Índice

4 Cambios en los filtros


0 El proceso

(volver al índice)

Sobre un rango de tiempo (2015-2021) y de manera cuatrimestral, región a región se clasificarán imágenes satelitales sobre las que se calculará un NDGI, corregidas con Random Forest, obteniéndose en total 348 imágenes clasificadas y 348 áreas asociadas a estas últimas, que contendrán nuestra data con la superficie glaciar en el territorio chileno. Se hará un estudio de series temporales para recoger la variación estacional.

La Automatización

Se requieren generar series de imágenes, pero deben ser revisadas antes. Nos encontramos con una aberración al establecer niveles de NDGI > 0.1 en la Región de Arica y Parinacota.

I Se automatiza una vez determinados los valores correctos del NDGI por región:

  1. los rasters interiores a las áreas shp glaciares.
  2. los raster exteriores a las áreas shp glaciares.

II Un segundo proceso de automatización se realiza para extraer las muestras de cada uno de estos rásteres.

III Se generan 348 imágenes clasificadas por el proceso de Random Forest.

IV Se obtienen 348 áreas por imagen clasificada.

La entrega de resultados.

Se propone la visualización de una imagen jpeg animada con la evolución de la superficie glaciar por región y un análisis de series de tiempo para 24 valores de área glaciar regionales en una plataforma Shiny.

1.0 Proceso de generación de rasters

(volver al índice)

A partir del 15 de febrero de 2018, se debe utilizar la siguiente denominación:

1 Región de Arica y Parinacota. 2 Región de Tarapacá. 3 Región de Antofagasta. 4 Región de Atacama. 5 Región de Coquimbo. 6 Región de Valparaíso. 7 Región Metropolitana de Santiago. 8 Región del Libertador General Bernardo O’Higgins. 9 Región del Maule. 10 Región del Ñuble. 11 Región del Biobío. 12 Región de La Araucanía. 13 Región de Los Ríos. 14 Región de Los Lagos. Región de Aysén del General Carlos Ibáñez del Campo. Región de Magallanes y la Antártica Chilena.

library(rgee)
ee_Initialize()
## -- rgee 1.0.9 --------------------------------------- earthengine-api 0.1.259 -- 
##  v email: not_defined
##  v Initializing Google Earth Engine:
 v Initializing Google Earth Engine:  DONE!
## 
 v Earth Engine user: users/tarredwall 
## --------------------------------------------------------------------------------

Comenzamos obteniendo un raster de clasificación para la region: NDGI.

I Región de Arica y Parinacota.

region_1 <- st_read("rs/Region_15.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -69.675, lat = -18.54, zoom = 8)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
Map$setCenter(lon = -69.675, lat = -18.54, zoom = 8)
Map$addLayer(first, vizParams, "Landsat 8 image")

image$normalizedDifference(c(“B3”, “B4”)) > 0.1 provoca una aberracion, tuvimos que corregirla. construimos un raster con NDGI mayor a -0.15, que tampoco queda muy bien pero tiene mas sentido.

getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > -0.15
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -69.675, lat = -18.54, zoom = 8)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_ARICA_Y_PARINACOTA.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -69.675, lat = -18.54, zoom = 8)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -69.675, lat = -18.54, zoom = 8)
Map$addLayer(sale_4, ndgiParams, "NDGI")

II Región de Tarapacá.

region_1 <- st_read("rs/Region_01.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > -0.15
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_TARAPACA.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -69.675, lat = -20.18, zoom = 9)
Map$addLayer(sale_4, ndgiParams, "NDGI")

1.1.1 automatizacion sobre fechas de rasters interiores

(volver al índice)

Vamos a hacer una funcion que despliege por fechas

Funcion que despliegue por año y por mes desde enero del 2015 a enero del 2021

Es correcta esta forma de determinar las fechas? modificando solo la fecha de inicio?

  region_1 <- st_read("rs/Region_01.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_11 <- region_1$geometry()

mask_0 <- st_read("GlaciaresxRegion/Simple_TARAPACA.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_0 <- mask_0$geometry()


generacion_por_meses <- function(j,i){

  
  if(i<10){
    
      fecha_paste <- paste("201",j,"-0",i,"-01", sep ="" )
  }
  else{
    fecha_paste <- paste("201",j,"-",i,"-01", sep ="" )
  }


#Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
#Map$addLayer(region_11)

start <- ee$Date(fecha_paste)
finish <- ee$Date("2020-03-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
#Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
#Map$addLayer(first, vizParams, "Landsat 8 image")

getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > -0.15
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

#Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
#Map$addLayer(ndgi_01, ndgiParams, "NDGI")

#Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
#Map$addLayer(region_0)

fecha_paste <- ndgi_01$clip(region_0)
Map$setCenter(lon = -68.77, lat = -19.75, zoom = 10)
Map$addLayer(fecha_paste, ndgiParams, "NDGI")

}
g <- seq(1,12,1)
anios <- seq(5,9,1)

for(d in anios){
    for(j in g){
  print(generacion_por_meses(d,j))
}
  
}

III Región de Antofagasta.

region_1 <- st_read("rs/Region_02.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_11 <- region_1$geometry()

# Map$addLayer(region_11)

start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 6)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > -0.15
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -73.079, lat = -20.3, zoom = 6)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_ANTOFAGASTA.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -70, lat = -20.3, zoom = 7)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -73.079, lat = -20.3, zoom = 7)
Map$addLayer(sale_4, ndgiParams, "NDGI")

IV Región de Atacama.

region_1 <- st_read("rs/Region_03.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -71, lat = -27, zoom = 6.3)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 6)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > -0.15
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -73.079, lat = -20.3, zoom = 6)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_ATACAMA.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -69.75, lat = -27.36, zoom = 7)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -69.5, lat = -28.45, zoom = 9)
Map$addLayer(sale_4, ndgiParams, "NDGI")

V Región de Coquimbo.

region_1 <- st_read("rs/Region_04.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_11 <- region_1$geometry()
#Map$setCenter(lon = -71, lat = -29, zoom = 6.3)
#Map$addLayer(region_11)

start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
Map$setCenter(lon = -71, lat = -29, zoom = 6.3)
#Map$addLayer(first, vizParams, "Landsat 8 image")

getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > -0.15
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

#Map$setCenter(lon = -71, lat = -29, zoom = 6.3)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_COQUIMBO.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
#Map$setCenter(lon = -71, lat = -29, zoom = 6.3)
#Map$addLayer(region_0)

sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -70.18341, lat = -30.27249, zoom = 9)
Map$addLayer(sale_4, ndgiParams, "NDGI")

VI Región de Valparaíso.

region_1 <- st_read("rs/Region_05.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_11 <- region_1$geometry()
#Map$setCenter(lon = -71, lat = -32, zoom = 6.3)
#Map$addLayer(region_11)

start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
#Map$setCenter(lon = -71, lat = -29, zoom = 6.3)
#Map$addLayer(first, vizParams, "Landsat 8 image")

getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > -0.15
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -71, lat = -29, zoom = 6.3)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_VALPARAISO.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
#Map$setCenter(lon = -71, lat = -32, zoom = 6.3)
#Map$addLayer(region_0)

sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -70.48, lat = -32.70233, zoom = 10)
Map$addLayer(sale_4, ndgiParams, "NDGI")

VII Región Metropolitana de Santiago.

region_1 <- st_read("rs/Region_13.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -71, lat = -33.66, zoom = 7)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
Map$setCenter(lon = -71, lat = -33.66, zoom = 7)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > -0.15
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -71, lat = -33.66, zoom = 7)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_METROPOLITANA_DE_SANTIAGO.shx",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -71, lat = -33.66, zoom = 7)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -71, lat = -33.66, zoom = 8)
Map$addLayer(sale_4, ndgiParams, "NDGI")

8 Región del Libertador General Bernardo O’Higgins.

region_1 <- st_read("rs/Region_06.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -71, lat = -34.4, zoom = 8)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
Map$setCenter(lon = -71, lat = -34.4, zoom = 8)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > -0.05
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -71, lat = -34.4, zoom = 8)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_LIBERTADOR_BERNARDO_OHIGGINS.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -71, lat = -34.4, zoom = 8)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -71, lat = -34.4, zoom = 8)
Map$addLayer(sale_4, ndgiParams, "NDGI")

9 Región del Maule.

region_1 <- st_read("rs/Region_07.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -71, lat = -35.6, zoom = 8)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
Map$setCenter(lon = -71, lat = -35.6, zoom = 8)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > -0.05
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -71, lat = -35.6, zoom = 8)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_MAULE.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -71, lat = -35.6, zoom = 8)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -71, lat = -35.6, zoom = 8)
Map$addLayer(sale_4, ndgiParams, "NDGI")

10 Región del Ñuble.

region_1 <- st_read("rs/Region_08.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -72.2, lat = -37.465, zoom = 8)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
Map$setCenter(lon = -72.2, lat = -37.465, zoom = 8)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > -0.05
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -72.2, lat = -37.465, zoom = 8)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_BIOBIO.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -72.2, lat = -37.465, zoom = 8)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -72.2, lat = -37.465, zoom = 8)
Map$addLayer(sale_4, ndgiParams, "NDGI")

12 Región de La Araucanía.

region_1 <- st_read("rs/Region_09.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -72.298, lat = -38.651, zoom = 8)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
Map$setCenter(lon = -72.298, lat = -38.651, zoom = 8)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > -0.05
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -72.298, lat = -38.651, zoom = 8)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_ARAUCANIA.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -72.298, lat = -38.651, zoom = 8)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -72.298, lat = -38.651, zoom = 8)
Map$addLayer(sale_4, ndgiParams, "NDGI")

13 Región de Los Ríos.

region_1 <- st_read("rs/Region_14.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > -0.05
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_LOS_RIOS.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
Map$addLayer(sale_4, ndgiParams, "NDGI")

14 Región de Los Lagos.

region_1 <- st_read("rs/Region_10.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -72.628, lat = -39.955, zoom = 7)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20

sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
  filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))

first <- sentinel1$median()

# definimos los parametros de visualizacion:
vizParams <- list(
  bands = c("B8","B5" , "B3"),
  #  bands = c("B2", "B3"),
  min = 100,
  max = 1000,
  gamma = 2
)
Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image) 
{
  #image$normalizedDifference(c("B3", "B4")) 
   image$normalizedDifference(c("B3", "B4")) > -0.05
}

ndgi_01 <- getNDGI(first)

ndgiParams <- list(palette = c(
  "#d73027", "#f46d43", "#fdae61",
  "#fee08b", "#d9ef8b", "#a6d96a",
  "#66bd63", "#1a9850"
))

Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_LOS_LAGOS.shp",
        quiet = TRUE) %>%
        sf_as_ee()

# # convertimos el shp en geometria:
# region_0 <- mask_0$geometry()
# Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
# Map$addLayer(region_0)
# 
# sale_4 <- ndgi_01$clip(region_0)
# Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
# Map$addLayer(sale_4, ndgiParams, "NDGI")

1 Series de tiempo desde 2015

(volver al índice) https://rpubs.com/palominoM/series integrar series de tiempo Extraemos la imagen satelital Sentinel filtrada por la region de los lagos Crear mapas con la serie completa desde el 2015 cada tres meses para la decima region: Puerto Montt. que informe cuando no haya info. series de tiempo.

2 Llevar a geotiff

(volver al índice)

3 Cambios en los filtros

(volver al índice)

ver si se genera un cambio aplicando filtros de banda de calidad ademas del filtro de la mediana