library("htmltools")
## Warning: package 'htmltools' was built under R version 3.6.1
library("webshot")
## Warning: package 'webshot' was built under R version 3.6.1
#webshot::install_phantomjs()
export_formattable <- function(f, file, width = "100%", height = NULL,
background = "white", delay = 0.2)
{
w <- as.htmlwidget(f, width = width, height = height)
path <- html_print(w, background = background, viewer = NULL)
url <- paste0("file:///", gsub("\\\\", "/", normalizePath(path)))
webshot(url,
file = file,
selector = ".formattable_widget",
delay = delay)
}
If all columns are included:
All should = TRUE
c(colnames(vtr_dump)) %in% c(fields$`VTR/Permit`)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE
## [13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [37] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [49] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
## [61] TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
should = 70 or length(fields$VTR/Permit)
length(intersect(c(colnames(vtr_dump)),c(fields$`VTR/Permit`)))
## [1] 65
columns that were included in requested fields, but not included in data dump:
setdiff(c(fields$`VTR/Permit`),c(colnames(vtr_dump)))
## [1] "STATE_CODE" "GEN_CAT_SCALLOP" "HMS_SQUID" "QUAHOG"
## [5] "SEA_SCALLOP" NA
columns that are included in data dump but different than or not in requested fields:
setdiff(c(colnames(vtr_dump)),c(fields$`VTR/Permit`))
## [1] "PORT_STATE" "TRIPTYPE" "HMS" "OCEAN_QUAHOG"
## [5] "SCALLOP_GENCAT" "SCALLOP_LA"
vtr_dump %>%
group_by(STATE,PORT_STATE) %>%
summarise(RECORDS=n()) %>%
arrange(STATE) %>%
formattable::formattable(align="l") %>%
as.htmlwidget(width = "60%")
garfostates<-tibble(STATE=c("ME","NH","MA","RI","CT","NY","NJ","DE","VA","MD","NC"))
vtr_dump %>%
filter(STATE %in% garfostates$STATE) %>%
group_by(STATE) %>%
summarise(RECORDS = n()) %>%
formattable::formattable(align="l") %>%
as.htmlwidget(width = "50%")
c(colnames(vtr_dump)) %in% c(colnames(vtr1415))
## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE
## [13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [37] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [49] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
## [61] TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
columns that were included in requested fields, but not included in data dump:
setdiff(c(colnames(vtr1415)),c(colnames(vtr_dump)))
## [1] "STATE_CODE" "GEN_CAT_SCALLOP" "HMS_SQUID" "QUAHOG"
## [5] "SEA_SCALLOP"
columns that are included in data dump but different than or not in requested fields:
setdiff(c(colnames(vtr_dump)),c(colnames(vtr1415)))
## [1] "PORT_STATE" "TRIPTYPE" "HMS" "OCEAN_QUAHOG"
## [5] "SCALLOP_GENCAT" "SCALLOP_LA"
note: annoying differences in the way the date is formatted now vs previously now: 21-MAY-2014 then: 5/21/2014
Output is difference between number records in new vs old data (2014 and 2015 respectively)
dump1415<-vtr_dump %>%
filter(VTR_YEAR <= 2015)
new<-dump1415 %>%
group_by(VTR_YEAR, STATE) %>%
summarise(NEW=n())
original<-vtr1415 %>%
rename("PORT_STATE" = "STATE_CODE") %>%
group_by(VTR_YEAR,STATE) %>%
summarise(ORIGINAL=n())
new14<-dump1415 %>%
filter(VTR_YEAR == "2014")
new15<-dump1415 %>%
filter(VTR_YEAR == "2015")
old14<-vtr1415 %>%
filter(VTR_YEAR == "2014")
old15<-vtr1415 %>%
filter(VTR_YEAR == "2015")
length(new14$PERMIT) - length(old14$PERMIT)
## [1] 1164
length(new15$PERMIT) - length(old15$PERMIT)
## [1] 2938
vtr_years<-original %>%
left_join(new, by = c("VTR_YEAR","STATE")) %>%
mutate(DIFF = NEW - ORIGINAL) %>%
arrange(STATE,VTR_YEAR) %>%
formattable::formattable(align="l") %>%
as.htmlwidget(width = "100%")
vtr_years
#export_formattable(vtr_years,"VTR_year_state_comparison.jpg")
new_trips<-dump1415 %>%
distinct(VTR_YEAR, STATE, PERMIT, TRIP_ID, SUB_TRIP_ID) %>%
group_by(VTR_YEAR, STATE) %>%
summarise(NEW_TRIPS=n())
original_trips<-vtr1415 %>%
rename("PORT_STATE" = "STATE_CODE") %>%
distinct(VTR_YEAR, STATE, PERMIT, TRIP_ID, SUB_TRIP_ID) %>%
group_by(VTR_YEAR,STATE) %>%
summarise(ORIGINAL_TRIPS=n())
original_trips %>%
left_join(new_trips, by = c("VTR_YEAR","STATE")) %>%
mutate(DIFF = NEW_TRIPS - ORIGINAL_TRIPS) %>%
arrange(STATE,VTR_YEAR) %>%
formattable::formattable(align="l") %>%
as.htmlwidget(width = "80%")
If there are, tables will have > 0 rows
dump1415 %>%
filter(is.na(KEPT) & is.na(DISCARDED)) %>%
count()
## # A tibble: 1 x 1
## n
## <int>
## 1 0
vtr1415 %>%
filter(is.na(KEPT) & is.na(DISCARDED)) %>%
count()
## # A tibble: 1 x 1
## n
## <int>
## 1 0
dump1415 %>%
filter(is.na(TRIP_ID)) %>%
count()
## # A tibble: 1 x 1
## n
## <int>
## 1 0
vtr1415 %>%
filter(is.na(TRIP_ID)) %>%
count()
## # A tibble: 1 x 1
## n
## <int>
## 1 0