2], sigma, log=TRUE) #Compute the log of the weights
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,]))) #Go from logs to actual weights in a numerically stable manner
}
## M step
# Weights
w = mean(v[,1])
mu = rep(0, KK)
for(k in 1:KK){
for(i in 1:n){ # note using f[[k]](x[i]) in the following line, for k=1 we use x[i] as is, for k=2 we make it log(x[i])
mu[k] = mu[k] + v[i,k] * f[[k]](fuses$life[i])
}
mu[k] = mu[k]/sum(v[,k])
}
# Standard deviations
sigma = 0
for(i in 1:n){
sigma = sigma + v[i,2]*(log(fuses$life[i]) - mu[2])^2
}
sigma = sqrt(sigma/sum(v[,2]))
##Check convergence
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(fuses$life[i], 1/mu[1], log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(fuses$life[i], mu[2], sigma, log=TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
QQ.out = c(QQ.out, QQ)
s = s + 1
print(paste(s, QQn))
#Plot current estimate over data
layout(matrix(c(1,2),2,1), widths=c(1,1), heights=c(1.3,3))
par(mar=c(3.1,4.1,0.5,0.5))
plot(QQ.out[1:s],type="l", xlim=c(1,max(10,s)), las=1, ylab="Q", lwd=2)
par(mar=c(5,4,1.5,0.5))
yy = w*dexp(xx, 1/mu[1]) + (1-w)*dlnorm(xx, mu[2], sigma)
plot(xx, yy, type="l", ylim=c(0, max(c(yy,yy.true))), main=paste("s =",s," Q =", round(QQ.out[s],4)), lwd=2, col="red", lty=2, xlab="x", ylab="Density")
lines(density(fuses$life))
legend(x="topright",c("Truth","Estimate"),col=c("black","red"), lty=c(1,2))
}
## [1] "1 -794.91176130173"
## [1] "2 -764.669402412745"
## [1] "3 -741.988745070269"
## [1] "4 -725.911077069151"
## [1] "5 -714.010453851051"
## [1] "6 -704.949044703464"
## [1] "7 -697.926995387143"
## [1] "8 -692.389299122064"
## [1] "9 -687.940432595579"
## [1] "10 -684.300287435868"
## [1] "11 -681.270014843895"
## [1] "12 -678.706654295485"
## [1] "13 -676.505668187718"
## [1] "14 -674.589284182019"
## [1] "15 -672.898700804476"
## [1] "16 -671.388789330381"
## [1] "17 -670.024418852149"
## [1] "18 -668.777857998831"
## [1] "19 -667.626906594467"
## [1] "20 -666.553531739708"
## [1] "21 -665.54285780622"
## [1] "22 -664.582407602061"
## [1] "23 -663.661523221705"
## [1] "24 -662.770915986664"
## [1] "25 -661.902309058807"
## [1] "26 -661.0481460114"
## [1] "27 -660.201345297432"
## [1] "28 -659.355085087972"
## [1] "29 -658.502605980291"
## [1] "30 -657.637021012594"
## [1] "31 -656.751123563602"
## [1] "32 -655.837184290719"
## [1] "33 -654.886728492677"
## [1] "34 -653.890285454766"
## [1] "35 -652.837101894104"
## [1] "36 -651.714813339306"
## [1] "37 -650.5090715003"
## [1] "38 -649.203134703669"
## [1] "39 -647.77744598964"
## [1] "40 -646.209254931966"
## [1] "41 -644.472391325893"
## [1] "42 -642.537376402378"
## [1] "43 -640.372154239114"
## [1] "44 -637.943807891334"
## [1] "45 -635.221604741717"
## [1] "46 -632.181454049349"
## [1] "47 -628.811248795531"
## [1] "48 -625.115737952864"
## [1] "49 -621.11908801998"
## [1] "50 -616.863848353488"
## [1] "51 -612.40667173726"
## [1] "52 -607.812787374638"
## [1] "53 -603.151594114823"
## [1] "54 -598.494672516479"
## [1] "55 -593.915945997902"
## [1] "56 -589.492572117188"
## [1] "57 -585.30469135401"
## [1] "58 -581.432340006874"
## [1] "59 -577.948677162745"
## [1] "60 -574.910281966953"
## [1] "61 -572.347325200707"
## [1] "62 -570.257720448569"
## [1] "63 -568.60840817023"
## [1] "64 -567.34364373233"
## [1] "65 -566.396785058409"
## [1] "66 -565.701152705542"
## [1] "67 -565.197230918842"
## [1] "68 -564.835868269451"
## [1] "69 -564.578576579253"
## [1] "70 -564.396288360442"
## [1] "71 -564.26757944014"
## [1] "72 -564.176914972637"
## [1] "73 -564.113153144419"
## [1] "74 -564.068361510832"
## [1] "75 -564.036920612979"
## [1] "76 -564.014863030123"
## [1] "77 -563.999394211321"
## [1] "78 -563.988548897161"
## [1] "79 -563.980946556708"
## [1] "80 -563.975618158233"
Provide you maximum likelihood estimates \(\hat{\omega}\), \(\hat{\lambda}\), \(\hat{\mu}\) and \(\hat{\tau}\), rounded to two decimal places.
#w = 0.09
#lambda = 3.05
#mu = 0.78
#tau = 0.38
paste('w =', w)
## [1] "w = 0.0873422093795952"
paste('lambda =', lambda)
## Error in paste("lambda =", lambda): object 'lambda' not found
paste('mu =', mu)
## [1] "mu = 0.327637708608568" "mu = 0.782464108410649"
paste('tau =', tau)
## Error in paste("tau =", tau): object 'tau' not found
Are the initial values appropriate?
The starting values of four parameters, \(w\), \(\lambda\), \(\mu\) and \(\tau\), need to be specified, and the context of the problem provides some useful clues.
Because the lognormal component corresponds to the “normal” components, and we expect the majority of the observations to be in this class, it makes sense to bias the weights so that \(w \le 1/2\). For example, we could use \(w = 0.1\) (but other values that satisfy \(w \le 1/2\) would be reasonable too).
For the same reason, a reasonable starting values for \(\mu\) and \(\tau\) correspond to their maximum likelihood estimators under the simpler log-Gaussian model. Since a random variable follows a log-Gaussian distribution if and only if its logarithm follows a Gaussian distribution, we can use \(\mu = mean(log(x))\) and \(\tau = sd(log(x))\) as our starting values.
Finally, because the defective components should have shorter lifespan than normal components, it makes sense to take \(1/\lambda1\) (which is the mean of the first component) to be a small fraction of the overall mean of the data (we use \(5%\) of the overall mean, but other similar values would all be reasonable).
In summary, you should expect an initialization such as this one:
w = 0.1
mu = mean(log(x))
## Error in mean(log(x)): object 'x' not found
tau = sd(log(x))
## Error in is.data.frame(x): object 'x' not found
lambda = 20/mean(x)
## Error in mean(x): object 'x' not found
Are the observation-specific weights \(v_{i,k}\) computed correctly (E step)?
In this case it is easy to see that \(v_{i,1}^{(t+1)} \propto w^{(t)} \lambda^{(t)} \exp\left\{ - \lambda^{(t)} x_i \right\}\) and \(v_{i,2}^{(t+1)} \propto \left(1-w^{(t)}\right) \frac{1}{\sqrt{2\pi} \tau^{(t)} x_i} \exp\left\{ - \frac{1}{2 } \left( \frac{\log(x_i) - \mu^{(t)}}{\tau^{(t)}} \right)^2\right\}\).
Hence, the code for the E step could look something like
## E step
v = array(0, dim=c(n,2))
v[,1] = log(w) + dexp(x, lambda, log=TRUE)
## Error in dexp(x, lambda, log = TRUE): object 'x' not found
v[,2] = log(1-w) + dlnorm(x, mu, tau, log=TRUE)
## Error in dlnorm(x, mu, tau, log = TRUE): object 'x' not found
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,])))
}
Remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R. For example, the calculation could be vectorized to increase efficiency.
Are the formulas for the maximum of the QQ functions correct (M step)?
In this case
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Computing the derivatives and setting them to zero yields
\(\hat{w}^{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} v_{i,1}\)
\(\hat{\lambda}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,1}}{\sum_{i=1}^{n} v_{i,1} x_{i}}\)
\(\hat{\mu}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,2} \log(x_i)}{\sum_{i=1}^{n} v_{i,2}}\)
\(\hat{\tau}^{(t+1)} = \sqrt{\frac{\sum_{i=1}^{n} v_{i,2}\left( \log x_i - \hat{\mu}^{(t+1)} \right)^2}{\sum_{i=1}^{n} v_{i,2}}}\)
Hence, the code for this section might look something like:
## M step
w = mean(v[,1])
lambda = sum(v[,1])/sum(v[,1]*x)
## Error in eval(expr, envir, enclos): object 'x' not found
mu = sum(v[,2]*log(x))/sum(v[,2])
## Error in eval(expr, envir, enclos): object 'x' not found
tau = sqrt(sum(v[,2]*(log(x) - mu)^2)/sum(v[,2]))
## Error in eval(expr, envir, enclos): object 'x' not found
However, remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R.
Is the converge check correct?
As noted before,
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Hence, the convergence check might look something like
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(x[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(x[i], mu, tau, log=TRUE))
}
## Error in dexp(x[i], lambda, log = TRUE): object 'x' not found
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
Are the estimates of the parameters generated by the algorithm correct?
The point estimates, rounded to two decimal places, are \(\hat{w}=0.09\), \(\hat{\lambda} = 3.05\), \(\hat{\mu} = 0.78\) and \(\hat{\tau}=0.38\).
Provide the EM algorithm to fit the mixture model
\[\begin{align} f(x) = w \lambda \exp\left\{ -\lambda x \right\} + (1-w) \frac{1}{\sqrt{2\pi} \tau x} \exp\left\{ - \frac{1}{2 \tau^2} \left( \log(x) - \mu \right)^2\right\} \\ \quad\quad\quad x>0. \end{align}\]
Fuses <- read.csv(file = "data/fuses.csv")
set.seed(81196)
x = Fuses$X1.062163
w.hat = 1/2 #Assign equal weight to each component to start with
lambda.hat = 1/mean(x) #Random cluster centers randomly spread over the support of the data
KK = 2
n = nrow(Fuses)
mu.hat = mean(log(x))
tau.hat = sd(log(x))
s = 0
sw = FALSE
QQ = -Inf
QQ.out = NULL
epsilon = 10^(-5)
## EM Algorithm
while(!sw){
## E step
v = array(0, dim=c(n,KK))
v[,1] = w.hat * dexp(x, lambda.hat)/
(w.hat * dexp(x, lambda.hat) + (1 - w.hat) * dnorm(log(x),mu.hat,tau.hat)/x)
v[,2] = (1 - w.hat) * dnorm(log(x),mu.hat,tau.hat)/x/
(w.hat * dexp(x, lambda.hat) + (1 - w.hat) * dnorm(log(x),mu.hat,tau.hat)/x)
## M step
# Weights
w.hat = sum(v[,1])/(sum(v[,1]) + sum(v[,2]))
lambda.hat = sum(v[,1])/sum(v[,1] * x)
tau.hat = sqrt(sum(v[,2]*(log(x)-mu.hat)^2)/sum(v[,2]))
mu.hat = sum(v[,2]*log(x))/sum(v[,2])
##Check convergence
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w.hat) + dexp(x[i], lambda.hat, log = TRUE)) +
v[i,2]*(log(1-w.hat) + dlnorm(x[i], mu.hat, tau.hat, log = TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
QQ.out = c(QQ.out, QQ)
s = s + 1
print(paste(s, QQn))
}
## [1] "1 -905.97764200399"
## [1] "2 -821.290241882549"
## [1] "3 -764.397944187357"
## [1] "4 -734.166832056615"
## [1] "5 -717.704217460539"
## [1] "6 -707.020449709849"
## [1] "7 -699.133551273049"
## [1] "8 -692.959061051089"
## [1] "9 -687.998556797636"
## [1] "10 -683.949145184898"
## [1] "11 -680.596903336225"
## [1] "12 -677.783163780016"
## [1] "13 -675.388704596505"
## [1] "14 -673.323422784698"
## [1] "15 -671.51877736974"
## [1] "16 -669.922185641795"
## [1] "17 -668.492897153866"
## [1] "18 -667.198972119249"
## [1] "19 -666.015069422348"
## [1] "20 -664.920820999337"
## [1] "21 -663.899628704297"
## [1] "22 -662.937765388658"
## [1] "23 -662.023695419559"
## [1] "24 -661.147553860447"
## [1] "25 -660.300740505563"
## [1] "26 -659.475596874839"
## [1] "27 -658.665142602059"
## [1] "28 -657.862853430838"
## [1] "29 -657.062466998061"
## [1] "30 -656.257805233609"
## [1] "31 -655.442603881222"
## [1] "32 -654.610340584068"
## [1] "33 -653.754053351441"
## [1] "34 -652.86614117547"
## [1] "35 -651.93813826577"
## [1] "36 -650.960453072107"
## [1] "37 -649.922063429506"
## [1] "38 -648.810160637853"
## [1] "39 -647.609739633585"
## [1] "40 -646.303142359232"
## [1] "41 -644.869581526048"
## [1] "42 -643.284709052848"
## [1] "43 -641.520356218943"
## [1] "44 -639.544667598751"
## [1] "45 -637.322970983709"
## [1] "46 -634.819825397956"
## [1] "47 -632.002653736825"
## [1] "48 -628.847012179148"
## [1] "49 -625.342750228058"
## [1] "50 -621.499301700836"
## [1] "51 -617.347899268451"
## [1] "52 -612.939470514024"
## [1] "53 -608.339132919629"
## [1] "54 -603.619970587861"
## [1] "55 -598.858714715775"
## [1] "56 -594.134308828793"
## [1] "57 -589.528479682856"
## [1] "58 -585.12631514582"
## [1] "59 -581.014619984179"
## [1] "60 -577.27640540301"
## [1] "61 -573.981360114972"
## [1] "62 -571.174473796292"
## [1] "63 -568.867169277904"
## [1] "64 -567.035456538796"
## [1] "65 -565.626645856346"
## [1] "66 -564.571770163151"
## [1] "67 -563.798524894729"
## [1] "68 -563.240687609863"
## [1] "69 -562.842840017698"
## [1] "70 -562.561362032586"
## [1] "71 -562.36331010739"
## [1] "72 -562.22448075423"
## [1] "73 -562.127413701663"
## [1] "74 -562.059664522122"
## [1] "75 -562.012434589363"
## [1] "76 -561.979536221812"
## [1] "77 -561.956633556493"
## [1] "78 -561.940695758159"
## [1] "79 -561.929607751788"
## [1] "80 -561.921895211494"
## [1] "81 -561.916531256277"
Provide you maximum likelihood estimates \(\hat{\omega}\), \(\hat{\lambda}\), \(\hat{\mu}\) and \(\hat{\tau}\), rounded to two decimal places.
w.hat
## [1] 0.08760273
lambda.hat
## [1] 3.053394
mu.hat
## [1] 0.7845378
tau.hat
## [1] 0.3774743
#w.hat = 0.09
#lambda.hat = 3.05
#mu.hat = 0.78
#tau.hat = 0.38
paste('w.hat =', w.hat)
## [1] "w.hat = 0.0876027335026556"
paste('lambda.hat =', lambda.hat)
## [1] "lambda.hat = 3.05339361502418"
paste('mu.hat =', tau.hat)
## [1] "mu.hat = 0.377474278840598"
paste('tau.hat =', mu.hat)
## [1] "tau.hat = 0.784537846565365"
Are the initial values appropriate?
The starting values of four parameters, \(w\), \(\lambda\), \(\mu\) and \(\tau\), need to be specified, and the context of the problem provides some useful clues.
Because the lognormal component corresponds to the “normal” components, and we expect the majority of the observations to be in this class, it makes sense to bias the weights so that \(w \le 1/2\). For example, we could use \(w = 0.1\) (but other values that satisfy \(w \le 1/2\) would be reasonable too).
For the same reason, a reasonable starting values for \(\mu\) and \(\tau\) correspond to their maximum likelihood estimators under the simpler log-Gaussian model. Since a random variable follows a log-Gaussian distribution if and only if its logarithm follows a Gaussian distribution, we can use \(\mu = mean(log(x))\) and \(\tau = sd(log(x))\) as our starting values.
Finally, because the defective components should have shorter lifespan than normal components, it makes sense to take \(1/\lambda1\) (which is the mean of the first component) to be a small fraction of the overall mean of the data (we use \(5%\) of the overall mean, but other similar values would all be reasonable).
In summary, you should expect an initialization such as this one:
w = 0.1
mu = mean(log(x))
tau = sd(log(x))
lambda = 20/mean(x)
Are the observation-specific weights \(v_{i,k}\) computed correctly (E step)?
In this case it is easy to see that \(v_{i,1}^{(t+1)} \propto w^{(t)} \lambda^{(t)} \exp\left\{ - \lambda^{(t)} x_i \right\}\) and \(v_{i,2}^{(t+1)} \propto \left(1-w^{(t)}\right) \frac{1}{\sqrt{2\pi} \tau^{(t)} x_i} \exp\left\{ - \frac{1}{2 } \left( \frac{\log(x_i) - \mu^{(t)}}{\tau^{(t)}} \right)^2\right\}\).
Hence, the code for the E step could look something like
## E step
v = array(0, dim=c(n,2))
v[,1] = log(w) + dexp(x, lambda, log=TRUE)
v[,2] = log(1-w) + dlnorm(x, mu, tau, log=TRUE)
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,])))
}
Remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R. For example, the calculation could be vectorized to increase efficiency.
Are the formulas for the maximum of the QQ functions correct (M step)?
In this case
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Computing the derivatives and setting them to zero yields
\(\hat{w}^{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} v_{i,1}\)
\(\hat{\lambda}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,1}}{\sum_{i=1}^{n} v_{i,1} x_{i}}\)
\(\hat{\mu}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,2} \log(x_i)}{\sum_{i=1}^{n} v_{i,2}}\)
\(\hat{\tau}^{(t+1)} = \sqrt{\frac{\sum_{i=1}^{n} v_{i,2}\left( \log x_i - \hat{\mu}^{(t+1)} \right)^2}{\sum_{i=1}^{n} v_{i,2}}}\)
Hence, the code for this section might look something like:
## M step
w = mean(v[,1])
lambda = sum(v[,1])/sum(v[,1]*x)
mu = sum(v[,2]*log(x))/sum(v[,2])
tau = sqrt(sum(v[,2]*(log(x) - mu)^2)/sum(v[,2]))
However, remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R.
Is the converge check correct?
As noted before,
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Hence, the convergence check might look something like
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(x[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(x[i], mu, tau, log=TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
Are the estimates of the parameters generated by the algorithm correct?
The point estimates, rounded to two decimal places, are \(\hat{w}=0.09\), \(\hat{\lambda} = 3.05\), \(\hat{\mu} = 0.78\) and \(\hat{\tau}=0.38\).
Provide the EM algorithm to fit the mixture model
\[\begin{align} f(x) = w \lambda \exp\left\{ -\lambda x \right\} + (1-w) \frac{1}{\sqrt{2\pi} \tau x} \exp\left\{ - \frac{1}{2 \tau^2} \left( \log(x) - \mu \right)^2\right\} \\ \quad\quad\quad x>0. \end{align}\]
Provide you maximum likelihood estimates \(\hat{\omega}\), \(\hat{\lambda}\), \(\hat{\mu}\) and \(\hat{\tau}\), rounded to two decimal places.
Are the initial values appropriate?
The starting values of four parameters, \(w\), \(\lambda\), \(\mu\) and \(\tau\), need to be specified, and the context of the problem provides some useful clues.
Because the lognormal component corresponds to the “normal” components, and we expect the majority of the observations to be in this class, it makes sense to bias the weights so that \(w \le 1/2\). For example, we could use \(w = 0.1\) (but other values that satisfy \(w \le 1/2\) would be reasonable too).
For the same reason, a reasonable starting values for \(\mu\) and \(\tau\) correspond to their maximum likelihood estimators under the simpler log-Gaussian model. Since a random variable follows a log-Gaussian distribution if and only if its logarithm follows a Gaussian distribution, we can use \(\mu = mean(log(x))\) and \(\tau = sd(log(x))\) as our starting values.
Finally, because the defective components should have shorter lifespan than normal components, it makes sense to take \(1/\lambda1\) (which is the mean of the first component) to be a small fraction of the overall mean of the data (we use \(5%\) of the overall mean, but other similar values would all be reasonable).
In summary, you should expect an initialization such as this one:
w = 0.1
mu = mean(log(x))
tau = sd(log(x))
lambda = 20/mean(x)
Are the observation-specific weights \(v_{i,k}\) computed correctly (E step)?
In this case it is easy to see that \(v_{i,1}^{(t+1)} \propto w^{(t)} \lambda^{(t)} \exp\left\{ - \lambda^{(t)} x_i \right\}\) and \(v_{i,2}^{(t+1)} \propto \left(1-w^{(t)}\right) \frac{1}{\sqrt{2\pi} \tau^{(t)} x_i} \exp\left\{ - \frac{1}{2 } \left( \frac{\log(x_i) - \mu^{(t)}}{\tau^{(t)}} \right)^2\right\}\).
Hence, the code for the E step could look something like
## E step
v = array(0, dim=c(n,2))
v[,1] = log(w) + dexp(x, lambda, log=TRUE)
v[,2] = log(1-w) + dlnorm(x, mu, tau, log=TRUE)
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,])))
}
Remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R. For example, the calculation could be vectorized to increase efficiency.
Are the formulas for the maximum of the QQ functions correct (M step)?
In this case
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Computing the derivatives and setting them to zero yields
\(\hat{w}^{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} v_{i,1}\)
\(\hat{\lambda}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,1}}{\sum_{i=1}^{n} v_{i,1} x_{i}}\)
\(\hat{\mu}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,2} \log(x_i)}{\sum_{i=1}^{n} v_{i,2}}\)
\(\hat{\tau}^{(t+1)} = \sqrt{\frac{\sum_{i=1}^{n} v_{i,2}\left( \log x_i - \hat{\mu}^{(t+1)} \right)^2}{\sum_{i=1}^{n} v_{i,2}}}\)
Hence, the code for this section might look something like:
## M step
w = mean(v[,1])
lambda = sum(v[,1])/sum(v[,1]*x)
mu = sum(v[,2]*log(x))/sum(v[,2])
tau = sqrt(sum(v[,2]*(log(x) - mu)^2)/sum(v[,2]))
However, remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R.
Is the converge check correct?
As noted before,
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Hence, the convergence check might look something like
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(x[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(x[i], mu, tau, log=TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
Are the estimates of the parameters generated by the algorithm correct?
The point estimates, rounded to two decimal places, are \(\hat{w}=0.09\), \(\hat{\lambda} = 3.05\), \(\hat{\mu} = 0.78\) and \(\hat{\tau}=0.38\).
Provide the EM algorithm to fit the mixture model
\[\begin{align} f(x) = w \lambda \exp\left\{ -\lambda x \right\} + (1-w) \frac{1}{\sqrt{2\pi} \tau x} \exp\left\{ - \frac{1}{2 \tau^2} \left( \log(x) - \mu \right)^2\right\} \\ \quad\quad\quad x>0. \end{align}\]
Provide you maximum likelihood estimates \(\hat{\omega}\), \(\hat{\lambda}\), \(\hat{\mu}\) and \(\hat{\tau}\), rounded to two decimal places.
Are the initial values appropriate?
The starting values of four parameters, \(w\), \(\lambda\), \(\mu\) and \(\tau\), need to be specified, and the context of the problem provides some useful clues.
Because the lognormal component corresponds to the “normal” components, and we expect the majority of the observations to be in this class, it makes sense to bias the weights so that \(w \le 1/2\). For example, we could use \(w = 0.1\) (but other values that satisfy \(w \le 1/2\) would be reasonable too).
For the same reason, a reasonable starting values for \(\mu\) and \(\tau\) correspond to their maximum likelihood estimators under the simpler log-Gaussian model. Since a random variable follows a log-Gaussian distribution if and only if its logarithm follows a Gaussian distribution, we can use \(\mu = mean(log(x))\) and \(\tau = sd(log(x))\) as our starting values.
Finally, because the defective components should have shorter lifespan than normal components, it makes sense to take \(1/\lambda1\) (which is the mean of the first component) to be a small fraction of the overall mean of the data (we use \(5%\) of the overall mean, but other similar values would all be reasonable).
In summary, you should expect an initialization such as this one:
w = 0.1
mu = mean(log(x))
tau = sd(log(x))
lambda = 20/mean(x)
Are the observation-specific weights \(v_{i,k}\) computed correctly (E step)?
In this case it is easy to see that \(v_{i,1}^{(t+1)} \propto w^{(t)} \lambda^{(t)} \exp\left\{ - \lambda^{(t)} x_i \right\}\) and \(v_{i,2}^{(t+1)} \propto \left(1-w^{(t)}\right) \frac{1}{\sqrt{2\pi} \tau^{(t)} x_i} \exp\left\{ - \frac{1}{2 } \left( \frac{\log(x_i) - \mu^{(t)}}{\tau^{(t)}} \right)^2\right\}\).
Hence, the code for the E step could look something like
## E step
v = array(0, dim=c(n,2))
v[,1] = log(w) + dexp(x, lambda, log=TRUE)
v[,2] = log(1-w) + dlnorm(x, mu, tau, log=TRUE)
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,])))
}
Remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R. For example, the calculation could be vectorized to increase efficiency.
Are the formulas for the maximum of the QQ functions correct (M step)?
In this case
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Computing the derivatives and setting them to zero yields
\(\hat{w}^{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} v_{i,1}\)
\(\hat{\lambda}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,1}}{\sum_{i=1}^{n} v_{i,1} x_{i}}\)
\(\hat{\mu}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,2} \log(x_i)}{\sum_{i=1}^{n} v_{i,2}}\)
\(\hat{\tau}^{(t+1)} = \sqrt{\frac{\sum_{i=1}^{n} v_{i,2}\left( \log x_i - \hat{\mu}^{(t+1)} \right)^2}{\sum_{i=1}^{n} v_{i,2}}}\)
Hence, the code for this section might look something like:
## M step
w = mean(v[,1])
lambda = sum(v[,1])/sum(v[,1]*x)
mu = sum(v[,2]*log(x))/sum(v[,2])
tau = sqrt(sum(v[,2]*(log(x) - mu)^2)/sum(v[,2]))
However, remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R.
Is the converge check correct?
As noted before,
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Hence, the convergence check might look something like
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(x[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(x[i], mu, tau, log=TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
Are the estimates of the parameters generated by the algorithm correct?
The point estimates, rounded to two decimal places, are \(\hat{w}=0.09\), \(\hat{\lambda} = 3.05\), \(\hat{\mu} = 0.78\) and \(\hat{\tau}=0.38\).
Provide the EM algorithm to fit the mixture model
\[\begin{align} f(x) = w \lambda \exp\left\{ -\lambda x \right\} + (1-w) \frac{1}{\sqrt{2\pi} \tau x} \exp\left\{ - \frac{1}{2 \tau^2} \left( \log(x) - \mu \right)^2\right\} \\ \quad\quad\quad x>0. \end{align}\]
Provide you maximum likelihood estimates \(\hat{\omega}\), \(\hat{\lambda}\), \(\hat{\mu}\) and \(\hat{\tau}\), rounded to two decimal places.
Are the initial values appropriate?
The starting values of four parameters, \(w\), \(\lambda\), \(\mu\) and \(\tau\), need to be specified, and the context of the problem provides some useful clues.
Because the lognormal component corresponds to the “normal” components, and we expect the majority of the observations to be in this class, it makes sense to bias the weights so that \(w \le 1/2\). For example, we could use \(w = 0.1\) (but other values that satisfy \(w \le 1/2\) would be reasonable too).
For the same reason, a reasonable starting values for \(\mu\) and \(\tau\) correspond to their maximum likelihood estimators under the simpler log-Gaussian model. Since a random variable follows a log-Gaussian distribution if and only if its logarithm follows a Gaussian distribution, we can use \(\mu = mean(log(x))\) and \(\tau = sd(log(x))\) as our starting values.
Finally, because the defective components should have shorter lifespan than normal components, it makes sense to take \(1/\lambda1\) (which is the mean of the first component) to be a small fraction of the overall mean of the data (we use \(5%\) of the overall mean, but other similar values would all be reasonable).
In summary, you should expect an initialization such as this one:
w = 0.1
mu = mean(log(x))
tau = sd(log(x))
lambda = 20/mean(x)
Are the observation-specific weights \(v_{i,k}\) computed correctly (E step)?
In this case it is easy to see that \(v_{i,1}^{(t+1)} \propto w^{(t)} \lambda^{(t)} \exp\left\{ - \lambda^{(t)} x_i \right\}\) and \(v_{i,2}^{(t+1)} \propto \left(1-w^{(t)}\right) \frac{1}{\sqrt{2\pi} \tau^{(t)} x_i} \exp\left\{ - \frac{1}{2 } \left( \frac{\log(x_i) - \mu^{(t)}}{\tau^{(t)}} \right)^2\right\}\).
Hence, the code for the E step could look something like
## E step
v = array(0, dim=c(n,2))
v[,1] = log(w) + dexp(x, lambda, log=TRUE)
v[,2] = log(1-w) + dlnorm(x, mu, tau, log=TRUE)
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,])))
}
Remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R. For example, the calculation could be vectorized to increase efficiency.
Are the formulas for the maximum of the QQ functions correct (M step)?
In this case
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Computing the derivatives and setting them to zero yields
\(\hat{w}^{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} v_{i,1}\)
\(\hat{\lambda}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,1}}{\sum_{i=1}^{n} v_{i,1} x_{i}}\)
\(\hat{\mu}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,2} \log(x_i)}{\sum_{i=1}^{n} v_{i,2}}\)
\(\hat{\tau}^{(t+1)} = \sqrt{\frac{\sum_{i=1}^{n} v_{i,2}\left( \log x_i - \hat{\mu}^{(t+1)} \right)^2}{\sum_{i=1}^{n} v_{i,2}}}\)
Hence, the code for this section might look something like:
## M step
w = mean(v[,1])
lambda = sum(v[,1])/sum(v[,1]*x)
mu = sum(v[,2]*log(x))/sum(v[,2])
tau = sqrt(sum(v[,2]*(log(x) - mu)^2)/sum(v[,2]))
However, remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R.
Is the converge check correct?
As noted before,
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Hence, the convergence check might look something like
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(x[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(x[i], mu, tau, log=TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
Are the estimates of the parameters generated by the algorithm correct?
The point estimates, rounded to two decimal places, are \(\hat{w}=0.09\), \(\hat{\lambda} = 3.05\), \(\hat{\mu} = 0.78\) and \(\hat{\tau}=0.38\).
Provide the EM algorithm to fit the mixture model
\[\begin{align} f(x) = w \lambda \exp\left\{ -\lambda x \right\} + (1-w) \frac{1}{\sqrt{2\pi} \tau x} \exp\left\{ - \frac{1}{2 \tau^2} \left( \log(x) - \mu \right)^2\right\} \\ \quad\quad\quad x>0. \end{align}\]
Provide you maximum likelihood estimates \(\hat{\omega}\), \(\hat{\lambda}\), \(\hat{\mu}\) and \(\hat{\tau}\), rounded to two decimal places.
Are the initial values appropriate?
The starting values of four parameters, \(w\), \(\lambda\), \(\mu\) and \(\tau\), need to be specified, and the context of the problem provides some useful clues.
Because the lognormal component corresponds to the “normal” components, and we expect the majority of the observations to be in this class, it makes sense to bias the weights so that \(w \le 1/2\). For example, we could use \(w = 0.1\) (but other values that satisfy \(w \le 1/2\) would be reasonable too).
For the same reason, a reasonable starting values for \(\mu\) and \(\tau\) correspond to their maximum likelihood estimators under the simpler log-Gaussian model. Since a random variable follows a log-Gaussian distribution if and only if its logarithm follows a Gaussian distribution, we can use \(\mu = mean(log(x))\) and \(\tau = sd(log(x))\) as our starting values.
Finally, because the defective components should have shorter lifespan than normal components, it makes sense to take \(1/\lambda1\) (which is the mean of the first component) to be a small fraction of the overall mean of the data (we use \(5%\) of the overall mean, but other similar values would all be reasonable).
In summary, you should expect an initialization such as this one:
w = 0.1
mu = mean(log(x))
tau = sd(log(x))
lambda = 20/mean(x)
Are the observation-specific weights \(v_{i,k}\) computed correctly (E step)?
In this case it is easy to see that \(v_{i,1}^{(t+1)} \propto w^{(t)} \lambda^{(t)} \exp\left\{ - \lambda^{(t)} x_i \right\}\) and \(v_{i,2}^{(t+1)} \propto \left(1-w^{(t)}\right) \frac{1}{\sqrt{2\pi} \tau^{(t)} x_i} \exp\left\{ - \frac{1}{2 } \left( \frac{\log(x_i) - \mu^{(t)}}{\tau^{(t)}} \right)^2\right\}\).
Hence, the code for the E step could look something like
## E step
v = array(0, dim=c(n,2))
v[,1] = log(w) + dexp(x, lambda, log=TRUE)
v[,2] = log(1-w) + dlnorm(x, mu, tau, log=TRUE)
for(i in 1:n){
v[i,] = exp(v[i,] - max(v[i,]))/sum(exp(v[i,] - max(v[i,])))
}
Remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R. For example, the calculation could be vectorized to increase efficiency.
Are the formulas for the maximum of the QQ functions correct (M step)?
In this case
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Computing the derivatives and setting them to zero yields
\(\hat{w}^{(t+1)} = \frac{1}{n}\sum_{i=1}^{n} v_{i,1}\)
\(\hat{\lambda}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,1}}{\sum_{i=1}^{n} v_{i,1} x_{i}}\)
\(\hat{\mu}^{(t+1)} = \frac{\sum_{i=1}^{n} v_{i,2} \log(x_i)}{\sum_{i=1}^{n} v_{i,2}}\)
\(\hat{\tau}^{(t+1)} = \sqrt{\frac{\sum_{i=1}^{n} v_{i,2}\left( \log x_i - \hat{\mu}^{(t+1)} \right)^2}{\sum_{i=1}^{n} v_{i,2}}}\)
Hence, the code for this section might look something like:
## M step
w = mean(v[,1])
lambda = sum(v[,1])/sum(v[,1]*x)
mu = sum(v[,2]*log(x))/sum(v[,2])
tau = sqrt(sum(v[,2]*(log(x) - mu)^2)/sum(v[,2]))
However, remember to be open-minded when reviewing this code, as there are many ways to accomplish the same thing in R.
Is the converge check correct?
As noted before,
\[\begin{align} Q\left(w, \lambda, \mu, \tau \mid \hat{w}^{(t)}, \hat{\lambda}^{(t)}, \hat{\mu}^{(t)} , \hat{\tau}^{(t)}\right) = \sum_{i=1}^{n} v_{i,1} \left[ \log w + \log \lambda - \lambda x_i \right] + \\ \quad\quad\quad v_{i,2}\left[ \log(1-w) - \frac{1}{2} \log(2 \pi) - \log \tau - \log x_i - \frac{1}{2\tau^2} \left( \log x_i - \mu \right) \right] \end{align}\]
Hence, the convergence check might look something like
QQn = 0
for(i in 1:n){
QQn = QQn + v[i,1]*(log(w) + dexp(x[i], lambda, log=TRUE)) +
v[i,2]*(log(1-w) + dlnorm(x[i], mu, tau, log=TRUE))
}
if(abs(QQn-QQ)/abs(QQn)<epsilon){
sw=TRUE
}
QQ = QQn
Are the estimates of the parameters generated by the algorithm correct?
The point estimates, rounded to two decimal places, are \(\hat{w}=0.09\), \(\hat{\lambda} = 3.05\), \(\hat{\mu} = 0.78\) and \(\hat{\tau}=0.38\).
It’s useful to record some information about how your file was created.
suppressMessages(require('dplyr', quietly = TRUE))
suppressMessages(require('magrittr', quietly = TRUE))
suppressMessages(require('formattable', quietly = TRUE))
suppressMessages(require('knitr', quietly = TRUE))
suppressMessages(require('kableExtra', quietly = TRUE))
sys1 <- devtools::session_info()$platform %>%
unlist %>%
data.frame(Category = names(.), session_info = .)
rownames(sys1) <- NULL
sys2 <- data.frame(Sys.info()) %>%
dplyr::mutate(Category = rownames(.)) %>%
.[2:1]
names(sys2)[2] <- c('Sys.info')
rownames(sys2) <- NULL
if (nrow(sys1) == 9 & nrow(sys2) == 8) {
sys2 %<>% rbind(., data.frame(
Category = 'Current time',
Sys.info = paste(as.character(lubridate::now('Asia/Tokyo')), 'JST🗾')))
} else {
sys1 %<>% rbind(., data.frame(
Category = 'Current time',
session_info = paste(as.character(lubridate::now('Asia/Tokyo')), 'JST🗾')))
}
sys <- cbind(sys1, sys2) %>%
kbl(caption = 'Additional session information:') %>%
kable_styling(bootstrap_options = c('striped', 'hover', 'condensed', 'responsive')) %>%
row_spec(0, background = 'DimGrey', color = 'yellow') %>%
column_spec(1, background = 'CornflowerBlue', color = 'red') %>%
column_spec(2, background = 'grey', color = 'black') %>%
column_spec(3, background = 'CornflowerBlue', color = 'blue') %>%
column_spec(4, background = 'grey', color = 'white') %>%
row_spec(9, bold = T, color = 'yellow', background = '#D7261E')
rm(sys1, sys2)
sys
Category | session_info | Category | Sys.info |
---|---|---|---|
version | R version 4.1.0 (2021-05-18) | sysname | Linux |
os | Ubuntu 20.04.2 LTS | release | 5.8.0-54-generic |
system | x86_64, linux-gnu | version | #61~20.04.1-Ubuntu SMP Thu May 13 00:05:49 UTC 2021 |
ui | X11 | nodename | Scibrokes-Trading |
language | en | machine | x86_64 |
collate | en_US.UTF-8 | login | englianhu |
ctype | en_US.UTF-8 | user | englianhu |
tz | Asia/Tokyo | effective_user | englianhu |
date | 2021-05-26 | Current time | 2021-05-26 01:40:54 JST🗾 |
echarts4r
echarts
: Theme Builder