heart <- read.csv("~/Downloads/heart.csv")

Chi Squared Tests

chisq.test(heart$sex, heart$target)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  heart$sex and heart$target
## X-squared = 22.717, df = 1, p-value = 1.877e-06
chisq.test(heart$age, heart$target)
## Warning in chisq.test(heart$age, heart$target): Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  heart$age and heart$target
## X-squared = 50.129, df = 40, p-value = 0.1309
chisq.test(heart$cp, heart$target)
## 
##  Pearson's Chi-squared test
## 
## data:  heart$cp and heart$target
## X-squared = 81.686, df = 3, p-value < 2.2e-16
chisq.test(heart$trestbps, heart$target)
## Warning in chisq.test(heart$trestbps, heart$target): Chi-squared approximation
## may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  heart$trestbps and heart$target
## X-squared = 47.706, df = 48, p-value = 0.4848
chisq.test(heart$chol, heart$target)
## Warning in chisq.test(heart$chol, heart$target): Chi-squared approximation may
## be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  heart$chol and heart$target
## X-squared = 173.1, df = 151, p-value = 0.1052
chisq.test(heart$fbs, heart$target)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  heart$fbs and heart$target
## X-squared = 0.10627, df = 1, p-value = 0.7444
chisq.test(heart$restecg, heart$target)
## Warning in chisq.test(heart$restecg, heart$target): Chi-squared approximation
## may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  heart$restecg and heart$target
## X-squared = 10.023, df = 2, p-value = 0.006661
chisq.test(heart$thalach, heart$target)
## Warning in chisq.test(heart$thalach, heart$target): Chi-squared approximation
## may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  heart$thalach and heart$target
## X-squared = 110.13, df = 90, p-value = 0.07348
chisq.test(heart$exang, heart$target)
## 
##  Pearson's Chi-squared test with Yates' continuity correction
## 
## data:  heart$exang and heart$target
## X-squared = 55.945, df = 1, p-value = 7.454e-14
chisq.test(heart$oldpeak, heart$target)
## Warning in chisq.test(heart$oldpeak, heart$target): Chi-squared approximation
## may be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  heart$oldpeak and heart$target
## X-squared = 89.433, df = 39, p-value = 7.803e-06
chisq.test(heart$slope, heart$target)
## 
##  Pearson's Chi-squared test
## 
## data:  heart$slope and heart$target
## X-squared = 47.507, df = 2, p-value = 4.831e-11
chisq.test(heart$ca, heart$target)
## Warning in chisq.test(heart$ca, heart$target): Chi-squared approximation may be
## incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  heart$ca and heart$target
## X-squared = 74.367, df = 4, p-value = 2.712e-15
chisq.test(heart$thal, heart$target)
## Warning in chisq.test(heart$thal, heart$target): Chi-squared approximation may
## be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  heart$thal and heart$target
## X-squared = 85.304, df = 3, p-value < 2.2e-16

Logistic Regression

fit1 <- glm(target ~ age + sex + cp + trestbps + chol + fbs + restecg + thalach + exang + oldpeak + slope + ca + thal, data=heart)
summary(fit1)
## 
## Call:
## glm(formula = target ~ age + sex + cp + trestbps + chol + fbs + 
##     restecg + thalach + exang + oldpeak + slope + ca + thal, 
##     data = heart)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.94748  -0.21270   0.06608   0.25022   0.93509  
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.8288987  0.2929344   2.830 0.004987 ** 
## age         -0.0008204  0.0026962  -0.304 0.761129    
## sex         -0.1959956  0.0471429  -4.157 4.24e-05 ***
## cp           0.1127034  0.0223816   5.036 8.40e-07 ***
## trestbps    -0.0019910  0.0012573  -1.583 0.114407    
## chol        -0.0003535  0.0004217  -0.838 0.402545    
## fbs          0.0173736  0.0596669   0.291 0.771125    
## restecg      0.0498480  0.0399228   1.249 0.212819    
## thalach      0.0030193  0.0011304   2.671 0.007988 ** 
## exang       -0.1440459  0.0513689  -2.804 0.005387 ** 
## oldpeak     -0.0587887  0.0229269  -2.564 0.010847 *  
## slope        0.0789788  0.0423896   1.863 0.063453 .  
## ca          -0.1006022  0.0218565  -4.603 6.25e-06 ***
## thal        -0.1190392  0.0356550  -3.339 0.000952 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.1254512)
## 
##     Null deviance: 75.149  on 302  degrees of freedom
## Residual deviance: 36.255  on 289  degrees of freedom
## AIC: 246.56
## 
## Number of Fisher Scoring iterations: 2
fit2 <- glm(target ~ sex + cp + trestbps + chol + fbs + restecg + thalach + exang + oldpeak + slope + ca + thal, data=heart)
summary(fit2)
## 
## Call:
## glm(formula = target ~ sex + cp + trestbps + chol + fbs + restecg + 
##     thalach + exang + oldpeak + slope + ca + thal, data = heart)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.94510  -0.20824   0.06552   0.25352   0.93099  
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.7826800  0.2500859   3.130 0.001929 ** 
## sex         -0.1945151  0.0468177  -4.155 4.29e-05 ***
## cp           0.1123606  0.0223183   5.034 8.43e-07 ***
## trestbps    -0.0020769  0.0012233  -1.698 0.090609 .  
## chol        -0.0003754  0.0004149  -0.905 0.366416    
## fbs          0.0162093  0.0594508   0.273 0.785315    
## restecg      0.0505379  0.0397960   1.270 0.205130    
## thalach      0.0031464  0.0010488   3.000 0.002934 ** 
## exang       -0.1428540  0.0511391  -2.793 0.005562 ** 
## oldpeak     -0.0590104  0.0228794  -2.579 0.010396 *  
## slope        0.0787046  0.0423136   1.860 0.063894 .  
## ca          -0.1018455  0.0214375  -4.751 3.19e-06 ***
## thal        -0.1192317  0.0355936  -3.350 0.000916 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.1250587)
## 
##     Null deviance: 75.149  on 302  degrees of freedom
## Residual deviance: 36.267  on 290  degrees of freedom
## AIC: 244.66
## 
## Number of Fisher Scoring iterations: 2
fit3 <- glm(target ~ age + cp + trestbps + chol + fbs + restecg + thalach + exang + oldpeak + slope + ca + thal, data=heart)
summary(fit3)
## 
## Call:
## glm(formula = target ~ age + cp + trestbps + chol + fbs + restecg + 
##     thalach + exang + oldpeak + slope + ca + thal, data = heart)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.02377  -0.22082   0.06495   0.24242   0.87612  
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.876e-01  2.951e-01   1.991  0.04737 *  
## age          3.364e-04  2.756e-03   0.122  0.90293    
## cp           1.100e-01  2.299e-02   4.784 2.74e-06 ***
## trestbps    -1.691e-03  1.290e-03  -1.311  0.19099    
## chol         2.799e-05  4.230e-04   0.066  0.94729    
## fbs          3.715e-03  6.123e-02   0.061  0.95166    
## restecg      6.550e-02  4.085e-02   1.604  0.10986    
## thalach      3.066e-03  1.162e-03   2.639  0.00875 ** 
## exang       -1.656e-01  5.252e-02  -3.153  0.00178 ** 
## oldpeak     -6.443e-02  2.352e-02  -2.739  0.00654 ** 
## slope        7.101e-02  4.352e-02   1.632  0.10383    
## ca          -1.100e-01  2.234e-02  -4.926 1.42e-06 ***
## thal        -1.487e-01  3.590e-02  -4.142 4.52e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.1324958)
## 
##     Null deviance: 75.149  on 302  degrees of freedom
## Residual deviance: 38.424  on 290  degrees of freedom
## AIC: 262.16
## 
## Number of Fisher Scoring iterations: 2
fit4 <- glm(target ~ age + sex + trestbps + chol + fbs + restecg + thalach + exang + oldpeak + slope + ca + thal, data=heart)
summary(fit4)
## 
## Call:
## glm(formula = target ~ age + sex + trestbps + chol + fbs + restecg + 
##     thalach + exang + oldpeak + slope + ca + thal, data = heart)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.97925  -0.23875   0.06748   0.23132   0.92925  
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.7932243  0.3048987   2.602 0.009755 ** 
## age         -0.0001370  0.0028036  -0.049 0.961065    
## sex         -0.1890932  0.0490619  -3.854 0.000143 ***
## trestbps    -0.0015416  0.0013058  -1.181 0.238718    
## chol        -0.0004671  0.0004384  -1.065 0.287582    
## fbs          0.0507032  0.0617386   0.821 0.412175    
## restecg      0.0548666  0.0415526   1.320 0.187738    
## thalach      0.0039191  0.0011621   3.373 0.000846 ***
## exang       -0.2226387  0.0509542  -4.369 1.74e-05 ***
## oldpeak     -0.0574860  0.0238687  -2.408 0.016646 *  
## slope        0.0753585  0.0441275   1.708 0.088753 .  
## ca          -0.1158830  0.0225354  -5.142 5.00e-07 ***
## thal        -0.1320475  0.0370246  -3.566 0.000423 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.1359876)
## 
##     Null deviance: 75.149  on 302  degrees of freedom
## Residual deviance: 39.436  on 290  degrees of freedom
## AIC: 270.05
## 
## Number of Fisher Scoring iterations: 2
fit5 <- glm(target ~ sex + restecg + thalach + exang + oldpeak + ca + thal, data=heart)
summary(fit5)
## 
## Call:
## glm(formula = target ~ sex + restecg + thalach + exang + oldpeak + 
##     ca + thal, data = heart)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.99192  -0.22872   0.06124   0.23589   0.87787  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.545415   0.187655   2.906 0.003932 ** 
## sex         -0.166271   0.047128  -3.528 0.000485 ***
## restecg      0.070221   0.040661   1.727 0.085218 .  
## thalach      0.004288   0.001051   4.079 5.83e-05 ***
## exang       -0.230402   0.050611  -4.552 7.76e-06 ***
## oldpeak     -0.083160   0.020302  -4.096 5.43e-05 ***
## ca          -0.113123   0.021789  -5.192 3.89e-07 ***
## thal        -0.139120   0.036711  -3.790 0.000183 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.1363964)
## 
##     Null deviance: 75.149  on 302  degrees of freedom
## Residual deviance: 40.237  on 295  degrees of freedom
## AIC: 266.14
## 
## Number of Fisher Scoring iterations: 2
fit6 <- glm(target ~ sex + thalach + exang + oldpeak + ca + thal, data=heart)
summary(fit6)
## 
## Call:
## glm(formula = target ~ sex + thalach + exang + oldpeak + ca + 
##     thal, data = heart)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.03497  -0.23209   0.07058   0.25171   0.91382  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.585156   0.186861   3.132 0.001913 ** 
## sex         -0.169911   0.047238  -3.597 0.000377 ***
## thalach      0.004291   0.001055   4.068 6.10e-05 ***
## exang       -0.234577   0.050722  -4.625 5.61e-06 ***
## oldpeak     -0.084143   0.020362  -4.132 4.68e-05 ***
## ca          -0.115177   0.021830  -5.276 2.55e-07 ***
## thal        -0.137677   0.036824  -3.739 0.000222 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.13731)
## 
##     Null deviance: 75.149  on 302  degrees of freedom
## Residual deviance: 40.644  on 296  degrees of freedom
## AIC: 267.18
## 
## Number of Fisher Scoring iterations: 2
fit7 <- glm(target ~ exang + oldpeak + ca + thal, data=heart)
summary(fit7)
## 
## Call:
## glm(formula = target ~ exang + oldpeak + ca + thal, data = heart)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.90232  -0.26120   0.09768   0.25241   0.84291  
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.21179    0.08708  13.916  < 2e-16 ***
## exang       -0.31350    0.05011  -6.256 1.37e-09 ***
## oldpeak     -0.10509    0.02062  -5.096 6.17e-07 ***
## ca          -0.13378    0.02247  -5.953 7.40e-09 ***
## thal        -0.15473    0.03784  -4.090 5.56e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.1495234)
## 
##     Null deviance: 75.149  on 302  degrees of freedom
## Residual deviance: 44.558  on 298  degrees of freedom
## AIC: 291.04
## 
## Number of Fisher Scoring iterations: 2
fit8 <- glm(target ~ sex + cp + restecg + exang + oldpeak + slope + ca + thal, data=heart)
summary(fit8)
## 
## Call:
## glm(formula = target ~ sex + cp + restecg + exang + oldpeak + 
##     slope + ca + thal, data = heart)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -1.02011  -0.23353   0.04055   0.25366   0.86995  
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.86520    0.11354   7.620 3.51e-13 ***
## sex         -0.17303    0.04581  -3.777 0.000192 ***
## cp           0.12005    0.02208   5.437 1.14e-07 ***
## restecg      0.06084    0.03960   1.536 0.125547    
## exang       -0.18261    0.05035  -3.627 0.000338 ***
## oldpeak     -0.07129    0.02282  -3.124 0.001961 ** 
## slope        0.10580    0.04157   2.545 0.011436 *  
## ca          -0.11364    0.02119  -5.363 1.66e-07 ***
## thal        -0.12191    0.03576  -3.409 0.000742 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.1287031)
## 
##     Null deviance: 75.149  on 302  degrees of freedom
## Residual deviance: 37.839  on 294  degrees of freedom
## AIC: 249.52
## 
## Number of Fisher Scoring iterations: 2
fit9 <- glm(target ~  sex + cp + thalach + exang + oldpeak + ca + thal, data=heart)
summary(fit9)
## 
## Call:
## glm(formula = target ~ sex + cp + thalach + exang + oldpeak + 
##     ca + thal, data = heart)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.90803  -0.22814   0.06006   0.23466   0.91956  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.536499   0.180215   2.977 0.003152 ** 
## sex         -0.176876   0.045511  -3.886 0.000126 ***
## cp           0.109313   0.022223   4.919 1.45e-06 ***
## thalach      0.003518   0.001028   3.423 0.000707 ***
## exang       -0.157643   0.051287  -3.074 0.002312 ** 
## oldpeak     -0.087547   0.019620  -4.462 1.16e-05 ***
## ca          -0.103037   0.021166  -4.868 1.84e-06 ***
## thal        -0.123476   0.035578  -3.471 0.000597 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.1273315)
## 
##     Null deviance: 75.149  on 302  degrees of freedom
## Residual deviance: 37.563  on 295  degrees of freedom
## AIC: 245.3
## 
## Number of Fisher Scoring iterations: 2
fit10 <- glm(target ~  sex + cp + thalach + oldpeak + ca + thal, data=heart)
summary(fit10)
## 
## Call:
## glm(formula = target ~ sex + cp + thalach + oldpeak + ca + thal, 
##     data = heart)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.89971  -0.23071   0.05203   0.24691   0.89302  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.391995   0.176440   2.222 0.027060 *  
## sex         -0.190920   0.045923  -4.157 4.22e-05 ***
## cp           0.130143   0.021464   6.063 4.06e-09 ***
## thalach      0.004294   0.001011   4.249 2.87e-05 ***
## oldpeak     -0.096725   0.019667  -4.918 1.45e-06 ***
## ca          -0.099790   0.021439  -4.655 4.91e-06 ***
## thal        -0.134925   0.035884  -3.760 0.000205 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.1309655)
## 
##     Null deviance: 75.149  on 302  degrees of freedom
## Residual deviance: 38.766  on 296  degrees of freedom
## AIC: 252.85
## 
## Number of Fisher Scoring iterations: 2
fit11 <- glm(target ~ age + sex + cp + restecg + thalach + exang + oldpeak + slope + ca + thal, data=heart)
summary(fit11)
## 
## Call:
## glm(formula = target ~ age + sex + cp + restecg + thalach + exang + 
##     oldpeak + slope + ca + thal, data = heart)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.92803  -0.20286   0.04837   0.25043   0.92813  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.608348   0.266863   2.280 0.023351 *  
## age         -0.002194   0.002571  -0.853 0.394195    
## sex         -0.182219   0.045877  -3.972 8.99e-05 ***
## cp           0.111412   0.022140   5.032 8.49e-07 ***
## restecg      0.059155   0.039365   1.503 0.133996    
## thalach      0.002744   0.001118   2.454 0.014720 *  
## exang       -0.151054   0.051117  -2.955 0.003380 ** 
## oldpeak     -0.064410   0.022672  -2.841 0.004815 ** 
## slope        0.077654   0.042243   1.838 0.067035 .  
## ca          -0.100830   0.021660  -4.655 4.92e-06 ***
## thal        -0.124664   0.035380  -3.524 0.000494 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.1255892)
## 
##     Null deviance: 75.149  on 302  degrees of freedom
## Residual deviance: 36.672  on 292  degrees of freedom
## AIC: 244.03
## 
## Number of Fisher Scoring iterations: 2
fit12 <- glm(target ~ sex + cp + restecg + thalach + exang + oldpeak + slope + ca + thal, data=heart)
summary(fit12)
## 
## Call:
## glm(formula = target ~ sex + cp + restecg + thalach + exang + 
##     oldpeak + slope + ca + thal, data = heart)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.93689  -0.20256   0.05328   0.25246   0.91571  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.442520   0.182804   2.421 0.016097 *  
## sex         -0.175852   0.045245  -3.887 0.000126 ***
## cp           0.110030   0.022070   4.986 1.06e-06 ***
## restecg      0.062853   0.039108   1.607 0.109097    
## thalach      0.003072   0.001049   2.927 0.003687 ** 
## exang       -0.148896   0.051030  -2.918 0.003798 ** 
## oldpeak     -0.065668   0.022614  -2.904 0.003966 ** 
## slope        0.076914   0.042214   1.822 0.069474 .  
## ca          -0.104820   0.021140  -4.958 1.21e-06 ***
## thal        -0.125956   0.035331  -3.565 0.000425 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.1254727)
## 
##     Null deviance: 75.149  on 302  degrees of freedom
## Residual deviance: 36.764  on 293  degrees of freedom
## AIC: 242.78
## 
## Number of Fisher Scoring iterations: 2
fit13 <- glm(target ~ sex + cp + restecg + thalach + exang + oldpeak + slope + ca + thal, data=heart)
summary(fit13)
## 
## Call:
## glm(formula = target ~ sex + cp + restecg + thalach + exang + 
##     oldpeak + slope + ca + thal, data = heart)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.93689  -0.20256   0.05328   0.25246   0.91571  
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.442520   0.182804   2.421 0.016097 *  
## sex         -0.175852   0.045245  -3.887 0.000126 ***
## cp           0.110030   0.022070   4.986 1.06e-06 ***
## restecg      0.062853   0.039108   1.607 0.109097    
## thalach      0.003072   0.001049   2.927 0.003687 ** 
## exang       -0.148896   0.051030  -2.918 0.003798 ** 
## oldpeak     -0.065668   0.022614  -2.904 0.003966 ** 
## slope        0.076914   0.042214   1.822 0.069474 .  
## ca          -0.104820   0.021140  -4.958 1.21e-06 ***
## thal        -0.125956   0.035331  -3.565 0.000425 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.1254727)
## 
##     Null deviance: 75.149  on 302  degrees of freedom
## Residual deviance: 36.764  on 293  degrees of freedom
## AIC: 242.78
## 
## Number of Fisher Scoring iterations: 2
barplot(heart$sex)

fit14 <- glm(target ~ ca + thal, data=heart)
summary(fit14)
## 
## Call:
## glm(formula = target ~ ca + thal, data = heart)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.2172  -0.3358   0.2574   0.2574   1.1728  
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.21720    0.09843  12.367  < 2e-16 ***
## ca          -0.16951    0.02490  -6.808 5.41e-11 ***
## thal        -0.23730    0.04159  -5.706 2.77e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 0.1912959)
## 
##     Null deviance: 75.149  on 302  degrees of freedom
## Residual deviance: 57.389  on 300  degrees of freedom
## AIC: 363.72
## 
## Number of Fisher Scoring iterations: 2
table(heart$sex)
## 
##   0   1 
##  96 207
sex <- (table(heart$sex))
barplot(sex, main = "Sex Distribution", xlab = " 0 = Female and 1 = Male")

table(heart$target)
## 
##   0   1 
## 138 165
heartdisease <- (table(heart$target))
barplot(heartdisease, main = "Presence of Heart Disease", xlab = "0 = no heart disease and 1 = heart diease")