#import data
#load libraries
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(tidyquant)
## Loading required package: lubridate
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
## Loading required package: PerformanceAnalytics
## 
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
## 
##     legend
## ══ Need to Learn tidyquant? ══════════════════════════════════════════════════════════════════════════════════════════
## Business Science offers a 1-hour course - Learning Lab #9: Performance Analysis & Portfolio Optimization with tidyquant!
## </> Learn more at: https://university.business-science.io/p/learning-labs-pro </>
library(lubridate)
library(timetk)
library(purrr)
library(tibble)
library(readr)
library(xts)
library(PerformanceAnalytics)
library(magrittr)
## 
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
## 
##     set_names
library(fBasics)
## Loading required package: timeDate
## 
## Attaching package: 'timeDate'
## The following objects are masked from 'package:PerformanceAnalytics':
## 
##     kurtosis, skewness
## Loading required package: timeSeries
## 
## Attaching package: 'timeSeries'
## The following object is masked from 'package:zoo':
## 
##     time<-
## 
## Attaching package: 'fBasics'
## The following object is masked from 'package:TTR':
## 
##     volatility
library(tidyverse)
## ── Attaching packages ───────────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2     ✓ stringr 1.4.0
## ✓ tidyr   1.1.1     ✓ forcats 0.5.0
## ✓ dplyr   1.0.1
## ── Conflicts ──────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x lubridate::as.difftime() masks base::as.difftime()
## x lubridate::date()        masks base::date()
## x tidyr::extract()         masks magrittr::extract()
## x dplyr::filter()          masks timeSeries::filter(), stats::filter()
## x dplyr::first()           masks xts::first()
## x lubridate::intersect()   masks base::intersect()
## x dplyr::lag()             masks timeSeries::lag(), stats::lag()
## x dplyr::last()            masks xts::last()
## x magrittr::set_names()    masks purrr::set_names()
## x lubridate::setdiff()     masks base::setdiff()
## x lubridate::union()       masks base::union()
tickers <- c("SPY", "QQQ", "EEM", "IWM", "EFA", "TLT", "IYR", "GLD")
data = new.env()
getSymbols(tickers, src = 'yahoo', from = '2010-01-01', to = '2021-04-14', auto.assign = TRUE)
## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
## 
## This message is shown once per session and may be disabled by setting 
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
## pausing 1 second between requests for more than 5 symbols
## pausing 1 second between requests for more than 5 symbols
## pausing 1 second between requests for more than 5 symbols
## pausing 1 second between requests for more than 5 symbols
## [1] "SPY" "QQQ" "EEM" "IWM" "EFA" "TLT" "IYR" "GLD"
ETFList <- merge(Ad(SPY), Ad(QQQ),Ad(EEM), Ad(IWM),Ad(EFA),Ad(TLT),Ad(IYR),Ad(GLD))
colnames(ETFList) <- c("SPY", "QQQ", "EEM", "IWM", "EFA", "TLT", "IYR", "GLD")
head(ETFList)
##                 SPY      QQQ      EEM      IWM      EFA      TLT      IYR
## 2010-01-04 90.79006 41.51847 34.10928 54.61730 41.03314 66.03745 30.41554
## 2010-01-05 91.03041 41.51847 34.35684 54.42949 41.06930 66.46396 30.48858
## 2010-01-06 91.09449 41.26806 34.42872 54.37827 41.24289 65.57423 30.47530
## 2010-01-07 91.47905 41.29489 34.22906 54.77949 41.08377 65.68450 30.74751
## 2010-01-08 91.78343 41.63475 34.50059 55.07827 41.40926 65.65512 30.54169
## 2010-01-11 91.91164 41.46482 34.42872 54.85632 41.74921 65.29481 30.68776
##               GLD
## 2010-01-04 109.80
## 2010-01-05 109.70
## 2010-01-06 111.51
## 2010-01-07 110.82
## 2010-01-08 111.37
## 2010-01-11 112.85
tail(ETFList)
##               SPY    QQQ   EEM    IWM   EFA      TLT   IYR    GLD
## 2021-04-06 406.12 330.82 54.37 224.31 77.15 137.6382 94.20 163.22
## 2021-04-07 406.59 331.62 53.57 220.69 77.31 136.6796 94.20 162.76
## 2021-04-08 408.52 335.08 54.01 222.56 77.75 137.8079 93.97 164.51
## 2021-04-09 411.49 337.11 53.55 222.59 77.99 137.3086 93.96 163.27
## 2021-04-12 411.64 336.67 53.23 221.72 77.56 137.2487 94.47 162.28
## 2021-04-13 412.86 340.60 53.45 221.14 78.01 138.2772 95.04 163.43
ETFList.xts <- xts(ETFList)
head(ETFList.xts)
##                 SPY      QQQ      EEM      IWM      EFA      TLT      IYR
## 2010-01-04 90.79006 41.51847 34.10928 54.61730 41.03314 66.03745 30.41554
## 2010-01-05 91.03041 41.51847 34.35684 54.42949 41.06930 66.46396 30.48858
## 2010-01-06 91.09449 41.26806 34.42872 54.37827 41.24289 65.57423 30.47530
## 2010-01-07 91.47905 41.29489 34.22906 54.77949 41.08377 65.68450 30.74751
## 2010-01-08 91.78343 41.63475 34.50059 55.07827 41.40926 65.65512 30.54169
## 2010-01-11 91.91164 41.46482 34.42872 54.85632 41.74921 65.29481 30.68776
##               GLD
## 2010-01-04 109.80
## 2010-01-05 109.70
## 2010-01-06 111.51
## 2010-01-07 110.82
## 2010-01-08 111.37
## 2010-01-11 112.85

Weekly Returns

weekly.returns <- to.weekly(ETFList.xts, indexAt = "last", OHLC = FALSE)
ETF.weekly.returns <- na.omit(Return.calculate(weekly.returns, method = "log"))
head(ETF.weekly.returns)
##                     SPY          QQQ         EEM         IWM          EFA
## 2010-01-15 -0.008150165 -0.015151916 -0.02936168 -0.01310462 -0.003499562
## 2010-01-22 -0.039762828 -0.037555380 -0.05739709 -0.03110062 -0.057354555
## 2010-01-29 -0.016805812 -0.031515101 -0.03415421 -0.02659356 -0.026141568
## 2010-02-05 -0.006820546  0.004430648 -0.02861835 -0.01407321 -0.019238635
## 2010-02-12  0.012854811  0.017985357  0.03278946  0.02909861  0.005230847
## 2010-02-19  0.028289444  0.024157168  0.02415967  0.03288489  0.022734954
##                     TLT          IYR          GLD
## 2010-01-15  0.019848537 -0.006324356 -0.004589865
## 2010-01-22  0.010050310 -0.042683345 -0.033851813
## 2010-01-29  0.003363789 -0.008483115 -0.011354685
## 2010-02-05 -0.000053732  0.003218256 -0.012153577
## 2010-02-12 -0.019653381 -0.007602937  0.022294528
## 2010-02-19 -0.008238932  0.048966490  0.022447943
tail(ETF.weekly.returns)
##                     SPY          QQQ          EEM          IWM          EFA
## 2021-03-12  0.026824595  0.021726770  0.002967912  0.070403521 0.0218682367
## 2021-03-19 -0.008420718 -0.007381431  0.001665587 -0.028881750 0.0019645216
## 2021-03-26  0.016551188  0.010353968 -0.015091148 -0.026410480 0.0022217614
## 2021-04-01  0.011624615  0.026759037  0.011014785  0.014088245 0.0033885475
## 2021-04-09  0.026796346  0.037907991 -0.005772328 -0.005153190 0.0145949896
## 2021-04-13  0.003323822  0.010299544 -0.001869122 -0.006535516 0.0002564615
##                     TLT          IYR           GLD
## 2021-03-12 -0.020730233  0.051252724  0.0146589405
## 2021-03-19 -0.009674828 -0.009175922  0.0107782890
## 2021-03-26  0.014074907  0.034467797 -0.0061447899
## 2021-04-01  0.007567240  0.009016849 -0.0016039051
## 2021-04-09  0.000000000  0.004052442  0.0079324505
## 2021-04-13  0.007029286  0.011428717  0.0009794246

Monthly Returns

monthly.returns <- to.monthly(ETFList.xts, indexAt = "last", OHLC = FALSE)
ETF.monthly.returns <- na.omit(Return.calculate(monthly.returns, method = "log"))
head(ETF.monthly.returns)
##                    SPY         QQQ         EEM         IWM          EFA
## 2010-02-26  0.03071793  0.04501044  0.01760802  0.04377882  0.002664268
## 2010-03-31  0.05909865  0.07428087  0.07798729  0.07909466  0.061898269
## 2010-04-30  0.01535150  0.02217754 -0.00166310  0.05523070 -0.028446722
## 2010-05-28 -0.08278878 -0.07679864 -0.09864508 -0.07835767 -0.118702355
## 2010-06-30 -0.05312741 -0.06161677 -0.01408547 -0.08059619 -0.020834896
## 2010-07-30  0.06606917  0.07006933  0.10375152  0.06514060  0.109844203
##                     TLT         IYR          GLD
## 2010-02-26 -0.003430786  0.05313334  0.032223420
## 2010-03-31 -0.020787687  0.09302102 -0.004396042
## 2010-04-30  0.032678847  0.06192375  0.057168648
## 2010-05-28  0.049821743 -0.05851441  0.030056874
## 2010-06-30  0.056359738 -0.04782683  0.023280092
## 2010-07-30 -0.009509251  0.08988455 -0.052210719
tail(ETF.monthly.returns)
##                    SPY          QQQ          EEM          IWM          EFA
## 2020-11-30  0.10325753  0.106391900  0.086097691 0.1675816003  0.133388954
## 2020-12-31  0.03637851  0.047860577  0.068867768 0.0829288210  0.048936800
## 2021-01-29 -0.01024267  0.002610233  0.031246646 0.0473172758 -0.007843178
## 2021-02-26  0.02742592 -0.001336071  0.007847555 0.0601780664  0.022132092
## 2021-03-31  0.04439891  0.017022008 -0.007284986 0.0138539151  0.024821143
## 2021-04-13  0.04086135  0.065110227  0.002060137 0.0009048001  0.027815660
##                    TLT          IYR         GLD
## 2020-11-30  0.01650211  0.082312759 -0.05560390
## 2020-12-31 -0.01235249  0.024725619  0.06778819
## 2021-01-29 -0.03700417 -0.004329307 -0.03276927
## 2021-02-26 -0.05903846  0.023983094 -0.06461193
## 2021-03-31 -0.05387845  0.056135171 -0.01149897
## 2021-04-13  0.02349013  0.033161654  0.02146089

Tibble Format

ETF.monthly.returns.tibble <- as_tibble(ETF.monthly.returns)
ETF.monthly.returns.tibble
## # A tibble: 135 x 8
##        SPY      QQQ      EEM     IWM      EFA      TLT     IYR      GLD
##      <dbl>    <dbl>    <dbl>   <dbl>    <dbl>    <dbl>   <dbl>    <dbl>
##  1  0.0307  0.0450   0.0176   0.0438  0.00266 -0.00343  0.0531  0.0322 
##  2  0.0591  0.0743   0.0780   0.0791  0.0619  -0.0208   0.0930 -0.00440
##  3  0.0154  0.0222  -0.00166  0.0552 -0.0284   0.0327   0.0619  0.0572 
##  4 -0.0828 -0.0768  -0.0986  -0.0784 -0.119    0.0498  -0.0585  0.0301 
##  5 -0.0531 -0.0616  -0.0141  -0.0806 -0.0208   0.0564  -0.0478  0.0233 
##  6  0.0661  0.0701   0.104    0.0651  0.110   -0.00951  0.0899 -0.0522 
##  7 -0.0460 -0.0527  -0.0329  -0.0774 -0.0387   0.0806  -0.0131  0.0555 
##  8  0.0858  0.124    0.111    0.117   0.0951  -0.0255   0.0453  0.0467 
##  9  0.0375  0.0615   0.0297   0.0406  0.0373  -0.0457   0.0386  0.0362 
## 10  0      -0.00173 -0.0295   0.0343 -0.0494  -0.0170  -0.0160  0.0209 
## # … with 125 more rows

FAMA French

ff3.csv <- read_csv('ff3.csv')
## 
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────
## cols(
##   Date = col_double(),
##   `Mkt-RF` = col_double(),
##   SMB = col_double(),
##   HML = col_double(),
##   RF = col_double()
## )
str(ff3.csv)
## tibble [1,137 × 5] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ Date  : num [1:1137] 192607 192608 192609 192610 192611 ...
##  $ Mkt-RF: num [1:1137] 2.96 2.64 0.36 -3.24 2.53 2.62 -0.06 4.18 0.13 0.46 ...
##  $ SMB   : num [1:1137] -2.3 -1.4 -1.32 0.04 -0.2 -0.04 -0.56 -0.1 -1.6 0.43 ...
##  $ HML   : num [1:1137] -2.87 4.19 0.01 0.51 -0.35 -0.02 4.83 3.17 -2.67 0.6 ...
##  $ RF    : num [1:1137] 0.22 0.25 0.23 0.32 0.31 0.28 0.25 0.26 0.3 0.25 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   Date = col_double(),
##   ..   `Mkt-RF` = col_double(),
##   ..   SMB = col_double(),
##   ..   HML = col_double(),
##   ..   RF = col_double()
##   .. )
head(ff3.csv)
## # A tibble: 6 x 5
##     Date `Mkt-RF`   SMB   HML    RF
##    <dbl>    <dbl> <dbl> <dbl> <dbl>
## 1 192607     2.96 -2.3  -2.87  0.22
## 2 192608     2.64 -1.4   4.19  0.25
## 3 192609     0.36 -1.32  0.01  0.23
## 4 192610    -3.24  0.04  0.51  0.32
## 5 192611     2.53 -0.2  -0.35  0.31
## 6 192612     2.62 -0.04 -0.02  0.28
dim(ff3.csv)
## [1] 1137    5
tail(ff3.csv)
## # A tibble: 6 x 5
##     Date `Mkt-RF`   SMB   HML    RF
##    <dbl>    <dbl> <dbl> <dbl> <dbl>
## 1 202010    -2.1   4.44  4.03  0.01
## 2 202011    12.5   5.48  2.11  0.01
## 3 202012     4.63  4.81 -1.36  0.01
## 4 202101    -0.03  7.19  2.85  0   
## 5 202102     2.78  2.11  7.08  0   
## 6 202103     3.09 -2.48  7.4   0
glimpse(ff3.csv)
## Rows: 1,137
## Columns: 5
## $ Date     <dbl> 192607, 192608, 192609, 192610, 192611, 192612, 192701, 1927…
## $ `Mkt-RF` <dbl> 2.96, 2.64, 0.36, -3.24, 2.53, 2.62, -0.06, 4.18, 0.13, 0.46…
## $ SMB      <dbl> -2.30, -1.40, -1.32, 0.04, -0.20, -0.04, -0.56, -0.10, -1.60…
## $ HML      <dbl> -2.87, 4.19, 0.01, 0.51, -0.35, -0.02, 4.83, 3.17, -2.67, 0.…
## $ RF       <dbl> 0.22, 0.25, 0.23, 0.32, 0.31, 0.28, 0.25, 0.26, 0.30, 0.25, …
colnames(ff3.csv) <- paste(c("date","Mkt-RF","SMB","HML","RF"))
ff3.digit <- ff3.csv %>% mutate(date = as.character(date))%>% 
  mutate(date=ymd(parse_date(date,format="%Y%m"))) %>%
  mutate(date=rollback(date))
head(ff3.digit)
## # A tibble: 6 x 5
##   date       `Mkt-RF`   SMB   HML    RF
##   <date>        <dbl> <dbl> <dbl> <dbl>
## 1 1926-06-30     2.96 -2.3  -2.87  0.22
## 2 1926-07-31     2.64 -1.4   4.19  0.25
## 3 1926-08-31     0.36 -1.32  0.01  0.23
## 4 1926-09-30    -3.24  0.04  0.51  0.32
## 5 1926-10-31     2.53 -0.2  -0.35  0.31
## 6 1926-11-30     2.62 -0.04 -0.02  0.28

Convert to XTS

ff3.digit.xts <- xts(ff3.digit[,-1],order.by=as.Date(ff3.digit$date))
head(ff3.digit.xts)
##            Mkt-RF   SMB   HML   RF
## 1926-06-30   2.96 -2.30 -2.87 0.22
## 1926-07-31   2.64 -1.40  4.19 0.25
## 1926-08-31   0.36 -1.32  0.01 0.23
## 1926-09-30  -3.24  0.04  0.51 0.32
## 1926-10-31   2.53 -0.20 -0.35 0.31
## 1926-11-30   2.62 -0.04 -0.02 0.28

Merge of Monthly Returns and FAMA French

final.data <- merge(ff3.digit,ETF.monthly.returns)
tail(final.data)
##              date Mkt-RF   SMB   HML   RF        SPY        QQQ         EEM
## 153490 2020-09-30  -2.10  4.44  4.03 0.01 0.04086135 0.06511023 0.002060137
## 153491 2020-10-31  12.47  5.48  2.11 0.01 0.04086135 0.06511023 0.002060137
## 153492 2020-11-30   4.63  4.81 -1.36 0.01 0.04086135 0.06511023 0.002060137
## 153493 2020-12-31  -0.03  7.19  2.85 0.00 0.04086135 0.06511023 0.002060137
## 153494 2021-01-31   2.78  2.11  7.08 0.00 0.04086135 0.06511023 0.002060137
## 153495 2021-02-28   3.09 -2.48  7.40 0.00 0.04086135 0.06511023 0.002060137
##                 IWM        EFA        TLT        IYR        GLD
## 153490 0.0009048001 0.02781566 0.02349013 0.03316165 0.02146089
## 153491 0.0009048001 0.02781566 0.02349013 0.03316165 0.02146089
## 153492 0.0009048001 0.02781566 0.02349013 0.03316165 0.02146089
## 153493 0.0009048001 0.02781566 0.02349013 0.03316165 0.02146089
## 153494 0.0009048001 0.02781566 0.02349013 0.03316165 0.02146089
## 153495 0.0009048001 0.02781566 0.02349013 0.03316165 0.02146089
final.data.tibble <- as_tibble(final.data)
head(final.data.tibble)
## # A tibble: 6 x 13
##   date       `Mkt-RF`   SMB   HML    RF    SPY    QQQ    EEM    IWM     EFA
##   <date>        <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>
## 1 1926-06-30     2.96 -2.3  -2.87  0.22 0.0307 0.0450 0.0176 0.0438 0.00266
## 2 1926-07-31     2.64 -1.4   4.19  0.25 0.0307 0.0450 0.0176 0.0438 0.00266
## 3 1926-08-31     0.36 -1.32  0.01  0.23 0.0307 0.0450 0.0176 0.0438 0.00266
## 4 1926-09-30    -3.24  0.04  0.51  0.32 0.0307 0.0450 0.0176 0.0438 0.00266
## 5 1926-10-31     2.53 -0.2  -0.35  0.31 0.0307 0.0450 0.0176 0.0438 0.00266
## 6 1926-11-30     2.62 -0.04 -0.02  0.28 0.0307 0.0450 0.0176 0.0438 0.00266
## # … with 3 more variables: TLT <dbl>, IYR <dbl>, GLD <dbl>

Based on the CAPM model, compute the Monthly MVP returns Based on the Estimated Covariance Matrix for the 8-Asset Portfolio by using the past 60-month returns from 2015/01 - 2021/03.

final.data2 <- final.data.tibble[final.data.tibble$date>="2015-01-01"&final.data.tibble$date<="2021-03-01",]
head(final.data2)
## # A tibble: 6 x 13
##   date       `Mkt-RF`   SMB   HML    RF    SPY    QQQ    EEM    IWM     EFA
##   <date>        <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>
## 1 2015-01-31     6.14  0.52 -1.81     0 0.0307 0.0450 0.0176 0.0438 0.00266
## 2 2015-02-28    -1.12  3.02 -0.41     0 0.0307 0.0450 0.0176 0.0438 0.00266
## 3 2015-03-31     0.59 -3.04  1.88     0 0.0307 0.0450 0.0176 0.0438 0.00266
## 4 2015-04-30     1.36  0.89 -1.1      0 0.0307 0.0450 0.0176 0.0438 0.00266
## 5 2015-05-31    -1.53  2.85 -0.74     0 0.0307 0.0450 0.0176 0.0438 0.00266
## 6 2015-06-30     1.54 -4.09 -4.21     0 0.0307 0.0450 0.0176 0.0438 0.00266
## # … with 3 more variables: TLT <dbl>, IYR <dbl>, GLD <dbl>