Package

library(rgdal)
## Loading required package: sp
## rgdal: version: 1.5-16, (SVN revision 1050)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.0.4, released 2020/01/28
## Path to GDAL shared files: C:/Users/Ny  07/Documents/R/win-library/4.0/rgdal/gdal
## GDAL binary built with GEOS: TRUE 
## Loaded PROJ runtime: Rel. 6.3.1, February 10th, 2020, [PJ_VERSION: 631]
## Path to PROJ shared files: C:/Users/Ny  07/Documents/R/win-library/4.0/rgdal/proj
## Linking to sp version:1.4-2
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading rgdal.
library(raster)
library(spdep)
## Loading required package: spData
## To access larger datasets in this package, install the spDataLarge
## package with: `install.packages('spDataLarge',
## repos='https://nowosad.github.io/drat/', type='source')`
## Loading required package: sf
## Warning: package 'sf' was built under R version 4.0.5
## Linking to GEOS 3.9.0, GDAL 3.2.1, PROJ 7.2.1
library(spatialreg)
## Loading required package: Matrix
## Registered S3 methods overwritten by 'spatialreg':
##   method                   from 
##   residuals.stsls          spdep
##   deviance.stsls           spdep
##   coef.stsls               spdep
##   print.stsls              spdep
##   summary.stsls            spdep
##   print.summary.stsls      spdep
##   residuals.gmsar          spdep
##   deviance.gmsar           spdep
##   coef.gmsar               spdep
##   fitted.gmsar             spdep
##   print.gmsar              spdep
##   summary.gmsar            spdep
##   print.summary.gmsar      spdep
##   print.lagmess            spdep
##   summary.lagmess          spdep
##   print.summary.lagmess    spdep
##   residuals.lagmess        spdep
##   deviance.lagmess         spdep
##   coef.lagmess             spdep
##   fitted.lagmess           spdep
##   logLik.lagmess           spdep
##   fitted.SFResult          spdep
##   print.SFResult           spdep
##   fitted.ME_res            spdep
##   print.ME_res             spdep
##   print.lagImpact          spdep
##   plot.lagImpact           spdep
##   summary.lagImpact        spdep
##   HPDinterval.lagImpact    spdep
##   print.summary.lagImpact  spdep
##   print.sarlm              spdep
##   summary.sarlm            spdep
##   residuals.sarlm          spdep
##   deviance.sarlm           spdep
##   coef.sarlm               spdep
##   vcov.sarlm               spdep
##   fitted.sarlm             spdep
##   logLik.sarlm             spdep
##   anova.sarlm              spdep
##   predict.sarlm            spdep
##   print.summary.sarlm      spdep
##   print.sarlm.pred         spdep
##   as.data.frame.sarlm.pred spdep
##   residuals.spautolm       spdep
##   deviance.spautolm        spdep
##   coef.spautolm            spdep
##   fitted.spautolm          spdep
##   print.spautolm           spdep
##   summary.spautolm         spdep
##   logLik.spautolm          spdep
##   print.summary.spautolm   spdep
##   print.WXImpact           spdep
##   summary.WXImpact         spdep
##   print.summary.WXImpact   spdep
##   predict.SLX              spdep
## 
## Attaching package: 'spatialreg'
## The following objects are masked from 'package:spdep':
## 
##     anova.sarlm, as.spam.listw, as_dgRMatrix_listw, as_dsCMatrix_I,
##     as_dsCMatrix_IrW, as_dsTMatrix_listw, bptest.sarlm, can.be.simmed,
##     cheb_setup, coef.gmsar, coef.sarlm, coef.spautolm, coef.stsls,
##     create_WX, deviance.gmsar, deviance.sarlm, deviance.spautolm,
##     deviance.stsls, do_ldet, eigen_pre_setup, eigen_setup, eigenw,
##     errorsarlm, fitted.gmsar, fitted.ME_res, fitted.sarlm,
##     fitted.SFResult, fitted.spautolm, get.ClusterOption,
##     get.coresOption, get.mcOption, get.VerboseOption,
##     get.ZeroPolicyOption, GMargminImage, GMerrorsar, griffith_sone,
##     gstsls, Hausman.test, HPDinterval.lagImpact, impacts, intImpacts,
##     Jacobian_W, jacobianSetup, l_max, lagmess, lagsarlm, lextrB,
##     lextrS, lextrW, lmSLX, logLik.sarlm, logLik.spautolm, LR.sarlm,
##     LR1.sarlm, LR1.spautolm, LU_prepermutate_setup, LU_setup,
##     Matrix_J_setup, Matrix_setup, mcdet_setup, MCMCsamp, ME, mom_calc,
##     mom_calc_int2, moments_setup, powerWeights, predict.sarlm,
##     predict.SLX, print.gmsar, print.ME_res, print.sarlm,
##     print.sarlm.pred, print.SFResult, print.spautolm, print.stsls,
##     print.summary.gmsar, print.summary.sarlm, print.summary.spautolm,
##     print.summary.stsls, residuals.gmsar, residuals.sarlm,
##     residuals.spautolm, residuals.stsls, sacsarlm, SE_classic_setup,
##     SE_interp_setup, SE_whichMin_setup, set.ClusterOption,
##     set.coresOption, set.mcOption, set.VerboseOption,
##     set.ZeroPolicyOption, similar.listw, spam_setup, spam_update_setup,
##     SpatialFiltering, spautolm, spBreg_err, spBreg_lag, spBreg_sac,
##     stsls, subgraph_eigenw, summary.gmsar, summary.sarlm,
##     summary.spautolm, summary.stsls, trW, vcov.sarlm, Wald1.sarlm
library(readxl)
library(sp)
library(tmap)
## Warning: package 'tmap' was built under R version 4.0.5
library(tmaptools)
## Warning: package 'tmaptools' was built under R version 4.0.5
mc<-read_excel("E:\\data baru pro.xlsx",col_names =T, sheet="JK_T") 
dataX <- readOGR(dsn="D:/SumbagselPeta", layer="sumbagsel")
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\SumbagselPeta", layer: "sumbagsel"
## with 49 features
## It has 10 fields
## Integer64 fields read as strings:  TIPADM
## Warning in readOGR(dsn = "D:/SumbagselPeta", layer = "sumbagsel"): Z-dimension
## discarded

membuat jarak menggunakan >>> jarak Euclidean

jarak_EUC <- dist(coordinates(dataX), method="euclidean")

membuat peta untuk peubah respon Y

k=16
colfunc <-colorRampPalette(c("green","yellow","red"))
color<-colfunc(k)
library(sp)
dataX$WADMKK<-mc$KAB
plot(dataX)
text(dataX,"WADMKK",cex=0.45, col="steelblue")

##Untuk Tahun 2015
dataX$pad2<-mc$`2015`
spplot(dataX, "pad2",col.regions=color)

##Untuk Tahun 2016
dataX$pad2<-mc$`2016`
spplot(dataX, "pad2",col.regions=color)

##Untuk Tahun 2017
dataX$pad2<-mc$`2017`
spplot(dataX, "pad2",col.regions=color)

##Untuk Tahun 2018
dataX$pad2<-mc$`2018`
spplot(dataX, "pad2",col.regions=color)

##Untuk Tahun 2019
dataX$pad2<-mc$`2019`
spplot(dataX, "pad2",col.regions=color)

membuat matriks bobot

w<- as.matrix(1/jarak_EUC)

MORAN InDEX

Untuk Tahun 2015

ww<-mat2listw(w)
moran(mc$`2015`,ww,n=length(ww$neighbours),S0=Szero(ww))
## $I
## [1] 0.06635045
## 
## $K
## [1] 5.854993
moran.test(mc$`2015`, ww, randomisation=T, alternative="two.sided")
## 
##  Moran I test under randomisation
## 
## data:  mc$`2015`  
## weights: ww    
## 
## Moran I statistic standard deviate = 3.5867, p-value = 0.0003349
## alternative hypothesis: two.sided
## sample estimates:
## Moran I statistic       Expectation          Variance 
##      0.0663504504     -0.0208333333      0.0005908588
a<-moran.plot(mc$`2015`, ww, labels=F,main="Moran Scatterplot JTK 2015",pch=19)
text(a,mc$KAB,cex=0.65, col="red")

Untuk Tahun 2016

moran(mc$`2016`,ww,n=length(ww$neighbours),S0=Szero(ww))
## $I
## [1] 0.07149682
## 
## $K
## [1] 5.823776
moran.test(mc$`2016`, ww, randomisation=T, alternative="two.sided")
## 
##  Moran I test under randomisation
## 
## data:  mc$`2016`  
## weights: ww    
## 
## Moran I statistic standard deviate = 3.7972, p-value = 0.0001464
## alternative hypothesis: two.sided
## sample estimates:
## Moran I statistic       Expectation          Variance 
##      0.0714968187     -0.0208333333      0.0005912487
a<-moran.plot(mc$`2016`, ww, labels=F,main="Moran Scatterplot JTK 2016",pch=19)
text(a,mc$KAB,cex=0.63, col="red")

Untuk Tahun 2017

moran(mc$`2017`,ww,n=length(ww$neighbours),S0=Szero(ww))
## $I
## [1] 0.0738392
## 
## $K
## [1] 5.540035
moran.test(mc$`2017`, ww, randomisation=T, alternative="two.sided")
## 
##  Moran I test under randomisation
## 
## data:  mc$`2017`  
## weights: ww    
## 
## Moran I statistic standard deviate = 3.8819, p-value = 0.0001037
## alternative hypothesis: two.sided
## sample estimates:
## Moran I statistic       Expectation          Variance 
##      0.0738391960     -0.0208333333      0.0005947924
a<-moran.plot(mc$`2017`, ww, labels=F,main="Moran Scatterplot JTK 2017",pch=19)
text(a,mc$KAB,cex=0.63, col="red")

Untuk Tahun 2018

moran(mc$`2018`,ww,n=length(ww$neighbours),S0=Szero(ww))
## $I
## [1] 0.07689343
## 
## $K
## [1] 5.253535
moran.test(mc$`2018`, ww, randomisation=T, alternative="two.sided")
## 
##  Moran I test under randomisation
## 
## data:  mc$`2018`  
## weights: ww    
## 
## Moran I statistic standard deviate = 3.9951, p-value = 6.467e-05
## alternative hypothesis: two.sided
## sample estimates:
## Moran I statistic       Expectation          Variance 
##      0.0768934278     -0.0208333333      0.0005983706
a<-moran.plot(mc$`2018`, ww, labels=F ,main="Moran Scatterplot JTK 2018",pch=19)
text(a,mc$KAB,cex=0.63, col="red")

Untuk Tahun 2019

moran(mc$`2019`,ww,n=length(ww$neighbours),S0=Szero(ww))
## $I
## [1] 0.07807268
## 
## $K
## [1] 5.451896
moran.test(mc$`2019`, ww, randomisation=T, alternative="two.sided")
## 
##  Moran I test under randomisation
## 
## data:  mc$`2019`  
## weights: ww    
## 
## Moran I statistic standard deviate = 4.0517, p-value = 5.084e-05
## alternative hypothesis: two.sided
## sample estimates:
## Moran I statistic       Expectation          Variance 
##      0.0780726775     -0.0208333333      0.0005958932
a<-moran.plot(mc$`2019`, ww, labels=F ,main="Moran Scatterplot JTK 2019",pch=19)
text(a,mc$KAB,cex=0.65, col="red")

LISA

untuk tahun 2015

localmoran(mc$`2015`, ww)
##              Ii       E.Ii    Var.Ii        Z.Ii    Pr(z > 0)
## 0   -0.44546598 -0.8110239 12.719912  0.10249770 4.591808e-01
## 1   -1.51640255 -0.8047693 13.329646 -0.19491574 5.772705e-01
## 2    6.99542293 -0.5653731  6.229656  3.02925251 1.225798e-03
## 3   -3.89447652 -0.5451819  6.837512 -1.28086782 8.998800e-01
## 4    3.92516921 -0.8542038 43.114408  0.72787987 2.333436e-01
## 5   -0.60499452 -0.7371863 12.170525  0.03789221 4.848868e-01
## 6   13.84176765 -0.8178755 25.241455  2.91787181 1.762146e-03
## 7    1.59859629 -0.7291991 35.680852  0.38969712 3.483803e-01
## 8    2.44736926 -0.7111448 10.893112  0.95698873 1.692865e-01
## 9    4.29962767 -0.8042002 31.511486  0.90920450 1.816211e-01
## 10  -0.48582090 -0.6621015  9.377471  0.05756541 4.770474e-01
## 11   0.82375447 -0.8228265 15.847249  0.41362442 3.395746e-01
## 12   4.02545229 -0.5979187  4.972002  2.07344779 1.906531e-02
## 13   0.77352485 -0.4958173 15.541840  0.32197895 3.737343e-01
## 14   1.67384201 -0.5220053  7.573475  0.79791113 2.124610e-01
## 15   5.14024439 -0.7475720 20.086791  1.31370839 9.447218e-02
## 16   1.15599607 -0.3276701  8.719468  0.50244810 3.076762e-01
## 17   4.56365623 -0.8288482 18.477801  1.25448470 1.048329e-01
## 18 -19.41741903 -0.8479986 35.402916 -3.12089265 9.990985e-01
## 19   1.65010747 -0.3735221  2.846070  1.19952207 1.151625e-01
## 20   8.25454494 -0.8064937 45.817494  1.33863543 9.034469e-02
## 21   4.03353669 -0.8411229 24.710077  0.98063466 1.633865e-01
## 22   1.33531858 -0.3511512  8.868348  0.56631388 2.855902e-01
## 23   1.25266643 -0.5187336 18.235929  0.41481332 3.391393e-01
## 24   2.71599338 -0.7512846 22.007132  0.73910635 2.299212e-01
## 25  -4.12632212 -0.7931277 15.832161 -0.83770394 7.989015e-01
## 26   0.28376524 -0.5375654  3.900416  0.41587478 3.387508e-01
## 27  -0.57790928 -0.4643666  6.784100 -0.04359264 5.173854e-01
## 28   0.01355357 -0.7636514 10.969112  0.23466583 4.072341e-01
## 29   3.95330657 -0.8205539 21.020078  1.04124412 1.488811e-01
## 30  -0.64529281 -0.8718293 59.800648  0.02929444 4.883149e-01
## 31  -0.97244459 -0.8544991 39.473028 -0.01877289 5.074889e-01
## 32  17.44159914 -0.8720046 59.457662  2.37503438 8.773658e-03
## 33   2.65924341 -0.7929540 11.605304  1.01336841 1.554421e-01
## 34   1.10083768 -0.7352655 11.721011  0.53630836 2.958727e-01
## 35   3.58282836 -0.6550171  9.476894  1.37661380 8.431584e-02
## 36   8.60201024 -0.8779357 46.308867  1.39307271 8.179890e-02
## 37   4.75042183 -0.7352874 16.146093  1.36520875 8.609372e-02
## 38  -0.08919091 -0.6909903 12.857392  0.16783220 4.333576e-01
## 39   0.21828101 -0.4900322  9.180074  0.23377726 4.075790e-01
## 40   1.14118409 -0.5177346 14.867297  0.43023833 3.335111e-01
## 41   2.28726741 -0.5691754  7.868146  1.01833187 1.542601e-01
## 42  -3.34971809 -0.7859468 15.846440 -0.64404087 7.402255e-01
## 43  17.40078366 -0.6902395 25.148207  3.60752720 1.545646e-04
## 44  -5.05906172 -0.6878060 10.820960 -1.32884195 9.080499e-01
## 45  18.55260793 -0.6864301 18.727748  4.44570433 4.380218e-06
## 46  -0.57435351 -0.8212124 17.841731  0.05844270 4.766980e-01
## 47  -2.05150621 -0.7276531 11.860357 -0.38440666 6.496615e-01
## 48  -0.22672831 -0.7378928 18.037535  0.12035720 4.521001e-01
## attr(,"call")
## localmoran(x = mc$`2015`, listw = ww)
## attr(,"class")
## [1] "localmoran" "matrix"     "array"

untuk tahun 2016

localmoran(mc$`2016`, ww)
##               Ii       E.Ii    Var.Ii        Z.Ii    Pr(z > 0)
## 0   -0.356712902 -0.8110239 12.706434  0.12745045 4.492919e-01
## 1   -1.306153350 -0.8047693 13.316973 -0.13739400 5.546403e-01
## 2    6.934080281 -0.5653731  6.223143  3.00624746 1.322468e-03
## 3   -3.864892673 -0.5451819  6.832229 -1.27004481 8.979657e-01
## 4    3.975601438 -0.8542038 43.120942  0.73550478 2.310161e-01
## 5   -0.447624972 -0.7371863 12.160621  0.08303529 4.669117e-01
## 6   14.188053462 -0.8178755 25.236864  2.98706858 1.408333e-03
## 7    1.756184402 -0.7291991 35.688770  0.41603285 3.386930e-01
## 8    2.518710874 -0.7111448 10.883575  0.97903300 1.637818e-01
## 9    4.337341075 -0.8042002 31.512312  0.91591083 1.798568e-01
## 10  -0.448246407 -0.6621015  9.369155  0.06986656 4.721499e-01
## 11   0.702239453 -0.8228265 15.835417  0.38324270 3.507699e-01
## 12   4.213344255 -0.5979187  4.963239  2.15961590 1.540121e-02
## 13   0.730549488 -0.4958173 15.544793  0.31104834 3.778819e-01
## 14   2.190524105 -0.5220053  7.569599  0.98591169 1.620882e-01
## 15   5.040859166 -0.7475720 20.082214  1.29168043 9.823392e-02
## 16   1.150997559 -0.3276701  8.722188  0.50067723 3.082992e-01
## 17   4.081237174 -0.8288482 18.467571  1.14257351 1.266079e-01
## 18 -19.700871082 -0.8479986 35.404105 -3.16847817 9.992338e-01
## 19   1.728215467 -0.3735221  2.843321  1.24642329 1.063045e-01
## 20   8.400334125 -0.8064937 45.828787  1.36000604 8.691401e-02
## 21   4.064457279 -0.8411229 24.703750  0.98698131 1.618259e-01
## 22   1.347031683 -0.3511512  8.870624  0.57017396 2.842799e-01
## 23   1.242760566 -0.5187336 18.240068  0.41244683 3.400060e-01
## 24   2.159018248 -0.7512846 22.003783  0.62042530 2.674889e-01
## 25  -3.768762378 -0.7931277 15.821988 -0.74808179 7.727946e-01
## 26   0.242708380 -0.5375654  3.893245  0.39544964 3.462555e-01
## 27  -0.588065953 -0.4643666  6.781619 -0.04750080 5.189430e-01
## 28  -0.004168323 -0.7636514 10.956935  0.22944235 4.092626e-01
## 29   4.224111355 -0.8205539 21.012208  1.10051638 1.355536e-01
## 30   0.549775951 -0.8718293 59.818482  0.18380669 4.270826e-01
## 31  -1.538728572 -0.8544991 39.476847 -0.10890067 5.433594e-01
## 32  18.851239786 -0.8720046 59.475231  2.55746848 5.271856e-03
## 33   2.730419339 -0.7929540 11.592011  1.03485447 1.503684e-01
## 34   1.589710566 -0.7352655 11.710872  0.67939740 2.484430e-01
## 35   3.941108130 -0.6550171  9.468977  1.49362074 6.763739e-02
## 36   8.687644045 -0.8779357 46.316335  1.40554322 7.992990e-02
## 37   4.861913002 -0.7352874 16.139231  1.39325126 8.177191e-02
## 38   0.348803298 -0.6909903 12.850294  0.29006184 3.858845e-01
## 39   0.180964013 -0.4900322  9.178514  0.22147968 4.123595e-01
## 40   1.204086403 -0.5177346 14.868978  0.44652672 3.276084e-01
## 41   2.299085990 -0.5691754  7.862696  1.02289957 1.531777e-01
## 42  -3.158540259 -0.7859468 15.836673 -0.59619916 7.244789e-01
## 43  19.611255048 -0.6902395 25.150249  4.04815255 2.581175e-05
## 44  -4.847732200 -0.6878060 10.812505 -1.26509302 8.970810e-01
## 45  19.008745451 -0.6864301 18.725216  4.55141499 2.664316e-06
## 46  -0.487665360 -0.8212124 17.831468  0.07898843 4.685209e-01
## 47  -2.112274395 -0.7276531 11.850709 -0.40221552 6.562373e-01
## 48   0.406811902 -0.7378928 18.031941  0.26957042 3.937454e-01
## attr(,"call")
## localmoran(x = mc$`2016`, listw = ww)
## attr(,"class")
## [1] "localmoran" "matrix"     "array"

untuk tahun 2017

localmoran(mc$`2017`, ww)
##               Ii       E.Ii    Var.Ii        Z.Ii    Pr(z > 0)
## 0   -0.418479637 -0.8110239 12.583938  0.11065736 4.559440e-01
## 1   -1.649623981 -0.8047693 13.201779 -0.23252293 5.919341e-01
## 2    6.604551425 -0.5653731  6.163939  2.88792176 1.938982e-03
## 3   -4.049383959 -0.5451819  6.784213 -1.34536279 9.107459e-01
## 4    4.248982102 -0.8542038 43.180324  0.77660189 2.186968e-01
## 5   -0.412800730 -0.7371863 12.070598  0.09336781 4.628057e-01
## 6   14.657961396 -0.8178755 25.195137  3.08315799 1.024082e-03
## 7    2.101526993 -0.7291991 35.760737  0.47336334 3.179770e-01
## 8    2.658410004 -0.7111448 10.796887  1.02547069 1.525706e-01
## 9    4.002143431 -0.8042002 31.519817  0.85609699 1.959721e-01
## 10  -0.467214321 -0.6621015  9.293574  0.06392811 4.745137e-01
## 11   0.675399198 -0.8228265 15.727873  0.37778287 3.527960e-01
## 12   4.274189868 -0.5979187  4.883588  2.20468968 1.373794e-02
## 13   0.753642910 -0.4958173 15.571640  0.31663232 3.757613e-01
## 14   2.370291754 -0.5220053  7.534364  1.05370633 1.460087e-01
## 15   5.194898070 -0.7475720 20.040608  1.32742977 9.218328e-02
## 16   1.130974578 -0.3276701  8.746918  0.49319876 3.109361e-01
## 17   4.068845848 -0.8288482 18.374591  1.14256999 1.266086e-01
## 18 -19.833928551 -0.8479986 35.414912 -3.19035339 9.992895e-01
## 19   1.769537893 -0.3735221  2.818334  1.27655071 1.008805e-01
## 20   8.566173916 -0.8064937 45.931439  1.38295544 8.333926e-02
## 21   4.128372938 -0.8411229 24.646242  1.00100667 1.584118e-01
## 22   1.329529429 -0.3511512  8.891313  0.56364059 2.864994e-01
## 23   1.274536004 -0.5187336 18.277696  0.41945449 3.374420e-01
## 24   2.414816007 -0.7512846 21.973345  0.67542420 2.497031e-01
## 25  -3.827154084 -0.7931277 15.729529 -0.76500011 7.778643e-01
## 26   0.225778123 -0.5375654  3.828064  0.39014895 3.482132e-01
## 27  -0.527309624 -0.4643666  6.759059 -0.02421055 5.096577e-01
## 28   0.008246624 -0.7636514 10.846255  0.23437973 4.073451e-01
## 29   4.388175878 -0.8205539 20.940672  1.13824702 1.275087e-01
## 30   1.213281273 -0.8718293 59.980578  0.26923019 3.938763e-01
## 31  -1.577930043 -0.8544991 39.511553 -0.11508932 5.458128e-01
## 32  20.179682257 -0.8720046 59.634920  2.72606734 3.204696e-03
## 33   2.553735204 -0.7929540 11.471181  0.98812370 1.615460e-01
## 34   1.580543828 -0.7352655 11.618718  0.67939713 2.484431e-01
## 35   3.909576292 -0.6550171  9.397017  1.48904249 6.823809e-02
## 36   8.868166277 -0.8779357 46.384217  1.43102045 7.621218e-02
## 37   5.000124562 -0.7352874 16.076859  1.43042149 7.629804e-02
## 38   0.569448049 -0.6909903 12.785772  0.35249919 3.622320e-01
## 39   0.168240255 -0.4900322  9.164334  0.21744790 4.139297e-01
## 40   1.247971299 -0.5177346 14.884254  0.45767253 3.235939e-01
## 41   2.228573242 -0.5691754  7.813158  1.00091085 1.584350e-01
## 42  -3.338784558 -0.7859468 15.747898 -0.64329759 7.399845e-01
## 43  20.801315676 -0.6902395 25.168803  4.28387274 9.183400e-06
## 44  -4.958461148 -0.6878060 10.735663 -1.30340708 9.037821e-01
## 45  19.308755856 -0.6864301 18.702204  4.62358714 1.885801e-06
## 46  -0.345599462 -0.8212124 17.738192  0.11292730 4.550441e-01
## 47  -2.044884413 -0.7276531 11.763017 -0.38406317 6.495342e-01
## 48  -0.326484439 -0.7378928 17.981088  0.09702087 4.613549e-01
## attr(,"call")
## localmoran(x = mc$`2017`, listw = ww)
## attr(,"class")
## [1] "localmoran" "matrix"     "array"

untuk tahun 2018

localmoran(mc$`2018`, ww)
##              Ii       E.Ii    Var.Ii        Z.Ii    Pr(z > 0)
## 0   -0.48874539 -0.8110239 12.460251  0.09129940 4.636273e-01
## 1   -1.84823880 -0.8047693 13.085465 -0.28845972 6.135026e-01
## 2    5.98322838 -0.5653731  6.104159  2.65054772 4.018069e-03
## 3   -4.49375885 -0.5451819  6.735730 -1.52141704 9.359224e-01
## 4    4.45758107 -0.8542038 43.240283  0.80778580 2.096070e-01
## 5   -0.53687944 -0.7371863 11.979701  0.05787259 4.769251e-01
## 6   16.17829914 -0.8178755 25.153005  3.38888044 3.508930e-04
## 7    1.92459601 -0.7291991 35.833404  0.44332617 3.287649e-01
## 8    2.81347966 -0.7111448 10.709356  1.07703836 1.407316e-01
## 9    4.23385491 -0.8042002 31.527395  0.89726115 1.847898e-01
## 10  -0.61373169 -0.6621015  9.217258  0.01593211 4.936443e-01
## 11   0.98118376 -0.8228265 15.619284  0.45646602 3.240275e-01
## 12   3.95990313 -0.5979187  4.803162  2.07966660 1.877806e-02
## 13   0.82067144 -0.4958173 15.598748  0.33332837 3.694432e-01
## 14   1.83670298 -0.5220053  7.498787  0.86134815 1.945232e-01
## 15   5.62731463 -0.7475720 19.998598  1.42551794 7.700377e-02
## 16   1.08197977 -0.3276701  8.771888  0.47595370 3.170537e-01
## 17   4.91633351 -0.8288482 18.280706  1.34371537 8.952022e-02
## 18 -19.92748375 -0.8479986 35.425823 -3.20558041 9.993260e-01
## 19   1.76956212 -0.3735221  2.793105  1.28231760 9.986563e-02
## 20   8.61946273 -0.8064937 46.035089  1.38925169 8.237811e-02
## 21   4.25189909 -0.8411229 24.588175  1.02709922 1.521869e-01
## 22   1.26778101 -0.3511512  8.912202  0.54229570 2.938074e-01
## 23   1.32251441 -0.5187336 18.315690  0.43022995 3.335142e-01
## 24   3.78353588 -0.7512846 21.942612  0.96809045 1.664996e-01
## 25  -4.38643745 -0.7931277 15.636171 -0.90871867 8.182507e-01
## 26   0.10358424 -0.5375654  3.762250  0.33054882 3.704927e-01
## 27  -0.40045625 -0.4643666  6.736281  0.02462413 4.901774e-01
## 28   0.07431229 -0.7636514 10.734500  0.25576100 3.990677e-01
## 29   4.55846646 -0.8205539 20.868441  1.17749261 1.194995e-01
## 30   1.29935528 -0.8718293 60.144249  0.27996239 3.897532e-01
## 31  -0.76865367 -0.8544991 39.546598  0.01365094 4.945542e-01
## 32  22.08711651 -0.8720046 59.796163  2.96905746 1.493574e-03
## 33   2.37323601 -0.7929540 11.349177  0.93984187 1.736493e-01
## 34   0.71196276 -0.7352655 11.525668  0.42628887 3.349487e-01
## 35   2.91163975 -0.6550171  9.324358  1.16802423 1.213985e-01
## 36   9.10169426 -0.8779357 46.452758  1.46422794 7.156584e-02
## 37   5.17875427 -0.7352874 16.013880  1.47786954 6.972135e-02
## 38   0.54837686 -0.6909903 12.720623  0.34749277 3.641106e-01
## 39   0.19592642 -0.4900322  9.150017  0.22677072 4.103010e-01
## 40   1.24159486 -0.5177346 14.899678  0.45578365 3.242728e-01
## 41   2.40080447 -0.5691754  7.763138  1.06594511 1.432242e-01
## 42  -3.06987971 -0.7859468 15.658260 -0.57718043 7.180912e-01
## 43  21.21192245 -0.6902395 25.187538  4.36409429 6.382526e-06
## 44  -5.38212236 -0.6878060 10.658073 -1.43791431 9.247708e-01
## 45  20.23562277 -0.6864301 18.678969  4.84091932 6.461992e-07
## 46  -0.49873476 -0.8212124 17.644009  0.07677166 4.694026e-01
## 47  -1.66250888 -0.7276531 11.674473 -0.27360621 6.078064e-01
## 48  -0.29578196 -0.7378928 17.929741  0.10441050 4.584218e-01
## attr(,"call")
## localmoran(x = mc$`2018`, listw = ww)
## attr(,"class")
## [1] "localmoran" "matrix"     "array"

untuk tahun 2019

localmoran(mc$`2019`, ww)
##              Ii       E.Ii    Var.Ii        Z.Ii    Pr(z > 0)
## 0   -0.34072224 -0.8110239 12.545887  0.13277790 4.471845e-01
## 1   -1.77620080 -0.8047693 13.165996 -0.26772277 6.055436e-01
## 2    5.89983207 -0.5653731  6.145548  2.60796641 4.554095e-03
## 3   -4.19350560 -0.5451819  6.769297 -1.40223746 9.195778e-01
## 4    4.55038734 -0.8542038 43.198769  0.82229406 2.054548e-01
## 5   -0.54134425 -0.7371863 12.042635  0.05643458 4.774978e-01
## 6   16.36256719 -0.8178755 25.182176  3.42363712 3.089454e-04
## 7    1.49786232 -0.7291991 35.783092  0.37230020 3.548347e-01
## 8    2.90276247 -0.7111448 10.769959  1.10120959 1.354027e-01
## 9    4.13404355 -0.8042002 31.522148  0.87955827 1.895493e-01
## 10  -0.51541328 -0.6621015  9.270096  0.04817848 4.807870e-01
## 11   1.53449661 -0.8228265 15.694467  0.59503956 2.759085e-01
## 12   4.19569510 -0.5979187  4.858846  2.17468570 1.482684e-02
## 13   0.73246476 -0.4958173 15.579979  0.31118214 3.778311e-01
## 14   1.96805198 -0.5220053  7.523419  0.90782410 1.819856e-01
## 15   5.54651913 -0.7475720 20.027684  1.40642850 7.979846e-02
## 16   1.07974124 -0.3276701  8.754600  0.47566685 3.171559e-01
## 17   4.93261540 -0.8288482 18.345708  1.34513410 8.929097e-02
## 18 -19.27015568 -0.8479986 35.418269 -3.09547156 9.990175e-01
## 19   1.75135231 -0.3735221  2.810573  1.26746463 1.024946e-01
## 20   8.70465109 -0.8064937 45.963326  1.40290114 8.032316e-02
## 21   4.58554150 -0.8411229 24.628378  1.09349059 1.370892e-01
## 22   1.26032966 -0.3511512  8.897739  0.54023825 2.945164e-01
## 23   1.19912463 -0.5187336 18.289384  0.40168699 3.439572e-01
## 24   3.03542818 -0.7512846 21.963890  0.80799324 2.095472e-01
## 25  -4.34342012 -0.7931277 15.700808 -0.89598992 8.148709e-01
## 26   0.07200791 -0.5375654  3.807817  0.31238339 3.773746e-01
## 27  -0.50111898 -0.4643666  6.752052 -0.01414386 5.056424e-01
## 28   0.05850620 -0.7636514 10.811875  0.25003718 4.012793e-01
## 29   4.82620942 -0.8205539 20.918451  1.23462432 1.084852e-01
## 30   1.25654161 -0.8718293 60.030930  0.27470071 3.917731e-01
## 31  -0.51329806 -0.8544991 39.522334  0.05427365 4.783586e-01
## 32  21.99767571 -0.8720046 59.684525  2.96025568 1.536919e-03
## 33   2.34339733 -0.7929540 11.433648  0.92753927 1.768233e-01
## 34   0.80047020 -0.7352655 11.590092  0.45110024 3.259587e-01
## 35   2.57899387 -0.6550171  9.374665  1.05624248 1.454287e-01
## 36   9.18989950 -0.8779357 46.405303  1.47792466 6.971397e-02
## 37   5.33754874 -0.7352874 16.057484  1.51548911 6.482429e-02
## 38   0.47857367 -0.6909903 12.765730  0.32734156 3.717048e-01
## 39   0.14393424 -0.4900322  9.159930  0.20946921 4.170410e-01
## 40   1.11526486 -0.5177346 14.888999  0.42320745 3.360720e-01
## 41   2.40729677 -0.5691754  7.797770  1.06590039 1.432343e-01
## 42  -3.07933137 -0.7859468 15.720322 -0.57842383 7.185110e-01
## 43  20.77818619 -0.6902395 25.174567  4.27877249 9.396341e-06
## 44  -5.15479034 -0.6878060 10.711793 -1.36484504 9.138491e-01
## 45  20.53225079 -0.6864301 18.695056  4.90743994 4.613645e-07
## 46  -0.17686841 -0.8212124 17.709218  0.15311512 4.391537e-01
## 47  -1.70935517 -0.7276531 11.735777 -0.28656540 6.127774e-01
## 48  -0.05624429 -0.7378928 17.965292  0.16082122 4.361171e-01
## attr(,"call")
## localmoran(x = mc$`2019`, listw = ww)
## attr(,"class")
## [1] "localmoran" "matrix"     "array"

PLOT Local Moran

s<-localmoran(mc$`2019`, ww)
moran.map <- cbind(dataX, s)
tm_shape(moran.map) +
  tm_fill(col = "Ii",
          style = "quantile",
          title = "local moran statistic") 
## Warning in sp::proj4string(obj): CRS object has comment, which is lost in output
## Variable(s) "Ii" contains positive and negative values, so midpoint is set to 0. Set midpoint = NA to show the full spectrum of the color palette.

PLOT LISA

s<-localmoran(mc$`2019`, ww)
moran.map <- cbind(dataX, s)
quadrant <- vector(mode="numeric",length=nrow(s))
quadrant
##  [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39] 0 0 0 0 0 0 0 0 0 0 0
m.qualification <- mc$`2019` - mean(mc$`2019`)   

# centers the local Moran's around the mean
m.local <- s[,1] - mean(s[,1]) 
# significance threshold
signif <- 0.1
# builds a data quadrant
quadrant[m.qualification >0 & m.local>0] <- 4  
quadrant[m.qualification <0 & m.local<0] <- 1      
quadrant[m.qualification <0 & m.local>0] <- 2
quadrant[m.qualification >0 & m.local<0] <- 3
quadrant[s[,5]>signif] <- 0  

# plot in r
brks <- c(0,1,2,3,4)
colors <- c("white","blue",rgb(0,0,1,alpha=0.4),rgb(1,0,0,alpha=0.4),"red")
plot(dataX,border="lightgray",main="Local Moran's",col=colors[findInterval(quadrant,brks,all.inside=FALSE)])
box()
legend("bottomleft", legend = c("insignificant","low-low","low-high","high-low","high-high"),
       fill=colors,bty="n")
text(dataX,"WADMKK",cex=0.45, col="black")  

#LINK>>>https://rpubs.com/quarcs-lab/spatial-autocorrelation