library(readxl)
## Warning: package 'readxl' was built under R version 4.0.5
DataBFinalRS <- read_excel("C:/1. School/3rd Year/2nd sem/Statistical Software/4. Sample Data AnalysisBlessi R Markdown/DataBFinalRS.xlsx")
## New names:
## * `` -> ...2
## * `` -> ...3
## * `` -> ...4
## * `` -> ...5
## * `` -> ...7
## * ...
DataBFinalRS$Gender <-factor(DataBFinalRS$Gender)
DataBFinalRS$Education<-factor(DataBFinalRS$Education)
Gender= DataBFinalRS$Gender
Gender.freq = table(Gender)
Gender.relfreq = Gender.freq
Gender.freq
## Gender
## 1 2
## 62 55
Gender.relfreq = Gender.freq / nrow(DataBFinalRS)
cbind(Gender.relfreq)
## Gender.relfreq
## 1 0.5299145
## 2 0.4700855
Education = DataBFinalRS$Education
Education.freq = table(Education)
Education.relfreq = Education.freq
Education.freq
## Education
## 1 2 3 4 5 6 7 8
## 9 17 19 14 10 13 33 2
Education.relfreq = Education.freq / nrow(DataBFinalRS)
cbind(Education.relfreq)
## Education.relfreq
## 1 0.07692308
## 2 0.14529915
## 3 0.16239316
## 4 0.11965812
## 5 0.08547009
## 6 0.11111111
## 7 0.28205128
## 8 0.01709402
summary(DataBFinalRS$AgeC)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.00 3.00 4.00 4.12 5.00 5.00
summary(DataBFinalRS$BMI)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 6.8 14.5 15.7 15.3 16.3 17.2
AgeCoded <-factor(DataBFinalRS$AgeC)
library(plyr)
## Warning: package 'plyr' was built under R version 4.0.5
ddply(DataBFinalRS, .(AgeCoded), summarize, BMI=mean(BMI))
DataBFinalRS$M1 <- factor(DataBFinalRS$M1)
DataBFinalRS$M2 <- factor(DataBFinalRS$M2)
DataBFinalRS$M2<-factor(DataBFinalRS$M2)
DataBFinalRS$M2<-factor(DataBFinalRS$M2)
DataBFinalRS$M2<-factor(DataBFinalRS$M2)
M1 = DataBFinalRS$M1
M1.freq = table(M1)
M1.relfreq = M1.freq
M1.freq
## M1
## 0 1 2 3 4 5
## 7 13 27 32 32 6
M1.relfreq = M1.freq / nrow(DataBFinalRS)
cbind(M1.relfreq)
## M1.relfreq
## 0 0.05982906
## 1 0.11111111
## 2 0.23076923
## 3 0.27350427
## 4 0.27350427
## 5 0.05128205
M2 = DataBFinalRS$M2
M2.freq = table(M2)
M2.relfreq = M2.freq
M2.freq
## M2
## 0 1 2 3 4 5
## 40 25 25 14 7 6
M2.relfreq = M2.freq / nrow(DataBFinalRS)
cbind(M2.relfreq)
## M2.relfreq
## 0 0.34188034
## 1 0.21367521
## 2 0.21367521
## 3 0.11965812
## 4 0.05982906
## 5 0.05128205
M3 = DataBFinalRS$M3
M3.freq = table(M3)
M3.relfreq = M3.freq
M3.freq
## M3
## 0 1 2 3 4
## 40 36 21 14 6
M3.relfreq = M3.freq / nrow(DataBFinalRS)
cbind(M3.relfreq)
## M3.relfreq
## 0 0.34188034
## 1 0.30769231
## 2 0.17948718
## 3 0.11965812
## 4 0.05128205
M4 = DataBFinalRS$M4
M4.freq = table(M4)
M4.relfreq = M4.freq
M4.freq
## M4
## 0 1 2 3 4
## 61 32 11 9 4
M4.relfreq = M4.freq / nrow(DataBFinalRS)
cbind(M4.relfreq)
## M4.relfreq
## 0 0.52136752
## 1 0.27350427
## 2 0.09401709
## 3 0.07692308
## 4 0.03418803
M5 = DataBFinalRS$M5
M5.freq = table(M5)
M5.relfreq = M5.freq
M5.freq
## M5
## 0 1 2 3
## 72 31 12 2
M5.relfreq = M5.freq / nrow(DataBFinalRS)
cbind(M5.relfreq)
## M5.relfreq
## 0 0.61538462
## 1 0.26495726
## 2 0.10256410
## 3 0.01709402
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.5
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
summarise(group_by(DataBFinalRS,Media,U1),count =n())
## `summarise()` has grouped output by 'Media'. You can override using the `.groups` argument.
summarise(group_by(DataBFinalRS,Media,U2),count =n())
## `summarise()` has grouped output by 'Media'. You can override using the `.groups` argument.
summarise(group_by(DataBFinalRS,Media,U3),count =n())
## `summarise()` has grouped output by 'Media'. You can override using the `.groups` argument.
summarise(group_by(DataBFinalRS,Media,U4),count =n())
## `summarise()` has grouped output by 'Media'. You can override using the `.groups` argument.
summarise(group_by(DataBFinalRS,Media,U5),count =n())
## `summarise()` has grouped output by 'Media'. You can override using the `.groups` argument.
summarise(group_by(DataBFinalRS,Media,U6),count =n())
## `summarise()` has grouped output by 'Media'. You can override using the `.groups` argument.
summarise(group_by(DataBFinalRS,Media,U7),count =n())
## `summarise()` has grouped output by 'Media'. You can override using the `.groups` argument.
Physical Development
Pre-school’s Play
mean(DataBFinalRS$Pl1)
## [1] 3.17094
mean(DataBFinalRS$Pl2)
## [1] 2.547009
mean(DataBFinalRS$Pl3)
## [1] 2.794872
mean(DataBFinalRS$Pl4)
## [1] 3.102564
mean(DataBFinalRS$Pl5)
## [1] 3.145299
mean(DataBFinalRS$OverallPl)
## [1] 2.577778
Eating Habits Pre-school’s Play
mean(DataBFinalRS$E1)
## [1] 2.179487
mean(DataBFinalRS$E2)
## [1] 2.264957
mean(DataBFinalRS$E3)
## [1] 2.897436
mean(DataBFinalRS$E4)
## [1] 2.752137
mean(DataBFinalRS$E5)
## [1] 2.564103
mean(DataBFinalRS$OverallE)
## [1] 2.6
Activities of Daily Living
mean(DataBFinalRS$Ac1)
## [1] 2.367521
mean(DataBFinalRS$Ac2)
## [1] 2.606838
mean(DataBFinalRS$Ac3)
## [1] 2.188034
mean(DataBFinalRS$OverallAc)
## [1] 2.612536
Overall Physical Development
mean(DataBFinalRS$OverallPD)
## [1] 2.596771
Psychological Development
Relationship with others/family
mean(DataBFinalRS$Rel1)
## [1] 2.649573
mean(DataBFinalRS$Rel2)
## [1] 2.700855
mean(DataBFinalRS$Rel3)
## [1] 2.820513
mean(DataBFinalRS$Rel4)
## [1] 2.444444
mean(DataBFinalRS$Rel5)
## [1] 2.675214
mean(DataBFinalRS$OverallRel)
## [1] 2.599512
Imitation and Adaptation
mean(DataBFinalRS$Ad1)
## [1] 3.017094
mean(DataBFinalRS$Ad2)
## [1] 3.145299
mean(DataBFinalRS$Ad3)
## [1] 2.683761
mean(DataBFinalRS$Ad4)
## [1] 2.794872
mean(DataBFinalRS$Ad5)
## [1] 2.666667
mean(DataBFinalRS$Ad6)
## [1] 2.735043
mean(DataBFinalRS$Ad7)
## [1] 2.410256
mean(DataBFinalRS$Overallad)
## [1] 2.80464
Overall Psychosocial Development
mean(DataBFinalRS$OverallPsy)
## [1] 2.702076
Cognitive Development
mean(DataBFinalRS$La1)
## [1] 2.931624
mean(DataBFinalRS$La2)
## [1] 3.034188
mean(DataBFinalRS$La3)
## [1] 2.324786
mean(DataBFinalRS$OverallLa)
## [1] 2.880342
Leasrning
mean(DataBFinalRS$Le1)
## [1] 2.794872
mean(DataBFinalRS$Le2)
## [1] 3.08547
mean(DataBFinalRS$Le3)
## [1] 3.034188
mean(DataBFinalRS$Le4)
## [1] 2.982906
mean(DataBFinalRS$Le5)
## [1] 2.888889
mean(DataBFinalRS$Le6)
## [1] 2.974359
mean(DataBFinalRS$Le7)
## [1] 2.957265
mean(DataBFinalRS$Le8)
## [1] 3.08547
mean(DataBFinalRS$Le9)
## [1] 3.153846
mean(DataBFinalRS$Le10)
## [1] 2.820513
mean(DataBFinalRS$Le11)
## [1] 2.854701
mean(DataBFinalRS$Le12)
## [1] 2.581197
mean(DataBFinalRS$OverallLe)
## [1] 2.808405
Overall Cognitive Development
mean(DataBFinalRS$OverallCo)
## [1] 2.844373
Overall Physical Development
mean(DataBFinalRS$OverallDevelopmentaleffects)
## [1] 2.714407
Spearman Correlation
Pre-schools Play
cor.test(DataBFinalRS$Extent, DataBFinalRS$OverallPl, method="spearman")
## Warning in cor.test.default(DataBFinalRS$Extent, DataBFinalRS$OverallPl, :
## Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: DataBFinalRS$Extent and DataBFinalRS$OverallPl
## S = 355477, p-value = 0.0002577
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.3317926
Eating Habits
cor.test(DataBFinalRS$Extent, DataBFinalRS$OverallE, method="spearman")
## Warning in cor.test.default(DataBFinalRS$Extent, DataBFinalRS$OverallE, : Cannot
## compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: DataBFinalRS$Extent and DataBFinalRS$OverallE
## S = 291909, p-value = 0.3153
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.09363785
Activities of Daily Living
cor.test(DataBFinalRS$Extent, DataBFinalRS$OverallAc, method="spearman")
## Warning in cor.test.default(DataBFinalRS$Extent, DataBFinalRS$OverallAc, :
## Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: DataBFinalRS$Extent and DataBFinalRS$OverallAc
## S = 389418, p-value = 1.947e-07
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.4589522
Overall Physical Development
cor.test(DataBFinalRS$Extent, DataBFinalRS$OverallPD, method="spearman")
## Warning in cor.test.default(DataBFinalRS$Extent, DataBFinalRS$OverallPD, :
## Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: DataBFinalRS$Extent and DataBFinalRS$OverallPD
## S = 396358, p-value = 3.008e-08
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.4849534
Relationship with others/family
cor.test(DataBFinalRS$Extent, DataBFinalRS$OverallRel, method="spearman")
## Warning in cor.test.default(DataBFinalRS$Extent, DataBFinalRS$OverallRel, :
## Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: DataBFinalRS$Extent and DataBFinalRS$OverallRel
## S = 280486, p-value = 0.5862
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.05083984
Imitation and adaptation
cor.test(DataBFinalRS$Extent, DataBFinalRS$Overallad, method="spearman")
## Warning in cor.test.default(DataBFinalRS$Extent, DataBFinalRS$Overallad, :
## Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: DataBFinalRS$Extent and DataBFinalRS$Overallad
## S = 260914, p-value = 0.8098
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.02248775
Overall Psychological Development
cor.test(DataBFinalRS$Extent, DataBFinalRS$OverallPsy, method="spearman")
## Warning in cor.test.default(DataBFinalRS$Extent, DataBFinalRS$OverallPsy, :
## Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: DataBFinalRS$Extent and DataBFinalRS$OverallPsy
## S = 276806, p-value = 0.6916
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.03705248
Language
cor.test(DataBFinalRS$Extent, DataBFinalRS$OverallLa, method="spearman")
## Warning in cor.test.default(DataBFinalRS$Extent, DataBFinalRS$OverallLa, :
## Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: DataBFinalRS$Extent and DataBFinalRS$OverallLa
## S = 292803, p-value = 0.2982
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.09698574
Learning
cor.test(DataBFinalRS$Extent, DataBFinalRS$OverallLe, method="spearman")
## Warning in cor.test.default(DataBFinalRS$Extent, DataBFinalRS$OverallLe, :
## Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: DataBFinalRS$Extent and DataBFinalRS$OverallLe
## S = 315136, p-value = 0.05127
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.1806571
Overall Psychological Development
cor.test(DataBFinalRS$Extent, DataBFinalRS$OverallCo, method="spearman")
## Warning in cor.test.default(DataBFinalRS$Extent, DataBFinalRS$OverallCo, :
## Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: DataBFinalRS$Extent and DataBFinalRS$OverallCo
## S = 300140, p-value = 0.1812
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.124474
cor.test(DataBFinalRS$Extent, DataBFinalRS$OverallDevelopmentaleffects, method="spearman")
## Warning in cor.test.default(DataBFinalRS$Extent,
## DataBFinalRS$OverallDevelopmentaleffects, : Cannot compute exact p-value with
## ties
##
## Spearman's rank correlation rho
##
## data: DataBFinalRS$Extent and DataBFinalRS$OverallDevelopmentaleffects
## S = 365651, p-value = 4.047e-05
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.3699099
Playing Educational Games
cor.test(DataBFinalRS$U1, DataBFinalRS$OverallPsy)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U1 and DataBFinalRS$OverallPsy
## t = 3.2008, df = 115, p-value = 0.001772
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1101967 0.4444646
## sample estimates:
## cor
## 0.2860082
Playing uneducational games
cor.test(DataBFinalRS$U2, DataBFinalRS$OverallPsy)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U2 and DataBFinalRS$OverallPsy
## t = -1.7706, df = 115, p-value = 0.07928
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.33454053 0.01920023
## sample estimates:
## cor
## -0.1629005
Watching vides and movies
cor.test(DataBFinalRS$U3, DataBFinalRS$OverallPsy)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U3 and DataBFinalRS$OverallPsy
## t = -0.047891, df = 115, p-value = 0.9619
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1858481 0.1772108
## sample estimates:
## cor
## -0.004465805
watching educational videos
cor.test(DataBFinalRS$U4, DataBFinalRS$OverallPsy)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U4 and DataBFinalRS$OverallPsy
## t = 0.54509, df = 115, p-value = 0.5868
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1319853 0.2301758
## sample estimates:
## cor
## 0.05076394
listening to music
cor.test(DataBFinalRS$U5, DataBFinalRS$OverallPsy)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U5 and DataBFinalRS$OverallPsy
## t = 1.6791, df = 115, p-value = 0.09584
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.02761363 0.32704366
## sample estimates:
## cor
## 0.1546948
watching television
cor.test(DataBFinalRS$U6, DataBFinalRS$OverallPsy)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U6 and DataBFinalRS$OverallPsy
## t = -3.7629, df = 115, p-value = 0.000266
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.4835668 -0.1591303
## sample estimates:
## cor
## -0.3310987
Social Media
cor.test(DataBFinalRS$U7, DataBFinalRS$OverallPsy)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U7 and DataBFinalRS$OverallPsy
## t = 1.294, df = 115, p-value = 0.1982
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.06310545 0.29491910
## sample estimates:
## cor
## 0.1197999
Playing Educational Games
cor.test(DataBFinalRS$U1, DataBFinalRS$OverallCo)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U1 and DataBFinalRS$OverallCo
## t = 3.8331, df = 115, p-value = 0.0002069
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1651409 0.4882821
## sample estimates:
## cor
## 0.3365836
Playing uneducational games
cor.test(DataBFinalRS$U2, DataBFinalRS$OverallCo)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U2 and DataBFinalRS$OverallCo
## t = -0.31412, df = 115, p-value = 0.754
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2096979 0.1530670
## sample estimates:
## cor
## -0.02927952
Watching vides and movies
cor.test(DataBFinalRS$U3, DataBFinalRS$OverallCo)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U3 and DataBFinalRS$OverallCo
## t = -0.34157, df = 115, p-value = 0.7333
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2121420 0.1505681
## sample estimates:
## cor
## -0.03183505
watching educational videos
cor.test(DataBFinalRS$U4, DataBFinalRS$OverallCo)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U4 and DataBFinalRS$OverallCo
## t = 2.6135, df = 115, p-value = 0.01016
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.05772472 0.40107039
## sample estimates:
## cor
## 0.2367765
listening to music
cor.test(DataBFinalRS$U5, DataBFinalRS$OverallCo)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U5 and DataBFinalRS$OverallCo
## t = 2.3245, df = 115, p-value = 0.02185
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.03152442 0.37881018
## sample estimates:
## cor
## 0.2118451
watching television
cor.test(DataBFinalRS$U6, DataBFinalRS$OverallCo)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U6 and DataBFinalRS$OverallCo
## t = -1.3211, df = 115, p-value = 0.1891
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.29720185 0.06061296
## sample estimates:
## cor
## -0.1222653
Social Media
cor.test(DataBFinalRS$U7, DataBFinalRS$OverallCo)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U7 and DataBFinalRS$OverallCo
## t = 1.0533, df = 115, p-value = 0.2944
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.0852917 0.2744181
## sample estimates:
## cor
## 0.09775484
Playing Educational Games
cor.test(DataBFinalRS$U1, DataBFinalRS$OverallDevelopmentaleffects)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U1 and DataBFinalRS$OverallDevelopmentaleffects
## t = 3.7812, df = 115, p-value = 0.0002492
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1607033 0.4848025
## sample estimates:
## cor
## 0.3325352
Playing uneducational games
cor.test(DataBFinalRS$U2, DataBFinalRS$OverallDevelopmentaleffects)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U2 and DataBFinalRS$OverallDevelopmentaleffects
## t = -1.8319, df = 115, p-value = 0.06955
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.33954149 0.01355988
## sample estimates:
## cor
## -0.1683876
Watching vides and movies
cor.test(DataBFinalRS$U3, DataBFinalRS$OverallDevelopmentaleffects)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U3 and DataBFinalRS$OverallDevelopmentaleffects
## t = -1.0753, df = 115, p-value = 0.2845
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.27629767 0.08327233
## sample estimates:
## cor
## -0.09976882
watching educational videos
cor.test(DataBFinalRS$U4, DataBFinalRS$OverallDevelopmentaleffects)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U4 and DataBFinalRS$OverallDevelopmentaleffects
## t = 1.8278, df = 115, p-value = 0.07017
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.01393521 0.33920932
## sample estimates:
## cor
## 0.1680228
listening to music
cor.test(DataBFinalRS$U5, DataBFinalRS$OverallDevelopmentaleffects)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U5 and DataBFinalRS$OverallDevelopmentaleffects
## t = 2.005, df = 115, p-value = 0.04732
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.002324437 0.353518706
## sample estimates:
## cor
## 0.1837799
watching television
cor.test(DataBFinalRS$U6, DataBFinalRS$OverallDevelopmentaleffects)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U6 and DataBFinalRS$OverallDevelopmentaleffects
## t = -2.001, df = 115, p-value = 0.04774
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.353203951 -0.001964774
## sample estimates:
## cor
## -0.1834323
Social Media
cor.test(DataBFinalRS$U7, DataBFinalRS$OverallDevelopmentaleffects)
##
## Pearson's product-moment correlation
##
## data: DataBFinalRS$U7 and DataBFinalRS$OverallDevelopmentaleffects
## t = 0.43319, df = 115, p-value = 0.6657
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1422126 0.2202813
## sample estimates:
## cor
## 0.04036238