Leyendo / Importando sets de datos
Hoja de datos a
hoja= "a"
rango= "B3:C22"
#
a <- read_sheet("https://docs.google.com/spreadsheets/d/167t2X_sawdlBQ-_hdYP7GNdC1XhzSqQzAnwMlBZJpWg/edit?usp=sharing",
sheet= hoja,
range= rango)
a$sexo <- as.factor(a$sexo)
(S3: tbl_df/tbl/data.frame)
$ estatura: num [1:19] 160 164 162 158 163 163 156 170 175 165 ...
$ sexo : Factor w/ 2 levels "f","m": 1 1 1 1 1 1 1 2 2 2 ...
Hoja de datos b
hoja= "b"
rango= "B3:C38"
#
b <- read_sheet("https://docs.google.com/spreadsheets/d/167t2X_sawdlBQ-_hdYP7GNdC1XhzSqQzAnwMlBZJpWg/edit?usp=sharing",
sheet= hoja,
range= rango)
b$grupo <- as.factor(b$grupo)
str(b)
tibble [35 x 2] (S3: tbl_df/tbl/data.frame)
$ altura: num [1:35] 21.4 18.9 24.9 21.7 21.2 ...
$ grupo : Factor w/ 5 levels "a","b","c","d",..: 1 1 1 1 1 1 1 2 2 2 ...
Hoja de datos c
hoja= "c"
rango= "C3:D17"
#
c <- read_sheet("https://docs.google.com/spreadsheets/d/167t2X_sawdlBQ-_hdYP7GNdC1XhzSqQzAnwMlBZJpWg/edit?usp=sharing",
sheet= hoja,
range= rango)
str(c)
tibble [14 x 2] (S3: tbl_df/tbl/data.frame)
$ longitud: num [1:14] 67 78 70 78 66 71 74 81 81 78 ...
$ peso : num [1:14]
Hoja de datos d
hoja= "d"
rango= "C4:D54"
#
d <- read_sheet("https://docs.google.com/spreadsheets/d/167t2X_sawdlBQ-_hdYP7GNdC1XhzSqQzAnwMlBZJpWg/edit?usp=sharing",
sheet= hoja,
range= rango)
#
str(d)
tibble [50 x 2] (S3: tbl_df/tbl/data.frame)
$ DI: num [1:50] 8.78 9.45 9.73 9.75 9.89 ...
$ La: num [1:50] 111 114 114 117 119 ...
Hoja de datos e
hoja= "e"
rango= "D3:E23"
#
e <- read_sheet("https://docs.google.com/spreadsheets/d/167t2X_sawdlBQ-_hdYP7GNdC1XhzSqQzAnwMlBZJpWg/edit?usp=sharing",
sheet= hoja,
range= rango)
e$X1 <- as.factor(e$X1)
str(e)
tibble [20 x 2] (S3: tbl_df/tbl/data.frame)
$ Y1: num [1:20] 145 137 134 139 142 ...
$ X1: Factor w/ 2 levels "n1","n2": 1 1 1 1 1 1 1 1 1 1 ...
Hoja de datos f
hoja= "f"
rango= "B3:C81"
#
f <- read_sheet("https://docs.google.com/spreadsheets/d/167t2X_sawdlBQ-_hdYP7GNdC1XhzSqQzAnwMlBZJpWg/edit?usp=sharing",
sheet= hoja,
range= rango)
f$grupo <- as.factor(f$grupo)
str(f)
tibble [78 x 2] (S3: tbl_df/tbl/data.frame)
$ y : num [1:78] 14.7 17.3 15.9 17.3 17.4 ...
$ grupo: Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...
Plots / Anaysis
Hoja “a”
plot(a$estatura ~ a$sexo)

#
lm.a <- lm(a$estatura~ a$sexo)
summary(lm.a)
Call:
lm(formula = a$estatura ~ a$sexo)
Residuals:
Min 1Q Median 3Q Max
-7.000 -3.500 1.143 3.071 8.000
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 160.857 1.667 96.470 < 2e-16 ***
a$sexom 11.143 2.098 5.311 5.75e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 4.412 on 17 degrees of freedom
Multiple R-squared: 0.6239, Adjusted R-squared: 0.6018
F-statistic: 28.21 on 1 and 17 DF, p-value: 5.749e-05
#
aov.a <- aov(a$estatura ~ a$sexo)
summary(aov.a)
Df Sum Sq Mean Sq F value Pr(>F)
a$sexo 1 548.9 548.9 28.2 5.75e-05 ***
Residuals 17 330.9 19.5
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Hoja “b”
plot(b$altura ~ b$grupo)

#
lm.b <- lm(b$altura ~ b$grupo)
summary(lm.b)
Call:
lm(formula = b$altura ~ b$grupo)
Residuals:
Min 1Q Median 3Q Max
-3.8271 -1.1011 0.0658 1.3286 3.0429
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.6871 0.6928 32.746 < 2e-16 ***
b$grupob 12.2770 0.9798 12.530 1.88e-13 ***
b$grupoc 8.1014 0.9798 8.268 3.14e-09 ***
b$grupod -4.4100 0.9798 -4.501 9.50e-05 ***
b$grupoe 13.9514 0.9798 14.239 6.94e-15 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.833 on 30 degrees of freedom
Multiple R-squared: 0.9458, Adjusted R-squared: 0.9386
F-statistic: 130.9 on 4 and 30 DF, p-value: < 2.2e-16
#
aov.b <- aov(b$altura ~ b$grupo)
summary(aov.b)
Df Sum Sq Mean Sq F value Pr(>F)
b$grupo 4 1759.9 440.0 130.9 <2e-16 ***
Residuals 30 100.8 3.4
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Hoja “c”
plot(c$peso~c$longitud, pch=20)

#
lm.c <- lm(c$peso ~ c$longitud)
summary(lm.c)
Call:
lm(formula = c$peso ~ c$longitud)
Residuals:
Min 1Q Median 3Q Max
-1.94423 -0.52548 -0.05817 0.51250 1.82788
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.56058 3.73448 7.38 8.50e-06 ***
c$longitud 0.64135 0.05042 12.72 2.52e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.064 on 12 degrees of freedom
Multiple R-squared: 0.931, Adjusted R-squared: 0.9252
F-statistic: 161.8 on 1 and 12 DF, p-value: 2.518e-08
#
aov.c <- aov(c$peso ~ c$longitud)
summary(aov.c)
Df Sum Sq Mean Sq F value Pr(>F)
c$longitud 1 183.3 183.33 161.8 2.52e-08 ***
Residuals 12 13.6 1.13
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Hoja “d”
plot(d$La ~ d$DI, pch=20)

#
lm.d <- lm(d$La ~ d$DI)
summary(lm.d)
Call:
lm(formula = d$La ~ d$DI)
Residuals:
Min 1Q Median 3Q Max
-7.2301 -4.7238 -0.0456 4.4415 8.5558
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.5170 4.5767 1.861 0.0689 .
d$DI 11.5948 0.3597 32.235 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 4.839 on 48 degrees of freedom
Multiple R-squared: 0.9558, Adjusted R-squared: 0.9549
F-statistic: 1039 on 1 and 48 DF, p-value: < 2.2e-16
#
aov.d <- aov(d$La ~ d$DI)
summary(aov.d)
Df Sum Sq Mean Sq F value Pr(>F)
d$DI 1 24328 24328 1039 <2e-16 ***
Residuals 48 1124 23
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Hoja “e”
plot(e$Y1 ~e$X1, pch=20)

#
lm.e <- lm(e$Y1 ~e$X1)
summary(lm.e)
Call:
lm(formula = e$Y1 ~ e$X1)
Residuals:
Min 1Q Median 3Q Max
-5.8836 -1.5655 -0.3844 1.8105 5.5297
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 139.9691 1.0328 135.520 <2e-16 ***
e$X1n2 -0.2548 1.4606 -0.174 0.863
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.266 on 18 degrees of freedom
Multiple R-squared: 0.001687, Adjusted R-squared: -0.05377
F-statistic: 0.03042 on 1 and 18 DF, p-value: 0.8635
#
aov.e <- aov(e$Y1 ~e$X1)
Hoja “f”
plot(f$y ~ f$grupo)

#
lm.f <- lm(f$y ~ f$grupo)
summary(lm.f)
Call:
lm(formula = f$y ~ f$grupo)
Residuals:
Min 1Q Median 3Q Max
-4.479 -1.305 0.003 1.525 4.336
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.6117 0.3206 48.694 <2e-16 ***
f$grupoB -0.8062 0.4477 -1.801 0.0757 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.976 on 76 degrees of freedom
Multiple R-squared: 0.04092, Adjusted R-squared: 0.0283
F-statistic: 3.242 on 1 and 76 DF, p-value: 0.07573
#
aov.f <- aov(f$y ~ f$grupo)
summary(aov.f)
Df Sum Sq Mean Sq F value Pr(>F)
f$grupo 1 12.66 12.664 3.242 0.0757 .
Residuals 76 296.86 3.906
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
LS0tDQp0aXRsZTogInRhcmVhX3JlZ19hbm92YSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMjIyBMb3MgZGF0b3Mgc2UgZW5jdWVudHJhbiBlbiBsYSBIb2phIGVsZWN0csOzbmljYSBhZGp1bnRhIGVuIGxhIHRhcmVhIGRlIGNsYXNzcm9vbTogW1RhcmVhX1JlZ3Jlc2lvbi1BbmRldmFdKGh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kLzE2N3QyWF9zYXdkbEJRLV9oZFlQN0dOZEMxWGh6U3FRekFud01sQlpKcFdnL2VkaXQ/dXNwPXNoYXJpbmcpICANCg0KIyMjIyBQYXJhIHJlY3JlYXIgbG9zIGFuw6FsaXNpcyBlbiBzdSBwcm9waWEgY29tcHV0YWRvcmEsIGNvcGlhciBsb3MgdHJvem9zIGRlIGPDs2RpZ28gYSBjb250aW51YWNpw7NuIHkgcGVnYXIgZW4gY29uc29sYSBkZSBSLiBObyByZWFsaXphciBuaW5nw7puIGNhbWJpby4NCmBgYHtyIG1lc3NhZ2U9RkFMU0V9DQppZighcmVxdWlyZShnb29nbGVzaGVldHM0KSl7aW5zdGFsbC5wYWNrYWdlcygiZ29vZ2xlc2hlZXRzNCIpfQ0KaWYoIXJlcXVpcmUodGlkeXZlcnNlKSl7aW5zdGFsbC5wYWNrYWdlcygidGlkeXZlcnNlIil9DQppZighcmVxdWlyZShnZ3B1YnIpKXtpbnN0YWxsLnBhY2thZ2VzKCJnZ3BidXIiKX0NCiMNCmxpYnJhcnkoZ29vZ2xlc2hlZXRzNCk7IGdzNF9kZWF1dGgoKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KGdncHVicikNCmBgYCAgDQoNCiMjIyBMZXllbmRvIC8gSW1wb3J0YW5kbyBzZXRzIGRlIGRhdG9zDQojIyMjIEhvamEgZGUgZGF0b3MgYGFgICANCmBgYHtyIG1lc3NhZ2U9RkFMU0V9DQpob2phPSAiYSINCnJhbmdvPSAiQjM6QzIyIg0KIw0KYSA8LSByZWFkX3NoZWV0KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC8xNjd0Mlhfc2F3ZGxCUS1faGRZUDdHTmRDMVhoelNxUXpBbndNbEJaSnBXZy9lZGl0P3VzcD1zaGFyaW5nIiwNCiAgICAgICAgICAgc2hlZXQ9IGhvamEsDQogICAgICAgICAgIHJhbmdlPSByYW5nbykNCmEkc2V4byA8LSBhcy5mYWN0b3IoYSRzZXhvKQ0Kc3RyKGEpDQpgYGAgIA0KDQojIyMjIEhvamEgZGUgZGF0b3MgYGJgICANCmBgYHtyIG1lc3NhZ2U9RkFMU0V9DQpob2phPSAiYiINCnJhbmdvPSAiQjM6QzM4Ig0KIw0KYiA8LSByZWFkX3NoZWV0KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC8xNjd0Mlhfc2F3ZGxCUS1faGRZUDdHTmRDMVhoelNxUXpBbndNbEJaSnBXZy9lZGl0P3VzcD1zaGFyaW5nIiwNCiAgICAgICAgICAgc2hlZXQ9IGhvamEsDQogICAgICAgICAgIHJhbmdlPSByYW5nbykNCmIkZ3J1cG8gPC0gYXMuZmFjdG9yKGIkZ3J1cG8pDQpzdHIoYikNCmBgYCAgDQoNCiMjIyMgSG9qYSBkZSBkYXRvcyBgY2AgIA0KYGBge3IgbWVzc2FnZT1GQUxTRX0NCmhvamE9ICJjIg0KcmFuZ289ICJDMzpEMTciDQojDQpjIDwtIHJlYWRfc2hlZXQoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kLzE2N3QyWF9zYXdkbEJRLV9oZFlQN0dOZEMxWGh6U3FRekFud01sQlpKcFdnL2VkaXQ/dXNwPXNoYXJpbmciLA0KICAgICAgICAgICBzaGVldD0gaG9qYSwNCiAgICAgICAgICAgcmFuZ2U9IHJhbmdvKQ0KDQpzdHIoYykNCmBgYCAgDQoNCiMjIyMgSG9qYSBkZSBkYXRvcyBgZGAgIA0KYGBge3IgbWVzc2FnZT1GQUxTRX0NCmhvamE9ICJkIg0KcmFuZ289ICJDNDpENTQiDQojDQpkIDwtIHJlYWRfc2hlZXQoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kLzE2N3QyWF9zYXdkbEJRLV9oZFlQN0dOZEMxWGh6U3FRekFud01sQlpKcFdnL2VkaXQ/dXNwPXNoYXJpbmciLA0KICAgICAgICAgICBzaGVldD0gaG9qYSwNCiAgICAgICAgICAgcmFuZ2U9IHJhbmdvKQ0KIw0Kc3RyKGQpDQpgYGAgIA0KDQojIyMjIEhvamEgZGUgZGF0b3MgYGVgICANCmBgYHtyIG1lc3NhZ2U9RkFMU0V9DQpob2phPSAiZSINCnJhbmdvPSAiRDM6RTIzIg0KIw0KZSA8LSByZWFkX3NoZWV0KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC8xNjd0Mlhfc2F3ZGxCUS1faGRZUDdHTmRDMVhoelNxUXpBbndNbEJaSnBXZy9lZGl0P3VzcD1zaGFyaW5nIiwNCiAgICAgICAgICAgc2hlZXQ9IGhvamEsDQogICAgICAgICAgIHJhbmdlPSByYW5nbykNCmUkWDEgPC0gYXMuZmFjdG9yKGUkWDEpDQpzdHIoZSkNCmBgYCAgDQoNCiMjIyMgSG9qYSBkZSBkYXRvcyBgZmAgIA0KYGBge3IgbWVzc2FnZT1GQUxTRX0NCmhvamE9ICJmIg0KcmFuZ289ICJCMzpDODEiDQojDQpmIDwtIHJlYWRfc2hlZXQoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kLzE2N3QyWF9zYXdkbEJRLV9oZFlQN0dOZEMxWGh6U3FRekFud01sQlpKcFdnL2VkaXQ/dXNwPXNoYXJpbmciLA0KICAgICAgICAgICBzaGVldD0gaG9qYSwNCiAgICAgICAgICAgcmFuZ2U9IHJhbmdvKQ0KZiRncnVwbyA8LSBhcy5mYWN0b3IoZiRncnVwbykNCnN0cihmKQ0KYGBgICANCg0KIyMjIFBsb3RzIC8gQW5heXNpcyAgDQojIyMjICoqKkhvamEgImEiKioqIA0KYGBge3J9DQpwbG90KGEkZXN0YXR1cmEgfiBhJHNleG8pDQojDQpsbS5hIDwtIGxtKGEkZXN0YXR1cmF+IGEkc2V4bykNCnN1bW1hcnkobG0uYSkNCiMNCmFvdi5hIDwtIGFvdihhJGVzdGF0dXJhIH4gYSRzZXhvKQ0Kc3VtbWFyeShhb3YuYSkNCmBgYCAgDQoNCiMjIyMgKioqSG9qYSAiYiIqKiogIA0KYGBge3J9DQpwbG90KGIkYWx0dXJhIH4gYiRncnVwbykNCiMNCmxtLmIgPC0gbG0oYiRhbHR1cmEgfiBiJGdydXBvKQ0Kc3VtbWFyeShsbS5iKQ0KIw0KYW92LmIgPC0gYW92KGIkYWx0dXJhIH4gYiRncnVwbykNCnN1bW1hcnkoYW92LmIpDQpgYGAgIA0KDQojIyMjICoqKkhvamEgImMiKioqICANCmBgYHtyfQ0KcGxvdChjJHBlc29+YyRsb25naXR1ZCwgcGNoPTIwKQ0KIw0KbG0uYyA8LSBsbShjJHBlc28gfiBjJGxvbmdpdHVkKQ0Kc3VtbWFyeShsbS5jKQ0KIw0KYW92LmMgPC0gYW92KGMkcGVzbyB+IGMkbG9uZ2l0dWQpDQpzdW1tYXJ5KGFvdi5jKQ0KYGBgICANCiMjIyMgKioqSG9qYSAiZCIqKiogIA0KYGBge3J9DQpwbG90KGQkTGEgfiBkJERJLCBwY2g9MjApDQojDQpsbS5kIDwtIGxtKGQkTGEgfiBkJERJKQ0Kc3VtbWFyeShsbS5kKQ0KIw0KYW92LmQgPC0gYW92KGQkTGEgfiBkJERJKQ0Kc3VtbWFyeShhb3YuZCkNCmBgYCAgDQojIyMjICoqKkhvamEgImUiKioqICANCmBgYHtyfQ0KcGxvdChlJFkxIH5lJFgxLCBwY2g9MjApDQojDQpsbS5lIDwtIGxtKGUkWTEgfmUkWDEpDQpzdW1tYXJ5KGxtLmUpDQojDQphb3YuZSA8LSBhb3YoZSRZMSB+ZSRYMSkNCmBgYCAgDQojIyMjICoqKkhvamEgImYiKioqICANCg0KYGBge3J9DQpwbG90KGYkeSB+IGYkZ3J1cG8pDQojDQpsbS5mIDwtIGxtKGYkeSB+IGYkZ3J1cG8pDQpzdW1tYXJ5KGxtLmYpDQojDQphb3YuZiA8LSBhb3YoZiR5IH4gZiRncnVwbykNCnN1bW1hcnkoYW92LmYpDQpgYGAgIA0K