## time poison treat
## 1 0.31 I A
## 2 0.82 I B
## 3 0.43 I C
## 4 0.45 I D
## 5 0.45 I A
## 6 1.10 I B
## [1] 48 3
## [1] "time" "poison" "treat"
## [1] "I" "II" "III"
## [1] "A" "B" "C" "D"
Time: Survival time of rats exposed to different poison and treatments Poison: One of three poisons used (I, II, III) Treat: One of four treatments administered (A, B, C, D)
At first glance, overlap exists for all categories of poison and treatment. In general, poison III appears to have the most detrimental impact on survival, while treatments A and C appear the least effective in mitigating the effects of poison. The colored graph also helps visualize that treatments B and D tend to be the interventions with higher survival rates, while A is the lowest and C having marginal improvement.
##
## Call:
## lm(formula = time ~ ., data = rats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.25167 -0.09625 -0.01490 0.06177 0.49833
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.45229 0.05592 8.088 4.22e-10 ***
## poisonII -0.07313 0.05592 -1.308 0.19813
## poisonIII -0.34125 0.05592 -6.102 2.83e-07 ***
## treatB 0.36250 0.06458 5.614 1.43e-06 ***
## treatC 0.07833 0.06458 1.213 0.23189
## treatD 0.22000 0.06458 3.407 0.00146 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1582 on 42 degrees of freedom
## Multiple R-squared: 0.6503, Adjusted R-squared: 0.6087
## F-statistic: 15.62 on 5 and 42 DF, p-value: 1.123e-08
A combined model indicates both of these levels are significant, as well as treatment D. The initial R^2 is approximately 0.61. These coefficients are the easiest to interpret, i.e., poison III results in a significant impact on survival, with an approximately 25% reduction in survival time relative to Poison I. Poison II is not significantly different than I.
##
## Call:
## lm(formula = log(time) ~ ., data = rats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.41827 -0.13020 -0.01135 0.10405 0.58670
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.88731 0.08349 -10.627 1.77e-13 ***
## poisonII -0.18666 0.08349 -2.236 0.0307 *
## poisonIII -0.77515 0.08349 -9.284 9.82e-12 ***
## treatB 0.70465 0.09641 7.309 5.27e-09 ***
## treatC 0.19671 0.09641 2.040 0.0476 *
## treatD 0.50707 0.09641 5.260 4.57e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2362 on 42 degrees of freedom
## Multiple R-squared: 0.7897, Adjusted R-squared: 0.7646
## F-statistic: 31.54 on 5 and 42 DF, p-value: 3.401e-13
After considering transformation of the response variable, now both Poisons II and III offer significantly reduced survival time. Looking at the residual plot however there appears to be some heteroscedasticity. The R^2 increases to over 0.75. The coefficients require exponentiation prior to interpreting, with Poison II having a 17% and Poison III having a 54% reduction in survival time relative to Poison I.
##
## Call:
## lm(formula = log(time) ~ .^2, data = rats)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.50006 -0.11846 0.01995 0.12202 0.48733
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.89755 0.11626 -7.720 3.82e-09 ***
## poisonII -0.26383 0.16442 -1.605 0.117330
## poisonIII -0.66727 0.16442 -4.058 0.000254 ***
## treatB 0.75768 0.16442 4.608 4.94e-05 ***
## treatC 0.30281 0.16442 1.842 0.073777 .
## treatD 0.38891 0.16442 2.365 0.023523 *
## poisonII:treatB 0.13472 0.23253 0.579 0.565960
## poisonIII:treatB -0.29379 0.23253 -1.263 0.214553
## poisonII:treatC -0.13101 0.23253 -0.563 0.576659
## poisonIII:treatC -0.18730 0.23253 -0.805 0.425823
## poisonII:treatD 0.30494 0.23253 1.311 0.198023
## poisonIII:treatD 0.04953 0.23253 0.213 0.832508
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2325 on 36 degrees of freedom
## Multiple R-squared: 0.8252, Adjusted R-squared: 0.7718
## F-statistic: 15.45 on 11 and 36 DF, p-value: 1.643e-10
When considering interactions between poison and treatment Poison II is no longer different. Poison III remains significantly different, with a 49% reduction in survival time.
##
## Call:
## glm(formula = time ~ ., family = inverse.gaussian(link = "identity"),
## data = rats)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.82006 -0.25671 -0.05081 0.14507 0.89770
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.48364 0.04626 10.454 2.93e-13 ***
## poisonII -0.10455 0.05411 -1.932 0.060115 .
## poisonIII -0.28673 0.04610 -6.219 1.92e-07 ***
## treatB 0.24102 0.05103 4.723 2.60e-05 ***
## treatC 0.03546 0.02646 1.340 0.187474
## treatD 0.15972 0.04034 3.959 0.000285 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for inverse.gaussian family taken to be 0.1722363)
##
## Null deviance: 25.7437 on 47 degrees of freedom
## Residual deviance: 6.2095 on 42 degrees of freedom
## AIC: -71.183
##
## Number of Fisher Scoring iterations: 9
The initial inverse Gaussian model (using identity link function) generally agrees with the findings of the linear model. Relative to Poison I, Poison III has significantly worse survival, approximately 41% reduction in duration. This is a larger diffrence than predicted using the original linear model’s mean response, which was 25%. However, there appears to be a pattern in the residuals as well as two potential outliers in the highest quartile.
##
## Call:
## glm(formula = time ~ .^2, family = inverse.gaussian(link = "identity"),
## data = rats)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.6987 -0.2145 0.0238 0.1703 0.5229
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.41250 0.04062 10.155 4.12e-12 ***
## poisonII -0.09250 0.04920 -1.880 0.0682 .
## poisonIII -0.20250 0.04322 -4.685 3.91e-05 ***
## treatB 0.46750 0.13293 3.517 0.0012 **
## treatC 0.15500 0.07712 2.010 0.0520 .
## treatD 0.19750 0.08359 2.363 0.0237 *
## poisonII:treatB 0.02750 0.17655 0.156 0.8771
## poisonIII:treatB -0.34250 0.13701 -2.500 0.0171 *
## poisonII:treatC -0.10000 0.08920 -1.121 0.2697
## poisonIII:treatC -0.13000 0.08044 -1.616 0.1148
## poisonII:treatD 0.15000 0.12145 1.235 0.2248
## poisonIII:treatD -0.08250 0.08951 -0.922 0.3628
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for inverse.gaussian family taken to be 0.09403976)
##
## Null deviance: 25.7437 on 47 degrees of freedom
## Residual deviance: 3.6418 on 36 degrees of freedom
## AIC: -84.797
##
## Number of Fisher Scoring iterations: 3
Adding interaction effects between treatment and poisons removes the pattern from residual plot and the outliers. The only significant interaction is between Poison III and treatment B, and this pairing has a coefficient with a negative sign. Poison III is uniquely resistant to treatment. This finding also agrees with the results of the linear model with interactions.
##
## Call:
## glm(formula = time ~ .^2, family = inverse.gaussian(link = "log"),
## data = rats)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.6987 -0.2145 0.0238 0.1703 0.5229
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.88552 0.09848 -8.992 9.80e-11 ***
## poisonII -0.25392 0.13123 -1.935 0.060890 .
## poisonIII -0.67513 0.12097 -5.581 2.53e-06 ***
## treatB 0.75769 0.17432 4.347 0.000108 ***
## treatC 0.31900 0.15179 2.102 0.042647 *
## treatD 0.39122 0.15504 2.523 0.016183 *
## poisonII:treatB 0.17718 0.23889 0.742 0.463097
## poisonIII:treatB -0.29066 0.20784 -1.398 0.170531
## poisonII:treatC -0.16040 0.19844 -0.808 0.424230
## poisonIII:treatC -0.20653 0.18303 -1.128 0.266637
## poisonII:treatD 0.34400 0.21738 1.582 0.122295
## poisonIII:treatD 0.04549 0.19135 0.238 0.813422
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for inverse.gaussian family taken to be 0.09403976)
##
## Null deviance: 25.7437 on 47 degrees of freedom
## Residual deviance: 3.6418 on 36 degrees of freedom
## AIC: -84.797
##
## Number of Fisher Scoring iterations: 5
Finally, once a log link function is considered, this interaction effect is no longer significant and all treatments offer an improvment over treatment A. Poison III remains significantly different from I by a 49% reduction in mean survival time. This is in agreement with the linear model findings. Poison III also exhibits the least amount of variance in its Pearson residuals.