Glaciares en Chile
VI Parte: El proceso
Abstract
Se propone un proceso de desarrollo, se implementa cada shp obtenido de limite glaciar y regional determinando el tamaño máximo de shp (686 kb) de glaciares que se puede leer con nuestros actuales recursos y se comienzan a implementar automatizaciones en la extracción de datos.
Se detecta la necesidad de correcciones en el cálculo del NDGI.
Con el shp de límites regionales (Lim_regiones.rar) enviado de 11,4 mb se generan problemas de capacidad. Se debieron pedir región a región. Los shp de límites regionales por región no permiten la lectura de Aysén ni Magallanes y GlaciaresxRegion no permite del despliegue de los límites políticos de glaciares de los Lagos, Aysen y Magallanes.
Sobre un rango de tiempo (2015-2021) y de manera cuatrimestral, región a región se clasificarán imágenes satelitales sobre las que se calculará un NDGI, corregidas con Random Forest, obteniéndose en total 348 imágenes clasificadas y 348 áreas asociadas a estas últimas, que contendrán nuestra data con la superficie glaciar en el territorio chileno. Se hará un estudio de series temporales para recoger la variación estacional.
La Automatización
Se requieren generar series de imágenes, pero deben ser revisadas antes. Nos encontramos con una aberración al establecer niveles de NDGI > 0.1 en la Región de Arica y Parinacota.
I Se automatiza una vez determinados los valores correctos del NDGI por región:
II Un segundo proceso de automatización se realiza para extraer las muestras de cada uno de estos rásteres.
III Se generan 348 imágenes clasificadas por el proceso de Random Forest.
IV Se obtienen 348 áreas por imagen clasificada.
La entrega de resultados.
Se propone la visualización de una imagen jpeg animada con la evolución de la superficie glaciar por región y un análisis de series de tiempo para 24 valores de área glaciar regionales en una plataforma Shiny.
A partir del 15 de febrero de 2018, se debe utilizar la siguiente denominación:
1 Región de Arica y Parinacota. 2 Región de Tarapacá. 3 Región de Antofagasta. 4 Región de Atacama. 5 Región de Coquimbo. 6 Región de Valparaíso. 7 Región Metropolitana de Santiago. 8 Región del Libertador General Bernardo O’Higgins. 9 Región del Maule. 10 Región del Ñuble. 11 Región del Biobío. 12 Región de La Araucanía. 13 Región de Los Ríos. 14 Región de Los Lagos. Región de Aysén del General Carlos Ibáñez del Campo. Región de Magallanes y la Antártica Chilena.
library(rgee)
ee_Initialize()
## -- rgee 1.0.9 --------------------------------------- earthengine-api 0.1.259 --
## v email: not_defined
## v Initializing Google Earth Engine:
v Initializing Google Earth Engine: DONE!
##
v Earth Engine user: users/tarredwall
## --------------------------------------------------------------------------------
Comenzamos obteniendo un raster de clasificación para la region: NDGI.
region_1 <- st_read("rs/Region_15.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -69.675, lat = -18.54, zoom = 8)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -69.675, lat = -18.54, zoom = 8)
Map$addLayer(first, vizParams, "Landsat 8 image")
image$normalizedDifference(c(“B3”, “B4”)) > 0.1 provoca una aberracion, tuvimos que corregirla. construimos un raster con NDGI mayor a -0.15, que tampoco queda muy bien pero tiene mas sentido.
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > -0.15
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -69.675, lat = -18.54, zoom = 8)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_ARICA_Y_PARINACOTA.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -69.675, lat = -18.54, zoom = 8)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -69.675, lat = -18.54, zoom = 8)
Map$addLayer(sale_4, ndgiParams, "NDGI")
region_1 <- st_read("rs/Region_01.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > -0.15
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_TARAPACA.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -69.675, lat = -20.18, zoom = 9)
Map$addLayer(sale_4, ndgiParams, "NDGI")
Funcion que despliegue por año y por mes desde enero del 2015 a enero del 2021
Es correcta esta forma de determinar las fechas? modificando solo la fecha de inicio?
region_1 <- st_read("rs/Region_01.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_11 <- region_1$geometry()
mask_0 <- st_read("GlaciaresxRegion/Simple_TARAPACA.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
generacion_por_meses <- function(j,i){
if(i<10){
fecha_paste <- paste("201",j,"-0",i,"-01", sep ="" )
}
else{
fecha_paste <- paste("201",j,"-",i,"-01", sep ="" )
}
#Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
#Map$addLayer(region_11)
start <- ee$Date(fecha_paste)
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
#Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
#Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > -0.15
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
#Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
#Map$addLayer(ndgi_01, ndgiParams, "NDGI")
#Map$setCenter(lon = -69.675, lat = -20.18, zoom = 7)
#Map$addLayer(region_0)
fecha_paste <- ndgi_01$clip(region_0)
Map$setCenter(lon = -68.77, lat = -19.75, zoom = 10)
Map$addLayer(fecha_paste, ndgiParams, "NDGI")
}
g <- seq(1,12,1)
anios <- seq(5,9,1)
for(d in anios){
for(j in g){
print(generacion_por_meses(d,j))
}
}
region_1 <- st_read("rs/Region_02.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_11 <- region_1$geometry()
# Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 6)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > -0.15
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -73.079, lat = -20.3, zoom = 6)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_ANTOFAGASTA.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -70, lat = -20.3, zoom = 7)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -73.079, lat = -20.3, zoom = 7)
Map$addLayer(sale_4, ndgiParams, "NDGI")
region_1 <- st_read("rs/Region_03.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -71, lat = -27, zoom = 6.3)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -73.079, lat = -42.611, zoom = 6)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > -0.15
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -73.079, lat = -20.3, zoom = 6)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_ATACAMA.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -69.75, lat = -27.36, zoom = 7)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -69.5, lat = -28.45, zoom = 9)
Map$addLayer(sale_4, ndgiParams, "NDGI")
region_1 <- st_read("rs/Region_04.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_11 <- region_1$geometry()
#Map$setCenter(lon = -71, lat = -29, zoom = 6.3)
#Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -71, lat = -29, zoom = 6.3)
#Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > -0.15
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
#Map$setCenter(lon = -71, lat = -29, zoom = 6.3)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_COQUIMBO.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
#Map$setCenter(lon = -71, lat = -29, zoom = 6.3)
#Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -70.18341, lat = -30.27249, zoom = 9)
Map$addLayer(sale_4, ndgiParams, "NDGI")
region_1 <- st_read("rs/Region_05.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_11 <- region_1$geometry()
#Map$setCenter(lon = -71, lat = -32, zoom = 6.3)
#Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
#Map$setCenter(lon = -71, lat = -29, zoom = 6.3)
#Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > -0.15
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -71, lat = -29, zoom = 6.3)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_VALPARAISO.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
#Map$setCenter(lon = -71, lat = -32, zoom = 6.3)
#Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -70.48, lat = -32.70233, zoom = 10)
Map$addLayer(sale_4, ndgiParams, "NDGI")
region_1 <- st_read("rs/Region_13.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -71, lat = -33.66, zoom = 7)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -71, lat = -33.66, zoom = 7)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > -0.15
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -71, lat = -33.66, zoom = 7)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_METROPOLITANA_DE_SANTIAGO.shx",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -71, lat = -33.66, zoom = 7)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -71, lat = -33.66, zoom = 8)
Map$addLayer(sale_4, ndgiParams, "NDGI")
region_1 <- st_read("rs/Region_06.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -71, lat = -34.4, zoom = 8)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -71, lat = -34.4, zoom = 8)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > -0.05
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -71, lat = -34.4, zoom = 8)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_LIBERTADOR_BERNARDO_OHIGGINS.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -71, lat = -34.4, zoom = 8)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -71, lat = -34.4, zoom = 8)
Map$addLayer(sale_4, ndgiParams, "NDGI")
region_1 <- st_read("rs/Region_07.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -71, lat = -35.6, zoom = 8)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -71, lat = -35.6, zoom = 8)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > -0.05
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -71, lat = -35.6, zoom = 8)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_MAULE.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -71, lat = -35.6, zoom = 8)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -71, lat = -35.6, zoom = 8)
Map$addLayer(sale_4, ndgiParams, "NDGI")
10 Región del Ñuble.
region_1 <- st_read("rs/Region_08.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -72.2, lat = -37.465, zoom = 8)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -72.2, lat = -37.465, zoom = 8)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > -0.05
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -72.2, lat = -37.465, zoom = 8)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_BIOBIO.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -72.2, lat = -37.465, zoom = 8)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -72.2, lat = -37.465, zoom = 8)
Map$addLayer(sale_4, ndgiParams, "NDGI")
12 Región de La Araucanía.
region_1 <- st_read("rs/Region_09.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -72.298, lat = -38.651, zoom = 8)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -72.298, lat = -38.651, zoom = 8)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > -0.05
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -72.298, lat = -38.651, zoom = 8)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_ARAUCANIA.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -72.298, lat = -38.651, zoom = 8)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -72.298, lat = -38.651, zoom = 8)
Map$addLayer(sale_4, ndgiParams, "NDGI")
13 Región de Los Ríos.
region_1 <- st_read("rs/Region_14.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > -0.05
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_LOS_RIOS.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_0 <- mask_0$geometry()
Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
Map$addLayer(region_0)
sale_4 <- ndgi_01$clip(region_0)
Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
Map$addLayer(sale_4, ndgiParams, "NDGI")
region_1 <- st_read("rs/Region_10.shp",
quiet = TRUE) %>%
sf_as_ee()
# convertimos el shp en geometria:
region_11 <- region_1$geometry()
Map$setCenter(lon = -72.628, lat = -39.955, zoom = 7)
Map$addLayer(region_11)
start <- ee$Date("2019-03-01")
finish <- ee$Date("2020-03-01")
cc <- 20
sentinel1 = ee$ImageCollection('COPERNICUS/S2')$filterDate(start, finish)$filterBounds(region_11)$
filter(ee$Filter$lt("CLOUDY_PIXEL_PERCENTAGE", cc))
first <- sentinel1$median()
# definimos los parametros de visualizacion:
vizParams <- list(
bands = c("B8","B5" , "B3"),
# bands = c("B2", "B3"),
min = 100,
max = 1000,
gamma = 2
)
Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
Map$addLayer(first, vizParams, "Landsat 8 image")
getNDGI <- function(image)
{
#image$normalizedDifference(c("B3", "B4"))
image$normalizedDifference(c("B3", "B4")) > -0.05
}
ndgi_01 <- getNDGI(first)
ndgiParams <- list(palette = c(
"#d73027", "#f46d43", "#fdae61",
"#fee08b", "#d9ef8b", "#a6d96a",
"#66bd63", "#1a9850"
))
Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
Map$addLayer(ndgi_01, ndgiParams, "NDGI")
mask_0 <- st_read("GlaciaresxRegion/Simple_LOS_LAGOS.shp",
quiet = TRUE) %>%
sf_as_ee()
# # convertimos el shp en geometria:
# region_0 <- mask_0$geometry()
# Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
# Map$addLayer(region_0)
#
# sale_4 <- ndgi_01$clip(region_0)
# Map$setCenter(lon = -72.628, lat = -39.955, zoom = 8)
# Map$addLayer(sale_4, ndgiParams, "NDGI")
(volver al índice) https://rpubs.com/palominoM/series integrar series de tiempo Extraemos la imagen satelital Sentinel filtrada por la region de los lagos Crear mapas con la serie completa desde el 2015 cada tres meses para la decima region: Puerto Montt. que informe cuando no haya info. series de tiempo.
ver si se genera un cambio aplicando filtros de banda de calidad ademas del filtro de la mediana