la base de datos que se trabaja se puede descargar en este link

#paquetes que se necesitan.

ipak <- function(pkg){
  new.pkg <- pkg[!(pkg %in% installed.packages()[, "Package"])]
  if (length(new.pkg)) 
    install.packages(new.pkg, dependencies = TRUE)
  sapply(pkg, require, character.only = TRUE)
}
# usage
packages <- c("parameters","apa","haven","ggplot2","ggpubr",
"gridExtra","apaTables", "reshape", "GPArotation", "mvtnorm", "psych", "psychometric", "lavaan", "nFactors", "semPlot", "lavaan", "MVN", "semTools")
ipak(packages)
## Loading required package: parameters
## Warning: package 'parameters' was built under R version 4.0.5
## Loading required package: apa
## Warning: package 'apa' was built under R version 4.0.5
## Loading required package: haven
## Loading required package: ggplot2
## Loading required package: ggpubr
## Warning: package 'ggpubr' was built under R version 4.0.3
## Loading required package: gridExtra
## Loading required package: apaTables
## Warning: package 'apaTables' was built under R version 4.0.5
## Loading required package: reshape
## Loading required package: GPArotation
## Warning: package 'GPArotation' was built under R version 4.0.3
## Loading required package: mvtnorm
## Loading required package: psych
## 
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## Loading required package: psychometric
## Warning: package 'psychometric' was built under R version 4.0.5
## Loading required package: multilevel
## Warning: package 'multilevel' was built under R version 4.0.5
## Loading required package: nlme
## Loading required package: MASS
## 
## Attaching package: 'psychometric'
## The following object is masked from 'package:psych':
## 
##     alpha
## The following object is masked from 'package:ggplot2':
## 
##     alpha
## Loading required package: lavaan
## This is lavaan 0.6-7
## lavaan is BETA software! Please report any bugs.
## 
## Attaching package: 'lavaan'
## The following object is masked from 'package:psych':
## 
##     cor2cov
## Loading required package: nFactors
## Warning: package 'nFactors' was built under R version 4.0.5
## Loading required package: lattice
## 
## Attaching package: 'nFactors'
## The following object is masked from 'package:lattice':
## 
##     parallel
## Loading required package: semPlot
## Warning: package 'semPlot' was built under R version 4.0.5
## Registered S3 methods overwritten by 'lme4':
##   method                          from
##   cooks.distance.influence.merMod car 
##   influence.merMod                car 
##   dfbeta.influence.merMod         car 
##   dfbetas.influence.merMod        car
## Loading required package: MVN
## Warning: package 'MVN' was built under R version 4.0.3
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
## sROC 0.1-2 loaded
## Loading required package: semTools
## 
## ###############################################################################
## This is semTools 0.5-3
## All users of R (or SEM) are invited to submit functions or ideas for functions.
## ###############################################################################
## 
## Attaching package: 'semTools'
## The following object is masked from 'package:psych':
## 
##     skew
## The following object is masked from 'package:parameters':
## 
##     kurtosis
##   parameters          apa        haven      ggplot2       ggpubr    gridExtra 
##         TRUE         TRUE         TRUE         TRUE         TRUE         TRUE 
##    apaTables      reshape  GPArotation      mvtnorm        psych psychometric 
##         TRUE         TRUE         TRUE         TRUE         TRUE         TRUE 
##       lavaan     nFactors      semPlot       lavaan          MVN     semTools 
##         TRUE         TRUE         TRUE         TRUE         TRUE         TRUE
library(haven)
DFEFA <- read_sav("E:/DFEFA.sav")
View(DFEFA)
#n factors ASI
results_nfactorASI<-n_factors(DFEFA[,1:12], rotate = "varimax", fm = "mle", n = NULL)
plot(results_nfactorASI)

results_nfactorASI
as.data.frame(results_nfactorASI)
summary(results_nfactorASI)
#Exploratory Factorial ANalysis ASI
ASIfactor<-fa(DFEFA[,1:12],nfactors = 2,fm = "ml",rotate ="varimax",cor = "poly")
print(ASIfactor,digits = 2,cut = .30,sort=TRUE)
## Factor Analysis using method =  ml
## Call: fa(r = DFEFA[, 1:12], nfactors = 2, rotate = "varimax", fm = "ml", 
##     cor = "poly")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       item  ML1  ML2   h2   u2 com
## ASI9     9 0.89      0.83 0.17 1.1
## ASI10   10 0.79      0.67 0.33 1.2
## ASI8     8 0.72      0.57 0.43 1.2
## ASI11   11 0.69      0.53 0.47 1.2
## ASI12   12 0.63      0.44 0.56 1.2
## ASI7     7 0.52      0.35 0.65 1.5
## ASI3     3      0.75 0.58 0.42 1.1
## ASI4     4      0.74 0.57 0.43 1.1
## ASI2     2 0.33 0.66 0.54 0.46 1.5
## ASI1     1      0.65 0.46 0.54 1.1
## ASI5     5      0.62 0.42 0.58 1.2
## ASI6     6 0.32 0.50 0.35 0.65 1.7
## 
##                        ML1  ML2
## SS loadings           3.40 2.89
## Proportion Var        0.28 0.24
## Cumulative Var        0.28 0.52
## Proportion Explained  0.54 0.46
## Cumulative Proportion 0.54 1.00
## 
## Mean item complexity =  1.2
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  66  and the objective function was  6.06 with Chi Square of  2710.06
## The degrees of freedom for the model are 43  and the objective function was  0.66 
## 
## The root mean square of the residuals (RMSR) is  0.04 
## The df corrected root mean square of the residuals is  0.06 
## 
## The harmonic number of observations is  452 with the empirical chi square  120.36  with prob <  3e-09 
## The total number of observations was  453  with Likelihood Chi Square =  296.31  with prob <  1.5e-39 
## 
## Tucker Lewis Index of factoring reliability =  0.852
## RMSEA index =  0.114  and the 90 % confidence intervals are  0.102 0.127
## BIC =  33.33
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    ML1  ML2
## Correlation of (regression) scores with factors   0.94 0.90
## Multiple R square of scores with factors          0.89 0.82
## Minimum correlation of possible factor scores     0.78 0.64