library(forcats)
library(dplyr)
library(rpart.plot)
library(readr)
train_raw <- read.csv2("train.csv", sep = ",",
stringsAsFactors = TRUE)
test_raw <- read.csv2("test.csv", sep = ",",
stringsAsFactors = TRUE)
dim(train_raw)
## [1] 1460 81
dim(test_raw)
## [1] 1459 80
replace_na_most <- function(x){
fct_explicit_na(x, na_level = names(which.max(table(x))))
}
replace_na_med <- function(x){
x[is.na(x)] <- median(x,na.rm = TRUE)
x
}
cleanup_minimal <- function(data){
nomis <- data %>%
mutate_if(is.factor, replace_na_most)%>%
mutate_if(is.numeric, replace_na_med)
nomis
}
train_minclean <- cleanup_minimal(train_raw)
test_minclean <- cleanup_minimal(test_raw)
mod_rpart <- rpart(SalePrice~., data=train_minclean)
pred_rpart <- predict(mod_rpart, newdata = test_minclean)
submission_rpart <- tibble(Id=test_raw$Id, SalePrice=pred_rpart)
head(submission_rpart)
## # A tibble: 6 x 2
## Id SalePrice
## <int> <dbl>
## 1 1461 118199.
## 2 1462 151246.
## 3 1463 185210.
## 4 1464 185210.
## 5 1465 249392.
## 6 1466 185210.
write_csv(submission_rpart, file="submission_rpart.csv")
This is the submission screenshot: