Group 4 Assignment 4

Data Exploration

The first thing we will do for this assignment is explore the dataset provided. This dataset is a mental health dataset from a real-life research project. All identifying information of the dataset was removed and the data dictionary provides an explanation of each of the variables. The data contains 54 variables with 175 observations per variable. Every variable in the dataset is imported in as numeric features with the exception of Initial which will not be used as part of any exploration or analysis.

ADHD_data<-read_csv("ADHD_data.csv")
names(ADHD_data)<-str_replace_all(names(ADHD_data)," +","_")
names(ADHD_data)<-str_replace_all(names(ADHD_data),"-","_")

psych::describe(ADHD_data) %>% 
  kable() %>% 
  kable_styling() %>% 
  scroll_box(height = "200px")
vars n mean sd median trimmed mad min max range skew kurtosis se
Initial* 1 175 53.7371429 31.8036278 54 53.5248227 42.9954 1 108 107 0.0230736 -1.2663915 2.4041283
Age 2 175 39.4742857 11.1709893 42 39.5460993 13.3434 18 69 51 -0.1040228 -0.9579297 0.8444474
Sex 3 175 1.4342857 0.4970851 1 1.4184397 0.0000 1 2 1 0.2628877 -1.9418888 0.0375761
Race 4 175 1.6400000 0.6878252 2 1.6099291 0.0000 1 6 5 2.7054966 15.8898553 0.0519947
ADHD_Q1 5 175 1.6971429 1.2886520 2 1.6241135 1.4826 0 4 4 0.2520512 -1.0213992 0.0974129
ADHD_Q2 6 175 1.9142857 1.2542211 2 1.8936170 1.4826 0 4 4 0.1433478 -0.9958406 0.0948102
ADHD_Q3 7 175 1.9085714 1.2697568 2 1.8865248 1.4826 0 4 4 0.1537456 -1.0214282 0.0959846
ADHD_Q4 8 175 2.1028571 1.3393869 2 2.1276596 1.4826 0 4 4 -0.0582904 -1.1174516 0.1012481
ADHD_Q5 9 175 2.2571429 1.4412410 3 2.3120567 1.4826 0 5 5 -0.3145486 -1.2010248 0.1089476
ADHD_Q6 10 175 1.9085714 1.3054641 2 1.8865248 1.4826 0 4 4 -0.0784150 -1.1428327 0.0986838
ADHD_Q7 11 175 1.8285714 1.1862651 2 1.7872340 1.4826 0 4 4 0.3108433 -0.7349764 0.0896732
ADHD_Q8 12 175 2.1371429 1.2925707 2 2.1702128 1.4826 0 4 4 -0.0795331 -1.1297030 0.0977092
ADHD_Q9 13 175 1.9085714 1.3186050 2 1.8865248 1.4826 0 4 4 0.0625975 -1.1892099 0.0996772
ADHD_Q10 14 175 2.1200000 1.2328828 2 2.1347518 1.4826 0 4 4 0.0838087 -1.0339337 0.0931972
ADHD_Q11 15 175 2.2742857 1.2383579 2 2.3333333 1.4826 0 4 4 -0.1840841 -0.9645685 0.0936111
ADHD_Q12 16 175 1.2914286 1.2085356 1 1.1489362 1.4826 0 4 4 0.7331850 -0.3474905 0.0913567
ADHD_Q13 17 175 2.3657143 1.2331491 2 2.4397163 1.4826 0 4 4 -0.2951539 -0.8989614 0.0932173
ADHD_Q14 18 175 2.2457143 1.3485503 2 2.3049645 1.4826 0 4 4 -0.3095518 -1.0816090 0.1019408
ADHD_Q15 19 175 1.6342857 1.3949710 1 1.5460993 1.4826 0 4 4 0.3369081 -1.1751486 0.1054499
ADHD_Q16 20 175 1.7028571 1.3782977 1 1.6312057 1.4826 0 4 4 0.4086568 -1.0491196 0.1041895
ADHD_Q17 21 175 1.5257143 1.2857179 1 1.4113475 1.4826 0 4 4 0.4111746 -0.8836476 0.0971911
ADHD_Q18 22 175 1.4742857 1.3034752 1 1.3475177 1.4826 0 4 4 0.5668291 -0.7862289 0.0985335
ADHD_Total 23 175 34.3200000 16.6953913 33 34.1985816 19.2738 0 72 72 0.0533291 -0.7026800 1.2620530
MD_Q1a 24 175 0.5485714 0.4990632 1 0.5602837 0.0000 0 1 1 -0.1935381 -1.9737236 0.0377256
MD_Q1b 25 175 0.5714286 0.4962917 1 0.5886525 0.0000 0 1 1 -0.2862043 -1.9290122 0.0375161
MD_Q1c 26 175 0.5428571 0.4995893 1 0.5531915 0.0000 0 1 1 -0.1705891 -1.9821280 0.0377654
MD_Q1d 27 175 0.5828571 0.4945018 1 0.6028369 0.0000 0 1 1 -0.3331987 -1.8997365 0.0373808
MD_Q1e 28 175 0.5542857 0.4984706 1 0.5673759 0.0000 0 1 1 -0.2165645 -1.9642262 0.0376808
MD_Q1f 29 175 0.6971429 0.4608124 1 0.7446809 0.0000 0 1 1 -0.8507423 -1.2834739 0.0348341
MD_Q1g 30 175 0.7200000 0.4502873 1 0.7730496 0.0000 0 1 1 -0.9715703 -1.0620222 0.0340385
MD_Q1h 31 175 0.5600000 0.4978113 1 0.5744681 0.0000 0 1 1 -0.2396777 -1.9536204 0.0376310
MD_Q1i 32 175 0.5885714 0.4935046 1 0.6099291 0.0000 0 1 1 -0.3568976 -1.8832880 0.0373054
MD_Q1j 33 175 0.3885714 0.4888242 0 0.3617021 0.0000 0 1 1 0.4532993 -1.8047347 0.0369516
MD_Q1k 34 175 0.4857143 0.5012300 0 0.4822695 0.0000 0 1 1 0.0566769 -2.0081652 0.0378894
MD_Q1L 35 175 0.5828571 0.4945018 1 0.6028369 0.0000 0 1 1 -0.3331987 -1.8997365 0.0373808
MD_Q1m 36 175 0.4914286 0.5013610 0 0.4893617 0.0000 0 1 1 0.0339973 -2.0102335 0.0378993
MD_Q2 37 175 0.7200000 0.4502873 1 0.7730496 0.0000 0 1 1 -0.9715703 -1.0620222 0.0340385
MD_Q3 38 175 2.0057143 1.0747742 2 2.1276596 1.4826 0 3 3 -0.7016577 -0.8397355 0.0812453
MD_TOTAL 39 175 10.0228571 4.8125247 11 10.3404255 4.4478 0 17 17 -0.4793695 -0.7287448 0.3637927
Alcohol 40 171 1.3450292 1.3946184 1 1.3065693 1.4826 0 3 3 0.2279514 -1.8274542 0.1066491
THC 41 171 0.8070175 1.2663788 0 0.6350365 0.0000 0 3 3 1.0540839 -0.7707323 0.0968424
Cocaine 42 171 1.0935673 1.3900972 0 0.9927007 0.0000 0 3 3 0.5652679 -1.6099919 0.1063034
Stimulants 43 171 0.1228070 0.5336944 0 0.0000000 0.0000 0 3 3 4.7258476 21.9576904 0.0408126
Sedative_hypnotics 44 171 0.1228070 0.5446048 0 0.0000000 0.0000 0 3 3 4.6380203 20.7638045 0.0416470
Opioids 45 171 0.3918129 0.9903907 0 0.1167883 0.0000 0 3 3 2.1955022 2.9310366 0.0757371
Court_order 46 170 0.0882353 0.2844747 0 0.0000000 0.0000 0 1 1 2.8778837 6.3194914 0.0218182
Education 47 166 11.9036145 2.1720788 12 11.8283582 1.4826 6 19 13 0.3663734 1.3726744 0.1685860
Hx_of_Violence 48 164 0.2439024 0.4307498 0 0.1818182 0.0000 0 1 1 1.1818275 -0.6068729 0.0336359
Disorderly_Conduct 49 164 0.7256098 0.4475731 1 0.7803030 0.0000 0 1 1 -1.0019998 -1.0019949 0.0349496
Suicide 50 162 0.3024691 0.4607516 0 0.2538462 0.0000 0 1 1 0.8521362 -1.2816613 0.0362001
Abuse 51 161 1.3291925 2.1236066 0 0.8837209 0.0000 0 7 7 1.4674814 0.8629422 0.1673636
Non_subst_Dx 52 153 0.4379085 0.6769714 0 0.3008130 0.0000 0 2 2 1.2353022 0.1900950 0.0547299
Subst_Dx 53 152 1.1381579 0.9282137 1 1.0573770 1.4826 0 3 3 0.4168892 -0.7130819 0.0752881
Psych_meds. 54 57 0.9649123 0.8010019 1 0.9574468 1.4826 0 2 2 0.0609190 -1.4663999 0.1060953
dfMeta <- data.frame(missing = colSums(is.na(ADHD_data)),
                     dtype = sapply(ADHD_data, class),
                     num_of_unique = sapply(ADHD_data, function(x) length(unique(x)))) %>%
    tibble::rownames_to_column() %>%
    dplyr::select(columns = rowname, dtype, missing, num_of_unique)

dfMeta %>% 
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "200px")
columns dtype missing num_of_unique
Initial character 0 108
Age numeric 0 42
Sex numeric 0 2
Race numeric 0 4
ADHD_Q1 numeric 0 5
ADHD_Q2 numeric 0 5
ADHD_Q3 numeric 0 5
ADHD_Q4 numeric 0 5
ADHD_Q5 numeric 0 6
ADHD_Q6 numeric 0 5
ADHD_Q7 numeric 0 5
ADHD_Q8 numeric 0 5
ADHD_Q9 numeric 0 5
ADHD_Q10 numeric 0 5
ADHD_Q11 numeric 0 5
ADHD_Q12 numeric 0 5
ADHD_Q13 numeric 0 5
ADHD_Q14 numeric 0 5
ADHD_Q15 numeric 0 5
ADHD_Q16 numeric 0 5
ADHD_Q17 numeric 0 5
ADHD_Q18 numeric 0 5
ADHD_Total numeric 0 62
MD_Q1a numeric 0 2
MD_Q1b numeric 0 2
MD_Q1c numeric 0 2
MD_Q1d numeric 0 2
MD_Q1e numeric 0 2
MD_Q1f numeric 0 2
MD_Q1g numeric 0 2
MD_Q1h numeric 0 2
MD_Q1i numeric 0 2
MD_Q1j numeric 0 2
MD_Q1k numeric 0 2
MD_Q1L numeric 0 2
MD_Q1m numeric 0 2
MD_Q2 numeric 0 2
MD_Q3 numeric 0 4
MD_TOTAL numeric 0 18
Alcohol numeric 4 5
THC numeric 4 5
Cocaine numeric 4 5
Stimulants numeric 4 4
Sedative_hypnotics numeric 4 5
Opioids numeric 4 4
Court_order numeric 5 3
Education numeric 9 15
Hx_of_Violence numeric 11 3
Disorderly_Conduct numeric 11 3
Suicide numeric 13 3
Abuse numeric 14 9
Non_subst_Dx numeric 22 4
Subst_Dx numeric 23 5
Psych_meds. numeric 118 4

After observing the data’s structure, the next step was to plot the data to assess how this data is portrayed and what observations we can make about the distributions involved in the dataset. Based on the histrograms plotted below, we can note that there are many observations although numeric, behave as categorical features and this will need to be assessed when performing the kmeans clustering analysis. There does not seem to be any clear distinguishable outliers however there does seem to be some features that experience low variance such Stimulants where majority of the recorded observations are 0.

plot_histogram(ADHD_data)+theme_bw()

## NULL

Assessing correlations will be important for the models to come because Kmeans, and PCA are particularly sensitive to multi-colinearity and in order to reduce noise and complexity of the dataset prior to modeling, multi-colinearity (if it exists) should be addressed. The dataset was assessed for pairwise spearman correlations which measures data for it’s monotonicity providing a regression coefficient that defines both linear and non-linear trends. the table below shows we do exhibit correlations particularly amongst features that are directly related such as the ADHDQ# to the ADHD_Total. Highest measured spearman rank was around 0.79.

NumericADHD<-ADHD_data %>% 
  select(-Initial)

ADHD_cors<-
  bind_rows(
    #pearson correlation of numeric features
    NumericADHD %>% 
      cor(method = "pearson", use = "pairwise.complete.obs") %>% as.data.frame() %>% 
      rownames_to_column(var = "x") %>% 
      pivot_longer(cols = -x, names_to = "y", values_to = "correlation") %>% 
      mutate(cor_type = "pearson"),
    #spearman (monotonic) correlations of numeric features
    NumericADHD %>% 
      cor(method = "spearman", use = "pairwise.complete.obs") %>% as.data.frame() %>% 
      rownames_to_column(var = "x") %>% 
      pivot_longer(cols = -x, names_to = "y", values_to = "correlation") %>% 
      mutate(cor_type = "spearman")
  )

ADHD_cors %>% 
  filter(!(x ==y)) %>% 
  filter(cor_type=="spearman") %>% 
  distinct(correlation,.keep_all = T) %>% 
  arrange(-correlation) %>% #top_n(10, correlation) %>% 
  distinct(x, .keep_all = T) %>% 
  kable() %>% 
  kable_styling(position = "center") %>% 
  scroll_box(height = "200px")
x y correlation cor_type
ADHD_Q9 ADHD_Total 0.7944898 spearman
ADHD_Q8 ADHD_Total 0.7941556 spearman
ADHD_Q10 ADHD_Total 0.7872177 spearman
ADHD_Q13 ADHD_Total 0.7667445 spearman
ADHD_Q5 ADHD_Total 0.7457331 spearman
ADHD_Q4 ADHD_Total 0.7283871 spearman
ADHD_Q7 ADHD_Total 0.7261428 spearman
ADHD_Q11 ADHD_Total 0.7251387 spearman
ADHD_Q14 ADHD_Total 0.7195527 spearman
ADHD_Q18 ADHD_Total 0.7099764 spearman
ADHD_Q2 ADHD_Total 0.6996578 spearman
ADHD_Q1 ADHD_Total 0.6892343 spearman
MD_Q1a MD_TOTAL 0.6850615 spearman
ADHD_Q12 ADHD_Total 0.6835530 spearman
MD_Q1L MD_TOTAL 0.6780450 spearman
MD_Q2 MD_TOTAL 0.6691259 spearman
ADHD_Q16 ADHD_Total 0.6665018 spearman
ADHD_Q3 ADHD_Total 0.6646760 spearman
MD_Q1b MD_TOTAL 0.6465047 spearman
ADHD_Q17 ADHD_Total 0.6405340 spearman
ADHD_Q15 ADHD_Total 0.6385524 spearman
ADHD_Q6 ADHD_Total 0.6379948 spearman
MD_Q1e MD_TOTAL 0.6287386 spearman
MD_Q1g MD_TOTAL 0.6203933 spearman
MD_Q1h MD_Q1i 0.6157163 spearman
ADHD_Total MD_Q1g 0.6137537 spearman
MD_Q1f MD_TOTAL 0.6110345 spearman
MD_Q1j MD_TOTAL 0.6049776 spearman
MD_Q1m MD_TOTAL 0.5992611 spearman
MD_Q1i MD_TOTAL 0.5834584 spearman
MD_Q1d MD_TOTAL 0.5498626 spearman
MD_Q3 MD_TOTAL 0.5307158 spearman
MD_Q1k MD_TOTAL 0.5134463 spearman
Non_subst_Dx Psych_meds. 0.5007790 spearman
MD_Q1c MD_TOTAL 0.4700712 spearman
Cocaine Subst_Dx 0.4297406 spearman
Sedative_hypnotics Opioids 0.3797873 spearman
Sex Abuse 0.3679372 spearman
THC Subst_Dx 0.3561781 spearman
Hx_of_Violence Disorderly_Conduct 0.3492625 spearman
Alcohol Subst_Dx 0.3319289 spearman
Suicide Abuse 0.3298665 spearman
Abuse Psych_meds. 0.2763363 spearman
Disorderly_Conduct Subst_Dx 0.2746133 spearman
MD_TOTAL Alcohol 0.2743850 spearman
Opioids Subst_Dx 0.2580600 spearman
Race Cocaine 0.2513707 spearman
Court_order Disorderly_Conduct 0.1878673 spearman
Education Non_subst_Dx 0.1611136 spearman
Age Cocaine 0.1492548 spearman
Stimulants Sedative_hypnotics 0.1248315 spearman
Subst_Dx Psych_meds. 0.0428331 spearman

Next, we want to assess any missing data within the dataset. The models presented here are also susceptible to missing data and this must be treated accordingly. The figure below displays a plot of missing data by percentage of observations in the dataset. It is clear that the feature Psych_meds. has a significant amount of features that are inappropriate to impute or include and thus this feature will be removed from the dataset prior to any models.

ADHD_data %>%  naniar::miss_var_summary() %>% 
  slice_max(n_miss, n = 10) %>% 
  ggplot(aes( x = fct_reorder(variable, n_miss), y = pct_miss))+
  coord_flip()+
  geom_col(alpha = 0.5, fill = "skyblue3", color = "darkblue")+
  defaulttheme+
  labs(title = "Top Features with Missing Data",
       y = "Percent Missing",
       x = "Feature")

Question 1 K-Means Clustering

K-means clustering is a method used of vector quantization. It is an unsupervised learning algorithm where the predicted outcomes are unlabeled and unknown. The goal of these algorithms help to reduce data dimensionality or cluster groups based on unlabeled data for purposes such as targeted marketing. The groups are defined by k clusters where each observation will belong to a cluster with the nearest mean or the cluster centroid, as such, these metrics are based on the euclidian distances.

Data preparation for Q1

For the Data preparation for K-means Clustering algorithm the following data preparation steps were made and the reasons are provided below

  • Remove Initial: Character value that identifies patient with which will provide no bearing on the model output

  • Removal totalized features: Remove features that are summations of other features to reduce redundancy and noise in the dataset

  • Removal Psych_meds.: Removed due to large amount of missing data (>60% observations missing)

  • Imputation of missing data with KNN: the remaining data was imputed with K-nearestneighbors (KNN) as a way to fill in missing gaps. alternative methods include median, mean, or bag imputations but it was determed that KNN provides the best results with minimal effect on computational effort.

  • Numeric to Factor Conversions: Several variables were with low distribution were converted into classes based on their categorical nature displayed in the histograms presented in the Data Exploration section. This conversion was made to all variables in the dataset except for Age, ADHD.Total, and MD.Total.

  • Dummifying Variables: Newly transformed categorical variables were binarized into 0/1. This is particularly important for k-means because k-means will not be able to distinguish the eucliiand distances properly between classes that span more than 2 categories. For example a feature with categories 1,2,3 will not properly be computed in k-means because 1,3 will measure greater distances than 1,2, thus binarizing each of these categories such that for example 3 would be its own column with 0/1 for presence/absence is absolutely necessary.

  • Normalization: Again, due to the euclidian nature of k-means clustering, features need to be normalized such that the distances they are centered and scaled the mean is 0 and the Stdev is 1, this scales all the data to allow kmeans to appropriately place centroids and observations at appropriate distances.

  • Colinearity test: Colinearity was tested and it was determined that there was not sufficient colinearity between any variables such that they needed to be removed for this reason alone.

  • Removed low-variance features: Removing any extremely low-variance data that will not provide useful data to the model and will only contribute to noise. At first glance, From Data Exploration section Stimulants seems like a low-variance variable with majority of categories recorded at 0. This will be confirmed statistically with tidymodels. Based on the model adjustment below, there were many features that were too sparse to provide valuable information to the model that including but not limited to: Race_X3, Race_X6, ADHD_Q5_X5, Alcohol_X0.6 and more. The total amount of features used in model after removing sparse parameters went from 238 to 147 The model recipe is shown below.

Q1_ADHD<-ADHD_data %>% recipe(~.) %>% 
  step_rm(Initial, Psych_meds.) %>% 
  step_rm(contains("total")) %>% 
  step_impute_knn(all_predictors()) %>% 
  step_mutate_at(-Age, fn = ~ as.factor(.)) %>% 
  step_dummy(all_nominal(), one_hot = T) %>% 
  step_normalize(all_predictors()) %>%
  step_nzv(all_predictors()) %>% 
  step_corr(all_predictors()) %>% 
  prep() #%>% 

Q1_ADHD 
## Data Recipe
## 
## Inputs:
## 
##       role #variables
##  predictor         54
## 
## Training data contained 175 data points and 120 incomplete rows. 
## 
## Operations:
## 
## Variables removed Initial, Psych_meds. [trained]
## Variables removed ADHD_Total, MD_TOTAL [trained]
## K-nearest neighbor imputation for Sex, Race, ADHD_Q1, ADHD_Q2, ADHD_Q3, ... [trained]
## Variable mutation for Sex, Race, ADHD_Q1, ADHD_Q2, ... [trained]
## Dummy variables from Sex, Race, ADHD_Q1, ADHD_Q2, ADHD_Q3, ADHD_Q4, ... [trained]
## Centering and scaling for Age, Sex_X1, Sex_X2, Race_X1, Race_X2, ... [trained]
## Sparse, unbalanced variable filter removed Race_X3, Race_X6, ... [trained]
## Correlation filter removed Race_X2, Sex_X1, MD_Q1a_X0, ... [trained]

After applying all those data transformations to the ADHD data, the following table was produced with 147 variables and 175 observations of those variables.

Q1_ADHD<- Q1_ADHD %>%  bake(ADHD_data)

Q1_ADHD %>% kable() %>% 
  scroll_box(height = "200px", width = "800px")
Age Sex_X2 Race_X1 ADHD_Q1_X0 ADHD_Q1_X1 ADHD_Q1_X2 ADHD_Q1_X3 ADHD_Q1_X4 ADHD_Q2_X0 ADHD_Q2_X1 ADHD_Q2_X2 ADHD_Q2_X3 ADHD_Q2_X4 ADHD_Q3_X0 ADHD_Q3_X1 ADHD_Q3_X2 ADHD_Q3_X3 ADHD_Q3_X4 ADHD_Q4_X0 ADHD_Q4_X1 ADHD_Q4_X2 ADHD_Q4_X3 ADHD_Q4_X4 ADHD_Q5_X0 ADHD_Q5_X1 ADHD_Q5_X2 ADHD_Q5_X3 ADHD_Q5_X4 ADHD_Q6_X0 ADHD_Q6_X1 ADHD_Q6_X2 ADHD_Q6_X3 ADHD_Q6_X4 ADHD_Q7_X0 ADHD_Q7_X1 ADHD_Q7_X2 ADHD_Q7_X3 ADHD_Q7_X4 ADHD_Q8_X0 ADHD_Q8_X1 ADHD_Q8_X2 ADHD_Q8_X3 ADHD_Q8_X4 ADHD_Q9_X0 ADHD_Q9_X1 ADHD_Q9_X2 ADHD_Q9_X3 ADHD_Q9_X4 ADHD_Q10_X0 ADHD_Q10_X1 ADHD_Q10_X2 ADHD_Q10_X3 ADHD_Q10_X4 ADHD_Q11_X0 ADHD_Q11_X1 ADHD_Q11_X2 ADHD_Q11_X3 ADHD_Q11_X4 ADHD_Q12_X0 ADHD_Q12_X1 ADHD_Q12_X2 ADHD_Q12_X3 ADHD_Q12_X4 ADHD_Q13_X0 ADHD_Q13_X1 ADHD_Q13_X2 ADHD_Q13_X3 ADHD_Q13_X4 ADHD_Q14_X0 ADHD_Q14_X1 ADHD_Q14_X2 ADHD_Q14_X3 ADHD_Q14_X4 ADHD_Q15_X0 ADHD_Q15_X1 ADHD_Q15_X2 ADHD_Q15_X3 ADHD_Q15_X4 ADHD_Q16_X0 ADHD_Q16_X1 ADHD_Q16_X2 ADHD_Q16_X3 ADHD_Q16_X4 ADHD_Q17_X0 ADHD_Q17_X1 ADHD_Q17_X2 ADHD_Q17_X3 ADHD_Q17_X4 ADHD_Q18_X0 ADHD_Q18_X1 ADHD_Q18_X2 ADHD_Q18_X3 ADHD_Q18_X4 MD_Q1a_X1 MD_Q1b_X1 MD_Q1c_X1 MD_Q1d_X1 MD_Q1e_X1 MD_Q1f_X1 MD_Q1g_X1 MD_Q1h_X1 MD_Q1i_X1 MD_Q1j_X1 MD_Q1k_X1 MD_Q1L_X1 MD_Q1m_X1 MD_Q2_X1 MD_Q3_X0 MD_Q3_X1 MD_Q3_X2 MD_Q3_X3 Alcohol_X0 Alcohol_X1 Alcohol_X3 THC_X0 THC_X1 THC_X3 Cocaine_X0 Cocaine_X1 Cocaine_X3 Stimulants_X0 Sedative_hypnotics_X0 Opioids_X0 Opioids_X3 Court_order_X1 Education_X9 Education_X10 Education_X11 Education_X12 Education_X13 Education_X14 Hx_of_Violence_X0 Hx_of_Violence_X1 Disorderly_Conduct_X1 Suicide_X1 Abuse_X0 Abuse_X2 Abuse_X5 Non_subst_Dx_X0 Non_subst_Dx_X1 Non_subst_Dx_X2 Subst_Dx_X0 Subst_Dx_X1 Subst_Dx_X2 Subst_Dx_X3
-1.3852207 -0.8736647 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 -0.6750661 -0.5163176 -0.3053101 3.5199900 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 0.8635475 0.9150373 0.8435619 -1.1119728 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 -1.1786755 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 2.9448907 -0.7759153 -1.3981655 3.675012 -0.5427736 -1.1786755 4.2824114 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 3.2566416 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 0.8336874 -0.3581828 -0.2454786 -1.2659894 -0.5074572 3.143360 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.7632014 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 -0.6750661 -0.5163176 -0.3053101 3.5199900 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 -0.9690447 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 3.3814621 0.6218253 -0.5427736 -1.5548244 1.5989793 -1.1926361 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
1.0317541 1.1380633 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 0.8941637 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 -1.1926361 -0.3581828 -0.2454786 -1.2659894 -0.5074572 3.143360 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.3156134 -0.8736647 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 -1.1786755 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 2.9448907 -0.7759153 -1.3981655 3.675012 -0.5427736 -1.1786755 4.2824114 -0.6840315 -3.8501813 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 1.5989793 -1.1926361 -0.3581828 -0.2454786 -1.2659894 -0.5074572 3.143360 1.7470621 -0.7759153 -0.5074572 -0.2940402
-0.4900448 -0.8736647 1.1926361 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 -1.0866068 0.8435619 -1.1119728 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 2.9448907 -0.7759153 -1.3981655 3.675012 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 3.2566416 3.675012 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 1.5989793 0.8336874 -0.3581828 -0.2454786 -1.2659894 -0.5074572 3.143360 1.7470621 -0.7759153 -0.5074572 -0.2940402
-0.0424569 1.1380633 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 -1.099202 0.8635475 -1.0866068 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 2.9448907 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 -1.1926361 2.7759168 -0.2454786 0.7853823 -0.5074572 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.1365783 1.1380633 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 0.8635475 -1.0866068 -1.1786755 0.8941637 0.6572243 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 -1.1786755 4.2824114 -0.6840315 -3.8501813 -3.8501813 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.7632014 -0.8736647 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 -0.5074572 3.143360 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.4051310 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 0.8941637 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 2.9448907 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 -2.3870530 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
-1.1166680 1.1380633 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 -1.1786755 0.8941637 -1.5128560 0.6218253 -1.124924 -1.1926361 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 3.675012 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 2.7759168 -0.2454786 -1.2659894 1.9593488 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
0.4051310 -0.8736647 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 -1.3981655 3.675012 -0.5427736 -1.1786755 4.2824114 -0.6840315 -3.8501813 -3.8501813 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 1.5989793 -1.1926361 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
1.4793421 -0.8736647 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 2.7759168 -0.2454786 -1.2659894 -0.5074572 3.143360 1.7470621 -0.7759153 -0.5074572 -0.2940402
1.2107893 1.1380633 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 -1.0866068 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 -0.9690447 -1.1786755 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 2.9448907 -0.7759153 -1.3981655 3.675012 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
-0.5795624 -0.8736647 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 -1.1786755 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 -0.9690447 -1.1786755 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
-1.3852207 1.1380633 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 -1.1786755 -1.1119728 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 -1.3981655 3.675012 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 3.2566416 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 3.3814621 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.0470607 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 -1.099202 0.8635475 -1.0866068 -1.1786755 -1.1119728 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 -1.1926361 -0.3581828 4.0503968 -1.2659894 -0.5074572 3.143360 -0.5691187 1.2814359 -0.5074572 -0.2940402
1.5688596 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 -1.124924 0.8336874 1.2508149 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 -1.1926361 -0.3581828 -0.2454786 -1.2659894 -0.5074572 3.143360 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.9422365 -0.8736647 1.1926361 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 -0.5163176 -0.3053101 3.5199900 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 3.675012 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 -0.5074572 3.143360 1.7470621 -0.7759153 -0.5074572 -0.2940402
-0.6690800 1.1380633 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 -1.1513967 -1.0866068 -1.1786755 -1.1119728 0.6572243 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 1.014382 -1.5989793 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 2.9448907 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 -0.5074572 3.143360 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.8527190 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 -0.9150373 2.9448907 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 3.675012 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 -1.1926361 -0.3581828 4.0503968 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
-0.4900448 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 -1.099202 0.8635475 -1.0866068 0.8435619 -1.1119728 0.6572243 0.6218253 -1.124924 0.8336874 -0.7949104 -0.9690447 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 -1.1926361 -0.3581828 -0.2454786 -1.2659894 -0.5074572 3.143360 -0.5691187 -0.7759153 1.9593488 -0.2940402
-0.3110097 1.1380633 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 -3.8501813 -2.3870530 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 -1.1926361 2.7759168 -0.2454786 -1.2659894 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
0.8527190 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 -1.0866068 -1.1786755 -1.1119728 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 2.9448907 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 -1.1926361 -0.3581828 -0.2454786 -1.2659894 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
-1.2957031 -0.8736647 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 -0.5163176 -0.3053101 3.5199900 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
1.0317541 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 -1.2659894 -0.5074572 3.143360 1.7470621 -0.7759153 -0.5074572 -0.2940402
1.3003069 1.1380633 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 1.5989793 -1.1926361 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
1.0317541 -0.8736647 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 -1.1786755 -1.1119728 0.6572243 0.6218253 0.883869 -1.1926361 -0.7949104 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 -0.5074572 3.143360 1.7470621 -0.7759153 -0.5074572 -0.2940402
-0.1319745 1.1380633 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 -0.5163176 -0.3053101 3.5199900 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 -3.8501813 0.2582439 -2.3870530 2.7002645 3.2566416 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
1.5688596 1.1380633 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 2.9448907 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 -1.1926361 -0.3581828 -0.2454786 -1.2659894 -0.5074572 3.143360 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.4051310 -0.8736647 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 -1.124924 0.8336874 -0.7949104 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 1.5989793 -1.1926361 -0.3581828 -0.2454786 -1.2659894 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
-0.4900448 -0.8736647 1.1926361 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 -1.1786755 -1.1119728 -1.5128560 0.6218253 -1.124924 0.8336874 -0.7949104 -0.9690447 0.8435619 -0.980189 -1.5989793 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 4.0503968 -1.2659894 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
-1.8328086 -0.8736647 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 -1.1119728 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 3.675012 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
-0.3110097 1.1380633 1.1926361 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 -1.1513967 -1.0866068 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 -1.1926361 2.7759168 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-0.5795624 -0.8736647 1.1926361 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 3.3814621 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.6736838 -0.8736647 1.1926361 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 0.6572243 -1.5989793 -1.124924 0.8336874 -0.7949104 -0.9690447 -1.1786755 1.014382 -1.5989793 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
-0.5795624 -0.8736647 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 -1.1119728 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 -1.5989793 1.8318609 0.6394842 1.5989793 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 3.3814621
-0.9376328 -0.8736647 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 -1.1513967 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 -2.3870530 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
-1.4747383 1.1380633 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 -1.1786755 -1.1119728 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 2.9448907 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.4946486 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 -1.5989793 0.883869 0.8336874 -0.7949104 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-0.5795624 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 -3.8501813 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 1.5989793 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
0.2260958 1.1380633 1.1926361 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 -1.1513967 -1.0866068 -1.1786755 -1.1119728 0.6572243 0.6218253 -1.124924 0.8336874 -0.7949104 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 -0.5427736 -1.5548244 -0.6218253 -1.1926361 -0.3581828 -0.2454786 -1.2659894 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.3852207 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 -0.5163176 -0.3053101 3.5199900 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 0.8635475 0.9150373 -1.1786755 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 -3.8501813 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 -1.1926361 2.7759168 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 3.3814621
-1.2061855 1.1380633 1.1926361 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 0.883869 0.8336874 -0.7949104 1.0260473 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 -3.8501813 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
0.0470607 -0.8736647 1.1926361 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 2.9448907 -0.7759153 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 -3.8501813 -2.3870530 -0.3682179 -0.3053101 -0.270553 3.675012 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
1.0317541 -0.8736647 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 -1.124924 0.8336874 -0.7949104 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.6736838 1.1380633 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 1.0260473 0.8435619 1.014382 0.6218253 2.4424812 -0.4070802 -0.6218253 -0.8736647 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 -1.1926361 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 -0.5691187 -0.7759153 -0.5074572 3.3814621
-1.2061855 -0.8736647 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 0.9150373 0.8435619 -1.1119728 -1.5128560 0.6218253 -1.124924 0.8336874 -0.7949104 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.7432911 1.1380633 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 -1.0866068 0.8435619 0.8941637 0.6572243 -1.5989793 0.883869 0.8336874 1.2508149 1.0260473 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 -3.8501813 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 0.6218253 -0.5427736 -1.5548244 1.5989793 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
-0.8481152 -0.8736647 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 -1.1119728 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 0.8435619 -0.980189 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 -1.5989793 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
1.5688596 -0.8736647 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 -1.1513967 0.9150373 0.8435619 -1.1119728 0.6572243 -1.5989793 -1.124924 0.8336874 1.2508149 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.6736838 -0.8736647 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 -1.0866068 -1.1786755 -1.1119728 -1.5128560 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 1.5989793 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.2061855 1.1380633 1.1926361 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 0.8435619 -1.1119728 0.6572243 -1.5989793 0.883869 -1.1926361 -0.7949104 1.0260473 0.8435619 -0.980189 -1.5989793 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 3.675012 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.6736838 -0.8736647 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 0.8435619 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 1.0260473 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 -0.9150373 -0.3376308 -0.7759153 -1.3981655 -0.270553 -0.5427736 -1.1786755 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 -1.2659894 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.9422365 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 3.675012 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 -1.1926361 2.7759168 -0.2454786 -1.2659894 -0.5074572 3.143360 -0.5691187 -0.7759153 1.9593488 -0.2940402
0.4051310 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 -1.1119728 0.6572243 0.6218253 0.883869 -1.1926361 -0.7949104 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
0.1365783 -0.8736647 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 0.6572243 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 0.8435619 1.014382 -1.5989793 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 -3.8501813 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 3.3814621 -1.5989793 1.8318609 0.6394842 -0.6218253 -1.1926361 -0.3581828 4.0503968 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
-0.8481152 -0.8736647 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 -1.0866068 -1.1786755 -1.1119728 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 -1.3981655 3.675012 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 3.675012 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 1.5989793 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.1365783 -0.8736647 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 -1.099202 0.8635475 0.9150373 -1.1786755 -1.1119728 -1.5128560 0.6218253 -1.124924 -1.1926361 1.2508149 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 -3.8501813 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
-1.7432911 -0.8736647 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 3.675012 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
-1.0271504 1.1380633 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 -3.8501813 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 3.3814621 0.6218253 -0.5427736 0.6394842 1.5989793 -1.1926361 2.7759168 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 3.3814621
-0.7585976 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-0.5795624 -0.8736647 1.1926361 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 -1.1513967 -1.0866068 0.8435619 -1.1119728 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 0.8435619 -0.980189 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 -3.8501813 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 3.3814621 -1.5989793 1.8318609 0.6394842 1.5989793 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
0.5841662 1.1380633 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.3852207 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 -1.1513967 0.9150373 -1.1786755 0.8941637 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 3.2566416 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 -1.5989793 1.8318609 0.6394842 1.5989793 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
0.4051310 1.1380633 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 0.8941637 -1.5128560 -1.5989793 0.883869 0.8336874 -0.7949104 -0.9690447 -1.1786755 1.014382 -1.5989793 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 3.2566416 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.9422365 -0.8736647 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 0.883869 0.8336874 -0.7949104 -0.9690447 -1.1786755 -0.980189 0.6218253 2.4424812 -0.4070802 -0.6218253 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.5642559 1.1380633 1.1926361 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 0.8435619 0.8941637 -1.5128560 0.6218253 0.883869 -1.1926361 -0.7949104 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 3.2566416 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 -0.5427736 -1.5548244 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
1.4793421 -0.8736647 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 0.8941637 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 -1.3981655 3.675012 -0.5427736 0.8435619 -0.2321789 -0.6840315 -3.8501813 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-0.7585976 -0.8736647 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 -1.1786755 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 -0.9690447 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 -3.8501813 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.2957031 -0.8736647 1.1926361 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 3.675012 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 1.5989793 -1.1926361 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.0271504 1.1380633 1.1926361 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 3.2566416 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 3.3814621
0.4051310 1.1380633 1.1926361 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 0.8941637 0.6572243 0.6218253 -1.124924 -1.1926361 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
2.6430707 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 -0.9150373 -0.3376308 -0.7759153 -1.3981655 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
0.4051310 1.1380633 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 2.9448907 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 4.2824114 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 1.5989793 -1.1926361 2.7759168 -0.2454786 0.7853823 -0.5074572 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.0470607 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 1.5989793 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.9422365 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 -1.5128560 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
-1.2061855 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 -0.5163176 -0.3053101 3.5199900 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
1.2107893 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 -0.9150373 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 3.3814621 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
1.1212717 -0.8736647 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
1.2107893 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 -1.099202 0.8635475 0.9150373 -1.1786755 -1.1119728 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 -0.9690447 -1.1786755 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 -1.1926361 2.7759168 -0.2454786 0.7853823 -0.5074572 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.2260958 1.1380633 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 0.9150373 -1.1786755 -1.1119728 -1.5128560 0.6218253 -1.124924 0.8336874 1.2508149 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 3.675012 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.6736838 1.1380633 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 3.675012 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.2260958 1.1380633 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 -1.099202 0.8635475 -1.0866068 -1.1786755 0.8941637 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 3.675012 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
1.2107893 1.1380633 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 -1.0866068 0.8435619 -1.1119728 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 3.3814621 0.6218253 -0.5427736 -1.5548244 1.5989793 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.0470607 1.1380633 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 0.8336874 1.2508149 -0.9690447 -1.1786755 -0.980189 -1.5989793 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
-1.2061855 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 0.6572243 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
-1.5642559 1.1380633 -0.8336874 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 -1.099202 -1.1513967 -1.0866068 -1.1786755 0.8941637 0.6572243 0.6218253 0.883869 -1.1926361 1.2508149 1.0260473 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 1.5989793 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
1.0317541 1.1380633 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 -1.1786755 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 -0.9690447 0.8435619 1.014382 -1.5989793 -0.4070802 2.4424812 -0.6218253 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
-1.2957031 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 3.2566416 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 3.3814621
-1.2957031 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 2.9448907 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.4946486 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 -1.1119728 -1.5128560 0.6218253 -1.124924 0.8336874 1.2508149 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 2.9448907 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 4.2824114 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 1.5989793 -1.1926361 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.4946486 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 -1.1513967 -1.0866068 -1.1786755 -1.1119728 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 -0.7759153 -1.3981655 -0.270553 -0.5427736 -1.1786755 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 3.675012 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
-1.5642559 1.1380633 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 -1.1926361 -0.7949104 1.0260473 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 -1.3981655 3.675012 -0.5427736 -1.1786755 4.2824114 -0.6840315 -3.8501813 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 1.5989793 -1.1926361 2.7759168 -0.2454786 -1.2659894 1.9593488 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.1365783 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 -1.5989793 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 -0.5691187 -0.7759153 -0.5074572 3.3814621
-0.8481152 1.1380633 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 0.8435619 -1.1119728 0.6572243 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
0.0470607 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 -1.1786755 0.8941637 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 1.0260473 -1.1786755 -0.980189 0.6218253 2.4424812 -0.4070802 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.3156134 1.1380633 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 1.5989793 -1.1926361 -0.3581828 4.0503968 -1.2659894 1.9593488 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
-1.2061855 -0.8736647 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 -1.1926361 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 2.9448907 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
1.0317541 1.1380633 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 -1.1513967 0.9150373 0.8435619 0.8941637 -1.5128560 -1.5989793 0.883869 0.8336874 1.2508149 1.0260473 -1.1786755 -0.980189 -1.5989793 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.3852207 1.1380633 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 -1.099202 0.8635475 -1.0866068 0.8435619 0.8941637 -1.5128560 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 -0.5074572 3.143360 1.7470621 -0.7759153 -0.5074572 -0.2940402
-1.2957031 1.1380633 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
0.4051310 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 1.0260473 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 -0.9150373 2.9448907 -0.7759153 -1.3981655 -0.270553 1.8318609 -1.1786755 4.2824114 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
0.4946486 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 -1.0866068 0.8435619 -1.1119728 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 3.675012 -0.5427736 -1.1786755 4.2824114 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.1166680 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
-0.0424569 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
0.4946486 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 -0.5163176 -0.3053101 3.5199900 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 -0.7759153 -1.3981655 -0.270553 -0.5427736 -1.1786755 -0.2321789 -0.6840315 0.2582439 0.2582439 -2.3870530 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 -0.5427736 -1.5548244 -0.6218253 -1.1926361 -0.3581828 -0.2454786 -1.2659894 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
0.9422365 1.1380633 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 -1.1513967 -1.0866068 0.8435619 0.8941637 -1.5128560 0.6218253 0.883869 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 -0.4070802 2.4424812 -0.6218253 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 -1.1926361 -0.3581828 -0.2454786 -1.2659894 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
-1.5642559 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 -1.1119728 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 3.2566416 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 0.8336874 -0.3581828 -0.2454786 -1.2659894 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
1.9269300 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 3.3814621 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 4.0503968 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
1.2107893 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 0.8336874 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 -0.4070802 2.4424812 -0.6218253 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.1166680 1.1380633 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 3.3814621 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 2.7759168 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
1.2107893 1.1380633 -0.8336874 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 -0.5163176 -0.3053101 3.5199900 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 0.8635475 -1.0866068 0.8435619 -1.1119728 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 4.0503968 -1.2659894 1.9593488 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.8527190 1.1380633 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 0.8336874 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.8527190 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 -1.1786755 0.8941637 0.6572243 -1.5989793 0.883869 0.8336874 -0.7949104 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
-0.3110097 1.1380633 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 -1.1786755 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 3.675012 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 -1.1926361 2.7759168 -0.2454786 -1.2659894 1.9593488 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-0.0424569 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 -1.099202 -1.1513967 0.9150373 -1.1786755 -1.1119728 -1.5128560 -1.5989793 0.883869 0.8336874 -0.7949104 -0.9690447 -1.1786755 1.014382 -1.5989793 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-0.9376328 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
1.0317541 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 3.2566416 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 -1.1926361 2.7759168 -0.2454786 -1.2659894 1.9593488 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
1.9269300 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 -1.1513967 0.9150373 -1.1786755 -1.1119728 -1.5128560 -1.5989793 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
0.3156134 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.4747383 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 3.675012 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
-1.6537735 -0.8736647 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 -0.5163176 -0.3053101 3.5199900 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
-1.4747383 1.1380633 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 -1.099202 0.8635475 0.9150373 -1.1786755 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 3.675012 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
-1.2061855 -0.8736647 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 -1.1513967 0.9150373 0.8435619 0.8941637 -1.5128560 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 -3.8501813 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 3.3814621
0.7632014 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 -1.1513967 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 2.4424812 -0.4070802 -0.6218253 -0.8736647 -0.9150373 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 1.5989793 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
0.8527190 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 -1.1513967 0.9150373 -1.1786755 0.8941637 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 1.014382 -1.5989793 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 3.3814621
0.5841662 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 0.8435619 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
1.4793421 1.1380633 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 -1.1513967 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 1.5989793 -1.1926361 2.7759168 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.1166680 1.1380633 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 0.8635475 0.9150373 -1.1786755 -1.1119728 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 3.2566416 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 4.0503968 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.2260958 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 -1.1513967 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.7632014 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 -1.1513967 -1.0866068 0.8435619 -1.1119728 0.6572243 0.6218253 -1.124924 0.8336874 -0.7949104 -0.9690447 -1.1786755 1.014382 -1.5989793 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 3.2566416 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.2260958 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 -1.1786755 -1.1119728 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 2.9448907 -0.7759153 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
-0.4005273 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 -0.9150373 -0.3376308 1.2814359 -1.3981655 3.675012 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 2.7759168 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.5642559 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 -1.1119728 -1.5128560 -1.5989793 0.883869 -1.1926361 -0.7949104 -0.9690447 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.0470607 1.1380633 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 -1.1513967 0.9150373 0.8435619 0.8941637 -1.5128560 0.6218253 0.883869 0.8336874 -0.7949104 -0.9690447 -1.1786755 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 3.3814621
-0.4900448 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
1.3003069 -0.8736647 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 0.8435619 0.8941637 -1.5128560 -1.5989793 0.883869 0.8336874 -0.7949104 1.0260473 -1.1786755 1.014382 -1.5989793 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.2260958 1.1380633 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 0.9150373 0.8435619 -1.1119728 -1.5128560 -1.5989793 0.883869 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
1.9269300 -0.8736647 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 -1.1513967 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 -1.5989793 -0.4070802 2.4424812 -0.6218253 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
0.4946486 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
-1.4747383 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 -1.1786755 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 -0.9150373 -0.3376308 1.2814359 -1.3981655 3.675012 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.4051310 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 -0.5427736 -1.5548244 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.5841662 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 0.9150373 0.8435619 -1.1119728 0.6572243 -1.5989793 0.883869 -1.1926361 -0.7949104 1.0260473 -1.1786755 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 3.3814621 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-0.3110097 1.1380633 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 0.8941637 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 1.0260473 0.8435619 -0.980189 -1.5989793 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 1.5989793 -1.1926361 -0.3581828 4.0503968 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
-1.9223262 1.1380633 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 1.2508149 1.0260473 -1.1786755 -0.980189 -1.5989793 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 -3.8501813 0.2582439 0.4165327 -0.3682179 3.2566416 3.675012 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
0.2260958 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 -1.1513967 -1.0866068 0.8435619 -1.1119728 -1.5128560 0.6218253 -1.124924 0.8336874 -0.7949104 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 3.675012 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 1.5989793 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
0.3156134 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 0.8435619 0.8941637 0.6572243 -1.5989793 0.883869 0.8336874 1.2508149 1.0260473 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
-0.5795624 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 -1.1119728 0.6572243 -1.5989793 0.883869 0.8336874 -0.7949104 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
1.1212717 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
1.3003069 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 0.8435619 0.8941637 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 1.0260473 -1.1786755 -0.980189 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 3.3814621 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.7632014 1.1380633 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 -1.099202 0.8635475 -1.0866068 -1.1786755 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 -0.5427736 -1.5548244 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.4051310 1.1380633 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
1.0317541 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 -1.1513967 0.9150373 -1.1786755 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 3.675012 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.5642559 -0.8736647 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 2.1078933 -0.6042262 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 -1.1926361 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-0.2214921 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 0.8635475 0.9150373 -1.1786755 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 3.3814621 -1.5989793 1.8318609 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.4051310 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 -1.1786755 0.8941637 0.6572243 0.6218253 -1.124924 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 4.0503968 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 1.9593488 -0.2940402
0.8527190 1.1380633 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 1.5989793 -1.1926361 2.7759168 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 3.3814621
-0.4900448 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 0.8941637 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 0.8435619 -0.980189 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.7632014 1.1380633 -0.8336874 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 2.0684394 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 1.9942775 -0.3581828 -0.3479927 -1.099202 0.8635475 -1.0866068 -1.1786755 -1.1119728 -1.5128560 0.6218253 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 1.5989793 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
1.3898245 1.1380633 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 0.8435619 -1.1119728 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 -0.9690447 0.8435619 -0.980189 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-0.1319745 1.1380633 -0.8336874 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 0.8635475 -1.0866068 -1.1786755 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 2.7759168 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 3.3814621
0.5841662 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 -1.1513967 0.9150373 0.8435619 -1.1119728 0.6572243 0.6218253 -1.124924 -1.1926361 -0.7949104 1.0260473 0.8435619 1.014382 -1.5989793 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 -0.7759153 -1.3981655 -0.270553 -0.5427736 -1.1786755 -0.2321789 -0.6840315 0.2582439 -3.8501813 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 -1.5989793 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 -1.2659894 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 -0.2940402
-0.4900448 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 -0.5163176 -0.3053101 3.5199900 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 -1.0866068 -1.1786755 -1.1119728 -1.5128560 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 -1.1786755 -0.980189 0.6218253 2.4424812 -0.4070802 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 3.675012 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.3156134 -0.8736647 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 0.9150373 -1.1786755 0.8941637 -1.5128560 -1.5989793 0.883869 -1.1926361 -0.7949104 1.0260473 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 3.675012 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.4747383 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 -1.1119728 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 1.0260473 0.8435619 -0.980189 0.6218253 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 1.5989793 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-0.1319745 -0.8736647 -0.8336874 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 1.8318609 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 0.8435619 1.014382 0.6218253 2.4424812 -0.4070802 -0.6218253 -0.8736647 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 3.3814621 -1.5989793 1.8318609 0.6394842 1.5989793 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-0.5795624 1.1380633 -0.8336874 -0.533972 -0.5691187 -0.5778915 2.1921939 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 1.5766148 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 -0.5954423 1.5989793 -0.4806937 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 -0.6750661 1.9257251 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.4051310 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 2.1078933 -0.4070802 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 -0.5954423 2.6296017 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 -1.0866068 0.8435619 -1.1119728 0.6572243 0.6218253 -1.124924 0.8336874 -0.7949104 1.0260473 0.8435619 -0.980189 -1.5989793 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 3.2566416 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 -1.5989793 1.8318609 0.6394842 1.5989793 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
1.0317541 1.1380633 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 -0.5954423 1.6455522 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 -1.124924 0.8336874 1.2508149 -0.9690447 -1.1786755 -0.980189 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 3.675012 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
0.6736838 1.1380633 -0.8336874 -0.533972 1.7470621 -0.5778915 -0.4535574 -0.3479927 -0.4070802 1.6698272 -0.6042262 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 2.7002645 -0.4716964 -0.6042262 -0.551563 -0.5074572 2.2373454 -0.586665 -0.586665 -0.3581828 -0.3781127 1.5128560 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 -0.4626528 1.7470621 -0.5074572 -0.551563 -0.3975326 -0.3053101 1.6698272 -0.6218253 -0.4806937 -0.4716964 -0.316313 2.0684394 -0.6130196 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 2.2373454 -0.5954423 -0.6042262 -0.5251545 -0.425899 2.5011426 -0.5427736 -0.6042262 -0.5163176 -0.6306459 1.862056 -0.4985694 -0.425899 -0.3975326 -0.5427736 1.5989793 -0.533972 -0.3270781 -0.4535574 -0.6218253 1.802669 -0.5954423 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 1.014382 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 -0.9150373 -0.3376308 1.2814359 -1.3981655 -0.270553 1.8318609 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 3.2566416 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 -1.1926361 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 3.3814621
0.5841662 1.1380633 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 1.6698272 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 1.694810 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 -0.3682179 1.8318609 -0.5427736 -0.5603436 -0.4716964 -0.4626528 -0.5691187 -0.5074572 1.802669 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 -0.5163176 -0.3053101 3.5199900 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 -0.9690447 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 -0.9150373 -0.3376308 1.2814359 0.7111359 -0.270553 -0.5427736 -1.1786755 -0.2321789 1.4535670 0.2582439 0.2582439 -2.3870530 2.7002645 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 -1.1926361 2.7759168 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 -0.7759153 -0.5074572 3.3814621
-1.7432911 -0.8736647 -0.8336874 1.862056 -0.5691187 -0.5778915 -0.4535574 -0.3479927 2.4424812 -0.5954423 -0.6042262 -0.4806937 -0.3975326 2.3870530 -0.5954423 -0.5954423 -0.4716964 -0.4070802 2.334557 -0.4626528 -0.6306459 -0.4626528 -0.5074572 2.0684394 -0.3682179 -0.4716964 -0.6042262 -0.551563 1.9593488 -0.4444042 -0.586665 -0.586665 -0.3581828 2.6296017 -0.6572243 -0.6661312 -0.4070802 -0.3682179 2.7002645 -0.5427736 -0.5427736 -0.5603436 -0.4716964 2.1490969 -0.5691187 -0.5074572 -0.551563 -0.3975326 3.2566416 -0.5954423 -0.6218253 -0.4806937 -0.4716964 3.143360 -0.4806937 -0.6130196 -0.5691187 -0.4985694 1.4728716 -0.6750661 -0.5163176 -0.3053101 -0.2824683 3.2566416 -0.4444042 -0.5954423 -0.6042262 -0.5251545 2.334557 -0.3975326 -0.5427736 -0.6042262 -0.5163176 1.5766148 -0.533972 -0.4985694 -0.425899 -0.3975326 1.8318609 -0.6218253 -0.533972 -0.3270781 -0.4535574 1.5989793 -0.551563 -0.5954423 -0.3781127 -0.3270781 1.5989793 -0.6483428 -0.4985694 -0.3581828 -0.3479927 -1.099202 -1.1513967 -1.0866068 -1.1786755 -1.1119728 -1.5128560 -1.5989793 -1.124924 -1.1926361 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 2.4424812 -0.4070802 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 0.6394842 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.0271504 -0.8736647 -0.8336874 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 -0.4626528 1.9593488 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 -0.586665 2.7759168 -0.3781127 -0.6572243 -0.6661312 -0.4070802 2.7002645 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 -0.5074572 -0.551563 2.5011426 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 -0.5691187 1.9942775 -0.6750661 -0.6750661 -0.5163176 -0.3053101 3.5199900 -0.3053101 -0.4444042 -0.5954423 -0.6042262 1.8933203 -0.425899 -0.3975326 -0.5427736 -0.6042262 1.9257251 -0.6306459 -0.533972 -0.4985694 -0.425899 2.5011426 -0.5427736 -0.6218253 -0.533972 -0.3270781 2.1921939 -0.6218253 -0.551563 -0.5954423 -0.3781127 3.0399027 -0.6218253 -0.6483428 -0.4985694 -0.3581828 2.8572030 0.904552 0.8635475 0.9150373 -1.1786755 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 -0.7949104 1.0260473 0.8435619 1.014382 0.6218253 -0.4070802 -0.4070802 -0.6218253 1.1380633 1.0866068 -0.3376308 -0.7759153 -1.3981655 -0.270553 1.8318609 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 1.2659894 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 0.7853823 -0.5074572 -0.316313 -0.5691187 1.2814359 -0.5074572 -0.2940402
-1.2061855 1.1380633 -0.8336874 -0.533972 -0.5691187 -0.5778915 -0.4535574 2.8572030 -0.4070802 -0.5954423 -0.6042262 -0.4806937 2.5011426 -0.4165327 -0.5954423 -0.5954423 -0.4716964 2.4424812 -0.425899 -0.4626528 -0.6306459 2.1490969 -0.5074572 -0.4806937 -0.3682179 -0.4716964 -0.6042262 1.802669 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 1.4926274 -0.4070802 -0.3682179 -0.3682179 -0.5427736 -0.5427736 -0.5603436 2.1078933 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 2.0684394 -0.4716964 -0.316313 -0.4806937 1.6219477 -0.5691187 -0.4985694 -0.6750661 1.4728716 -0.5163176 -0.3053101 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 1.8318609 -0.6042262 -0.5163176 -0.6306459 -0.533972 -0.4985694 2.334557 -0.3975326 -0.5427736 -0.6218253 1.862056 -0.3270781 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 1.5335802 -0.4985694 -0.3581828 -0.3479927 -1.099202 0.8635475 0.9150373 0.8435619 0.8941637 0.6572243 0.6218253 0.883869 0.8336874 1.2508149 1.0260473 -1.1786755 1.014382 0.6218253 -0.4070802 -0.4070802 1.5989793 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 2.5011426 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 1.5989793 -1.1926361 2.7759168 -0.2454786 0.7853823 -0.5074572 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402
-0.8481152 -0.8736647 -0.8336874 -0.533972 -0.5691187 1.7205405 -0.4535574 -0.3479927 -0.4070802 -0.5954423 1.6455522 -0.4806937 -0.3975326 -0.4165327 -0.5954423 1.6698272 -0.4716964 -0.4070802 -0.425899 2.1490969 -0.6306459 -0.4626528 -0.5074572 -0.4806937 -0.3682179 -0.4716964 1.6455522 -0.551563 -0.5074572 -0.4444042 -0.586665 1.694810 -0.3581828 -0.3781127 -0.6572243 -0.6661312 2.4424812 -0.3682179 -0.3682179 -0.5427736 -0.5427736 1.7744214 -0.4716964 -0.4626528 -0.5691187 1.9593488 -0.551563 -0.3975326 -0.3053101 -0.5954423 -0.6218253 -0.4806937 2.1078933 -0.316313 -0.4806937 -0.6130196 1.7470621 -0.4985694 -0.6750661 -0.6750661 -0.5163176 3.2566416 -0.2824683 -0.3053101 -0.4444042 1.6698272 -0.6042262 -0.5251545 -0.425899 -0.3975326 -0.5427736 1.6455522 -0.5163176 -0.6306459 -0.533972 1.9942775 -0.425899 -0.3975326 -0.5427736 -0.6218253 -0.533972 3.0399027 -0.4535574 -0.6218253 -0.551563 1.6698272 -0.3781127 -0.3270781 -0.6218253 -0.6483428 -0.4985694 2.7759168 -0.3479927 -1.099202 -1.1513967 0.9150373 0.8435619 -1.1119728 -1.5128560 0.6218253 0.883869 0.8336874 -0.7949104 -0.9690447 -1.1786755 -0.980189 -1.5989793 -0.4070802 2.4424812 -0.6218253 -0.8736647 1.0866068 -0.3376308 -0.7759153 0.7111359 -0.270553 -0.5427736 0.8435619 -0.2321789 -0.6840315 0.2582439 0.2582439 0.4165327 -0.3682179 -0.3053101 -0.270553 -0.270553 -0.3975326 -0.7853823 -0.3053101 -0.2940402 0.6218253 -0.5427736 -1.5548244 -0.6218253 0.8336874 -0.3581828 -0.2454786 -1.2659894 1.9593488 -0.316313 1.7470621 -0.7759153 -0.5074572 -0.2940402

We can now begin to explore our k-means modeling. K-means clustering will use the data and group them into “k” clusters. These clusters are undefined in the model hence the term unsupervised learning. In order to determine the proper k value, there are several tools we can deploy, one common tool is called the Elbow method which measures the sum of squared distances for stabilized k values. Another tool is the Silhouette method which provides a measure of how close each point in one cluster is to points in a neighboring cluster to determine optimal k. And lastly the Gap Statistics method which measures biggest jumps from within clusters to determine optimal k’s. These methods are tested along various k’s iteratively to see where the elbow or shoulder of curve experiences an inflection point in which the increase/decrease in errors is no longer substantial. Based on the figure below, the optimal k seems looks to be around 2-4.

Clustering<-function(df, algorithm, method = "k-means"){
  optimalk_theme<-theme(panel.background = element_blank(),
                        panel.grid = element_blank(),
                        panel.grid.major.x = element_line(color = "grey90", linetype = 2))
  
  p1<-factoextra::fviz_nbclust(df, algorithm, method = "wss")+
    labs(x = "Centers (k)",
         y = "SSE Width",
         title = paste0(method," - Elbow Method for Determining Optimal k")) +
    optimalk_theme
  
  p2<-factoextra::fviz_nbclust(df, algorithm, method = "silhouette")+
    labs(x = "Centers (k)",
         y = "Silhouette Width",
         title = paste0(method," - silhouette Method for Determining Optimal k")) +
    optimalk_theme
  
    p3<-factoextra::fviz_nbclust(df, algorithm, method = "gap_stat")+
      labs(x = "Centers (k)",
           title = paste0(method," - Gap Statistic for Determining Optimal k"))
  
  grid.arrange(p1,p2,p3, ncol = 1)
}
Clustering(Q1_ADHD,kmeans, "K-means")

After looking at our expected appropriate k-values, a visualization test will be used to see what these clusters truly look like. Below shows several plots of k values from 0-9 and assessing how well the clusters are defined in each. In the figure below, we notice that the k-values of 2, 3, and 4 do well to separate our unknown features and can be used as an appropriately selected k-value.

set.seed(2)
for(i in 1:9){
assign(paste0("A",i),
       factoextra::fviz_cluster(kmeans(Q1_ADHD, centers = i, iter.max = 100),Q1_ADHD,
                                ggtheme = defaulttheme,
                                geom = "point",
                                main = paste("Cluster Plot with K = ", i)))

}


gridExtra::grid.arrange(A1,A2,A3,A4,A5,A6,A7,A8,A9, ncol = 3)

Question 2 Principal Component Analysis (PCA)

PCA uses orthogonal projection of highly correlated variables to a set of values of linearly uncorrelated variables called principal components. The number of principal components is less than or equal to the number of original variables, i.e. min(n - 1, p). This linear transformation is defined in such a way that the first principal component has the largest possible variance. It accounts for as much of the variability in the data as possible by considering highly correlated features. Each succeeding component in turn has the highest variance using the features that are less correlated with the first principal component and that are orthogonal to the preceding component. Features that are strongly correlated with each other are more suitable for PCA than those loosely related. Below corrplot using the Spearman correlation for the categorical variables demonstrate that the features within ADHD set are more strongly correlated than the MD set. In addition, there are too many missing values for the individual substance misuse, and therefore PCA is not performed on this set. For question 2, we conduct PCA on both ADHD and MD, but ADHD is demonstrated to be more suitable for the task.

data prep for Q2

df = readit("ADHD_data.csv")
df = janitor::clean_names(df)

Spearman correlation

# Spearman correlation on ADHD, MD
dfDisorder <- df %>% 
    dplyr::select(matches("age|sex|race|adhd|md"))

cor(dfDisorder, method = "spearman") %>% corrplot(type = "upper")

impute missing, scale and dummify variables

Applying the same methodology to impute missing and dummify variables like the above process in Q1; however, we decide to treat “education” as a numeric variable instead of categorical. We also remove “initial” (just an identifier) and “psych_meds” (too many missing values).

numeric_var = c("age", "adhd_total", "md_total", "education")

dfReady <-df %>% recipe(~.) %>% 
    step_rm(initial, psych_meds) %>% 
    step_impute_knn(all_predictors()) %>% 
    step_mutate_at(-all_of(numeric_var), fn = ~ as.factor(.)) %>% 
    step_dummy(all_nominal(), one_hot = TRUE) %>% 
    step_normalize(all_predictors()) %>%
    step_nzv(all_predictors()) %>%
    step_corr(all_predictors()) %>%
    prep()

dfReady <- dfReady %>% 
    bake(df)

dfReady <- dfReady %>%
    dplyr::mutate_at(all_of(numeric_var), function(x) scale(x) %>% as.numeric)

print(paste0("After transformation, there are ", nrow(dfReady), " rows and ", ncol(dfReady), " columns."))
## [1] "After transformation, there are 175 rows and 142 columns."
# check missing again
if(!any(colSums(is.na(dfReady)) >0)){print("No more missing variable.")}
## [1] "No more missing variable."

PCA - ADHD

summary

Our components are sorted from largest to smallest with regard to their standard deviation. Standard deviation is simply the eigenvalues in our case since the data has been centered and scaled (standardized). Proportion of Variance is the amount of variance that the component accounts for in the data, i.e. PC1 accounts for roughly 14% of total variance in the data set. Cumulative Proportion is the accumulated amount of explained variance, e.g. the first 10 components account for roughly 47% of total variance in the data. Since an eigenvalues <1 would mean that the component actually explains less than a single explanatory variable, therefore we would like to discard those.

# pca - ADHD
adhdPCA <- prcomp(dfReady %>% dplyr::select(contains("adhd_")))

sd <- adhdPCA$sdev
loadings <- adhdPCA$rotation
rownames(loadings) <- colnames(dfReady %>% dplyr::select(contains("adhd_")))
scores <- adhdPCA$x

summary(adhdPCA)
## Importance of components:
##                           PC1    PC2    PC3     PC4     PC5     PC6     PC7
## Standard deviation     3.5579 2.8170 2.2433 1.81333 1.63742 1.59660 1.51561
## Proportion of Variance 0.1391 0.0872 0.0553 0.03613 0.02946 0.02801 0.02524
## Cumulative Proportion  0.1391 0.2263 0.2816 0.31774 0.34720 0.37522 0.40046
##                            PC8     PC9    PC10    PC11    PC12    PC13    PC14
## Standard deviation     1.46753 1.41449 1.41268 1.38996 1.36469 1.34275 1.31352
## Proportion of Variance 0.02367 0.02199 0.02193 0.02123 0.02047 0.01981 0.01896
## Cumulative Proportion  0.42413 0.44611 0.46804 0.48927 0.50974 0.52955 0.54851
##                           PC15    PC16    PC17  PC18   PC19    PC20    PC21
## Standard deviation     1.29931 1.29208 1.26491 1.244 1.2291 1.21699 1.18414
## Proportion of Variance 0.01855 0.01835 0.01758 0.017 0.0166 0.01628 0.01541
## Cumulative Proportion  0.56706 0.58541 0.60299 0.620 0.6366 0.65287 0.66828
##                           PC22   PC23    PC24    PC25    PC26    PC27    PC28
## Standard deviation     1.15184 1.1124 1.09120 1.07870 1.06695 1.03891 1.02804
## Proportion of Variance 0.01458 0.0136 0.01308 0.01279 0.01251 0.01186 0.01161
## Cumulative Proportion  0.68285 0.6965 0.70954 0.72232 0.73483 0.74669 0.75831
##                           PC29    PC30   PC31    PC32    PC33    PC34    PC35
## Standard deviation     1.00990 0.99531 0.9823 0.95921 0.95040 0.92572 0.91340
## Proportion of Variance 0.01121 0.01089 0.0106 0.01011 0.00993 0.00942 0.00917
## Cumulative Proportion  0.76952 0.78040 0.7910 0.80112 0.81104 0.82046 0.82963
##                           PC36    PC37    PC38    PC39    PC40    PC41   PC42
## Standard deviation     0.90642 0.89595 0.86526 0.86202 0.84011 0.82512 0.8039
## Proportion of Variance 0.00903 0.00882 0.00823 0.00817 0.00776 0.00748 0.0071
## Cumulative Proportion  0.83866 0.84748 0.85570 0.86387 0.87163 0.87911 0.8862
##                           PC43    PC44    PC45    PC46    PC47    PC48    PC49
## Standard deviation     0.78732 0.77692 0.76576 0.74599 0.74216 0.72501 0.71020
## Proportion of Variance 0.00681 0.00663 0.00644 0.00612 0.00605 0.00578 0.00554
## Cumulative Proportion  0.89302 0.89965 0.90610 0.91221 0.91827 0.92404 0.92959
##                           PC50    PC51    PC52   PC53    PC54    PC55    PC56
## Standard deviation     0.68870 0.67872 0.64877 0.6468 0.63336 0.60578 0.60143
## Proportion of Variance 0.00521 0.00506 0.00463 0.0046 0.00441 0.00403 0.00397
## Cumulative Proportion  0.93480 0.93986 0.94448 0.9491 0.95349 0.95752 0.96150
##                           PC57    PC58    PC59    PC60    PC61    PC62    PC63
## Standard deviation     0.58603 0.57520 0.55797 0.53726 0.51748 0.50646 0.48756
## Proportion of Variance 0.00377 0.00364 0.00342 0.00317 0.00294 0.00282 0.00261
## Cumulative Proportion  0.96527 0.96891 0.97233 0.97550 0.97844 0.98126 0.98387
##                           PC64    PC65    PC66    PC67    PC68    PC69    PC70
## Standard deviation     0.46879 0.46066 0.42727 0.42320 0.40103 0.39234 0.37794
## Proportion of Variance 0.00241 0.00233 0.00201 0.00197 0.00177 0.00169 0.00157
## Cumulative Proportion  0.98629 0.98862 0.99063 0.99260 0.99436 0.99605 0.99762
##                           PC71    PC72    PC73    PC74     PC75      PC76
## Standard deviation     0.35564 0.29150 0.06053 0.03344 1.58e-15 9.088e-16
## Proportion of Variance 0.00139 0.00093 0.00004 0.00001 0.00e+00 0.000e+00
## Cumulative Proportion  0.99901 0.99995 0.99999 1.00000 1.00e+00 1.000e+00
##                             PC77      PC78      PC79      PC80      PC81
## Standard deviation     7.449e-16 6.899e-16 6.481e-16 4.661e-16 4.549e-16
## Proportion of Variance 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
## Cumulative Proportion  1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00
##                             PC82      PC83      PC84      PC85      PC86
## Standard deviation     4.365e-16 4.334e-16 3.501e-16 3.498e-16 3.459e-16
## Proportion of Variance 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
## Cumulative Proportion  1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00
##                           PC87    PC88    PC89      PC90     PC91
## Standard deviation     3.4e-16 3.4e-16 3.4e-16 1.651e-16 1.44e-16
## Proportion of Variance 0.0e+00 0.0e+00 0.0e+00 0.000e+00 0.00e+00
## Cumulative Proportion  1.0e+00 1.0e+00 1.0e+00 1.000e+00 1.00e+00

scree, cumulative variance plots

A better way to understand and then choose the appropriate number of principal components is to visualize the results using scree and cumulative variance plot. The scree plot (“elbow” method) would indicate that the first 4 components are the most important ones, although they merely captured roughly 32% of the variance in the data. The first 29 components have the standard deviation above 1 and together they captured 77% of the variance. The number of dimensions is significantly reduced from 91 to 29 in this case.

par(mfrow = c(1, 2))

# scree plot
screeplot(adhdPCA, type = "l", npcs = 30, main = "Screeplot of the first 30 PCs")
abline(h = 1, col = "red", lty = 5)
legend("topright", legend = c("Eigenvalue = 1"), col = c("red"), lty = 5, cex = 0.6)

# cumulative variance plot
cumpro <- cumsum(adhdPCA$sdev^2 / sum(adhdPCA$sdev^2))
plot(cumpro[0:30], xlab = "PC #", ylab = "Amount of explained variance", main = "Cumulative variance plot")

loadings

loadings reveal how our variables contribute to each principal component. Positive loadings indicate a variable and a principal component are positively correlated: an increase in one results in an increase in the other. Negative loadings indicate a negative correlation. Large (either positive or negative) loadings indicate that a variable has a strong effect on that principal component. Because the sum of the squares of all loadings for an individual principal component must sum to one, we can calculate what the loadings would be if all variables contributed equally to that principal component. Any variable that has a larger loading than this value contributes more than one variable’s worth of information and would be regarded as an important contributor to that principal component.

adhd_total is the most important contributor to the first principal component. PC1 is made up by majority of "_X4" variables, meaning the response of “very often” from the ADHD questions; whereas PC2 is made up by majority of "_X0" variables, meaning the response of “never” from the ADHD questions. As expected, PCA successfully extract components from features that are not strongly associated to each other.

cut_off <- sqrt(1/ncol(dfReady %>% dplyr::select(contains("adhd_")))) 

loadingsDf <- loadings %>% 
    as.data.frame() %>% 
    tibble::rownames_to_column() %>%
    dplyr::select(variables = rowname, everything())

pc1_important <- loadingsDf %>% 
    dplyr::filter(abs(PC1) > cut_off) %>%
    dplyr::select(variables, PC1) %>%
    arrange(desc(abs(PC1)))

pc1_important %>% 
  kable() %>%
  scroll_box()
variables PC1
adhd_total -0.2799082
adhd_q5_X4 -0.1666408
adhd_q10_X4 -0.1591090
adhd_q8_X4 -0.1554668
adhd_q9_X0 0.1552794
adhd_q14_X4 -0.1499107
adhd_q12_X0 0.1483093
adhd_q17_X0 0.1456655
adhd_q15_X4 -0.1451930
adhd_q13_X4 -0.1449852
adhd_q7_X4 -0.1446878
adhd_q1_X0 0.1428465
adhd_q16_X4 -0.1399452
adhd_q11_X4 -0.1395682
adhd_q14_X0 0.1385226
adhd_q4_X0 0.1385106
adhd_q4_X4 -0.1375949
adhd_q18_X0 0.1361917
adhd_q10_X1 0.1338729
adhd_q8_X0 0.1325776
adhd_q2_X0 0.1302492
adhd_q6_X0 0.1301560
adhd_q3_X0 0.1278680
adhd_q5_X0 0.1270487
adhd_q9_X4 -0.1268527
adhd_q17_X4 -0.1228279
adhd_q6_X4 -0.1217048
adhd_q15_X0 0.1214741
adhd_q7_X1 0.1212228
adhd_q11_X0 0.1194972
adhd_q18_X4 -0.1173525
adhd_q13_X1 0.1168028
adhd_q2_X4 -0.1155950
adhd_q16_X0 0.1135285
adhd_q8_X1 0.1132311
adhd_q13_X0 0.1086601
adhd_q1_X4 -0.1085188
adhd_q3_X4 -0.1076261
adhd_q7_X0 0.1062133
adhd_q9_X3 -0.1060439
pc2_important <- loadingsDf %>% 
    dplyr::filter(abs(PC2) > cut_off) %>%
    dplyr::select(variables, PC2) %>%
    arrange(desc(abs(PC2)))

pc2_important %>%
  kable() %>%
  scroll_box()
variables PC2
adhd_q11_X0 -0.1742647
adhd_q4_X0 -0.1599407
adhd_q8_X0 -0.1579807
adhd_q14_X0 -0.1549818
adhd_q7_X0 -0.1529713
adhd_q18_X1 0.1516660
adhd_q2_X4 -0.1501502
adhd_q5_X0 -0.1497169
adhd_q9_X0 -0.1453479
adhd_q1_X0 -0.1449679
adhd_q11_X4 -0.1442962
adhd_q6_X0 -0.1424132
adhd_q15_X0 -0.1397099
adhd_q10_X4 -0.1390831
adhd_q8_X4 -0.1361637
adhd_q12_X0 -0.1354967
adhd_q16_X4 -0.1339139
adhd_q12_X1 0.1333551
adhd_q17_X0 -0.1327396
adhd_q10_X0 -0.1315912
adhd_q7_X4 -0.1313751
adhd_q13_X2 0.1301477
adhd_q9_X1 0.1300177
adhd_q10_X2 0.1298161
adhd_q13_X0 -0.1271095
adhd_q15_X4 -0.1268380
adhd_q8_X2 0.1242382
adhd_q18_X0 -0.1238995
adhd_q7_X2 0.1230813
adhd_q18_X4 -0.1228124
adhd_q4_X4 -0.1216899
adhd_q4_X2 0.1204936
adhd_q17_X2 0.1192034
adhd_q9_X4 -0.1189392
adhd_q13_X4 -0.1166796
adhd_q11_X2 0.1162003
adhd_q1_X4 -0.1151128
adhd_q15_X2 0.1144691
adhd_q2_X0 -0.1143741
adhd_q3_X0 -0.1134360
adhd_q5_X3 0.1117895
adhd_q17_X4 -0.1108351
adhd_q14_X4 -0.1099284
adhd_q14_X2 0.1096702
adhd_q5_X4 -0.1079195
adhd_q16_X1 0.1071090

biplot

The biplot displays the individuals and variables in the same plot featuring the first two principal components. It seems to suggest that the individuals can be visually clustered into 4 groups based on their responses to the ADHD questions.

biplot(adhdPCA, scale = 0, cex = 0.5)

PCA - MD

summary

We repeat a similar exercise for the MD questions. The summary suggested that the first four components (standard deviation above 1) would account for 61% of the total variance in the data.

mdPCA <- prcomp(dfReady %>% dplyr::select(contains("md_")))
summary(mdPCA)
## Importance of components:
##                           PC1    PC2    PC3     PC4    PC5     PC6     PC7
## Standard deviation     2.6113 1.4086 1.2444 1.15095 0.9873 0.93176 0.88991
## Proportion of Variance 0.3589 0.1044 0.0815 0.06972 0.0513 0.04569 0.04168
## Cumulative Proportion  0.3589 0.4633 0.5448 0.61454 0.6658 0.71154 0.75322
##                           PC8    PC9    PC10    PC11    PC12    PC13    PC14
## Standard deviation     0.8282 0.7858 0.76010 0.72686 0.70223 0.69772 0.65510
## Proportion of Variance 0.0361 0.0325 0.03041 0.02781 0.02595 0.02562 0.02259
## Cumulative Proportion  0.7893 0.8218 0.85222 0.88003 0.90598 0.93160 0.95419
##                           PC15    PC16   PC17    PC18      PC19
## Standard deviation     0.57888 0.54077 0.4912 0.03918 3.919e-16
## Proportion of Variance 0.01764 0.01539 0.0127 0.00008 0.000e+00
## Cumulative Proportion  0.97183 0.98722 0.9999 1.00000 1.000e+00
sd2 <- mdPCA$sdev
loadings2 <- mdPCA$rotation
rownames(loadings2) <- colnames(dfReady %>% dplyr::select(contains("md_")))
scores2 <- mdPCA$x

scree, cumulative variance plots

par(mfrow = c(1, 2))

# scree plot
screeplot(mdPCA, type = "l", npcs = 10, main = "Screeplot of the first 10 PCs")
abline(h = 1, col = "red", lty = 5)
legend("topright", legend = c("Eigenvalue = 1"), col = c("red"), lty = 5, cex = 0.6)

# cumulative variance plot
cumpro <- cumsum(mdPCA$sdev^2 / sum(mdPCA$sdev^2))
plot(cumpro[0:10], xlab = "PC #", ylab = "Amount of explained variance", main = "Cumulative variance plot")

loadings

Similar to ADHD set, md_total is the most important contributor to the first principal component.

cut_off2 <- sqrt(1/ncol(dfReady %>% dplyr::select(contains("md_")))) 

loadingsDf2 <- loadings2 %>% 
    as.data.frame() %>% 
    tibble::rownames_to_column() %>%
    dplyr::select(variables = rowname, everything())

pc1_important2 <- loadingsDf2 %>% 
    dplyr::filter(abs(PC1) > cut_off2) %>%
    dplyr::select(variables, PC1) %>%
    arrange(desc(abs(PC1)))

pc1_important2 %>% kable() %>% scroll_box()
variables PC1
md_total -0.3810349
md_q2_X1 -0.2801951
md_q1l_X1 -0.2709416
md_q1a_X1 -0.2639121
md_q1g_X1 -0.2611799
md_q1f_X1 -0.2563764
md_q1b_X1 -0.2467297
md_q1e_X1 -0.2418589
md_q1h_X1 -0.2324126
pc2_important2 <- loadingsDf2 %>% 
    dplyr::filter(abs(PC2) > cut_off2) %>%
    dplyr::select(variables, PC2) %>%
    arrange(desc(abs(PC2)))

pc2_important2 %>% kable() %>% scroll_box()
variables PC2
md_q3_X3 -0.4708997
md_q1h_X1 0.3504518
md_q1j_X1 0.3150925
md_q1k_X1 0.2944976
md_q1i_X1 0.2872030
md_q1c_X1 0.2792014
md_q1b_X1 -0.2630664
md_q3_X1 0.2332813

biplot

The biplot does not suggest that the individuals can be as clearly defined into 4 groups as the ADHD set.

biplot(mdPCA, scale = 0, cex = 0.5)

Question 3 Support Vector Machine (SVM)

We will apply the SVM to classify attempted suicide. We will conduct linear, non-linear (radial basis kernel, polynomial basis kernel) SVM. Since there’s an imbalance distribution for the target variable (approximately 30% attempted suicide), we will oversample the minority class by 50% (replacement = TRUE) in order to see if that can boost up the model performance. Finally, we will apply PCA and then conduct the SVM on the subset (reduced dimensions from original data) to see if there’s any improvement. Since there are 13 missing values from the suicide variable, we will remove those individuals and look at the complete set only.

data prep

We will transform the target variable into factor before passing it to the SVM algorithm. We will create a different train set by oversampling the minority class (attempted suicide equal to “Yes”) for comparison. Every model/confusion matrix denoted to “2” is from the oversampling train set.

# let's remove the missing suicide data and look at the complete data set
dfReady2 <- dfReady[!is.na(df$suicide), ]

# baseline distribution
print("baseline distribution for target variable from entire data set:")
## [1] "baseline distribution for target variable from entire data set:"
table(dfReady2 %>% 
          dplyr::mutate(suicide_X1 = dplyr::case_when(suicide_X1 >0 ~1, TRUE ~0) %>% 
                          factor(., levels = c("1", "0"), labels = c("Yes", "No"))) %>% 
          dplyr::select(suicide_X1))
## 
## Yes  No 
##  49 113
# split data
set.seed(1234)
index <- floor(sample(1:nrow(dfReady2), nrow(dfReady2) * .75, replace = FALSE))
trainSet <- dfReady2[index, ] %>% dplyr::mutate(suicide_X1 = dplyr::case_when(suicide_X1 >0 ~1, TRUE ~0) %>% 
                                                   factor(., levels = c("1", "0"), labels = c("Yes", "No")))
testSet <- dfReady2[-index, ] %>% dplyr::mutate(suicide_X1 = dplyr::case_when(suicide_X1 >0 ~1, TRUE ~0) %>% 
                                                   factor(., levels = c("1", "0"), labels = c("Yes", "No")))

# oversampling the minority class
set.seed(1234)
oversampling_by = 1.5
oversample_index = sample(1:nrow(trainSet %>% dplyr::filter(suicide_X1 == "Yes")),
                          floor(nrow(trainSet %>% dplyr::filter(suicide_X1 == "Yes")) * oversampling_by), 
                          replace = TRUE)

trainSet2 = dplyr::bind_rows(
    trainSet %>% dplyr::filter(suicide_X1 == "Yes") %>% 
        .[oversample_index, ],
    trainSet %>% dplyr::filter(suicide_X1 == "No")
    )

# trainSetControl
trainSet.control <- caret::trainControl(method = "repeatedcv",
                                        number = 10,
                                        summaryFunction = twoClassSummary,
                                        classProb = TRUE)
#trainSet.control <- caret::trainControl(method = "cv", number = 5, savePredictions = "final", classProbs = TRUE)

# distribution from train, test sets
print("distribution of target variable from train set:")
## [1] "distribution of target variable from train set:"
table(trainSet$suicide_X1)
## 
## Yes  No 
##  36  85
# distribution from train, test sets
print("distribution of target variable from oversample train set:")
## [1] "distribution of target variable from oversample train set:"
table(trainSet2$suicide_X1)
## 
## Yes  No 
##  54  85
print("distribution of target variable from test set:")
## [1] "distribution of target variable from test set:"
table(testSet$suicide_X1)
## 
## Yes  No 
##  13  28

SVM linear

By default, caret builds the SVM linear classifier using C = 1. This tuning parameter C, also known as Cost, determines the possible misclassification. Essentially, it imposes a penalty to the model for making an error, i.e. the higher value of C, the less likely it is that the SVM algorithm will misclassify a target.

linear

set.seed(12)
svm_lin <- caret::train(suicide_X1 ~., 
                        data = trainSet, 
                        method = "svmLinear", 
                        trControl = trainSet.control,
                        tuneGrid = expand.grid(C = seq(0.1, 2, length = 20)),
                        metric = "ROC")

svm_lin2 <- caret::train(suicide_X1 ~., 
                        data = trainSet2, 
                        method = "svmLinear", 
                        trControl = trainSet.control,
                        tuneGrid = expand.grid(C = seq(0.1, 2, length = 20)),
                        metric = "ROC")

# overview of the model
print("regular train set:")
## [1] "regular train set:"
svm_lin
## Support Vector Machines with Linear Kernel 
## 
## 121 samples
## 141 predictors
##   2 classes: 'Yes', 'No' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times) 
## Summary of sample sizes: 109, 109, 109, 109, 109, 109, ... 
## Resampling results across tuning parameters:
## 
##   C    ROC        Sens        Spec     
##   0.1  0.7236111  0.15000000  0.9291667
##   0.2  0.7204861  0.17500000  0.8930556
##   0.3  0.7204861  0.17500000  0.9416667
##   0.4  0.7204861  0.02500000  0.9416667
##   0.5  0.7204861  0.15000000  0.9166667
##   0.6  0.7204861  0.20833333  0.9180556
##   0.7  0.7204861  0.15833333  0.9291667
##   0.8  0.7204861  0.07500000  0.9291667
##   0.9  0.7204861  0.07500000  0.9319444
##   1.0  0.7204861  0.18333333  0.9055556
##   1.1  0.7204861  0.15833333  0.9180556
##   1.2  0.7204861  0.17500000  0.9180556
##   1.3  0.7204861  0.21666667  0.9194444
##   1.4  0.7204861  0.09166667  0.9305556
##   1.5  0.7204861  0.22500000  0.9069444
##   1.6  0.7204861  0.15833333  0.9430556
##   1.7  0.7204861  0.15833333  0.9305556
##   1.8  0.7204861  0.15833333  0.9416667
##   1.9  0.7204861  0.12500000  0.9416667
##   2.0  0.7204861  0.13333333  0.9305556
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was C = 0.1.
print("oversample train set:")
## [1] "oversample train set:"
svm_lin2
## Support Vector Machines with Linear Kernel 
## 
## 139 samples
## 141 predictors
##   2 classes: 'Yes', 'No' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times) 
## Summary of sample sizes: 126, 124, 125, 124, 125, 124, ... 
## Resampling results across tuning parameters:
## 
##   C    ROC        Sens  Spec     
##   0.1  0.8967593  0.84  0.8694444
##   0.2  0.8967593  0.82  0.8694444
##   0.3  0.8967593  0.82  0.8694444
##   0.4  0.8967593  0.84  0.8583333
##   0.5  0.8967593  0.82  0.8694444
##   0.6  0.8967593  0.82  0.8583333
##   0.7  0.8967593  0.84  0.8694444
##   0.8  0.8967593  0.84  0.8583333
##   0.9  0.8967593  0.84  0.8583333
##   1.0  0.8967593  0.82  0.8583333
##   1.1  0.8967593  0.82  0.8694444
##   1.2  0.8967593  0.82  0.8361111
##   1.3  0.8967593  0.82  0.8583333
##   1.4  0.8967593  0.82  0.8694444
##   1.5  0.8967593  0.82  0.8583333
##   1.6  0.8967593  0.84  0.8694444
##   1.7  0.8967593  0.84  0.8583333
##   1.8  0.8967593  0.84  0.8694444
##   1.9  0.8967593  0.82  0.8694444
##   2.0  0.8967593  0.84  0.8694444
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was C = 0.1.

confusion matrix: linear

# testSet
cm_svm_lin = caret::confusionMatrix(predict(svm_lin, testSet, type = "raw"), testSet$suicide_X1)
cm_svm_lin2 = caret::confusionMatrix(predict(svm_lin2, testSet, type = "raw"), testSet$suicide_X1)

print("regular train set:")
## [1] "regular train set:"
cm_svm_lin
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Yes No
##        Yes   8 11
##        No    5 17
##                                         
##                Accuracy : 0.6098        
##                  95% CI : (0.445, 0.758)
##     No Information Rate : 0.6829        
##     P-Value [Acc > NIR] : 0.8788        
##                                         
##                   Kappa : 0.198         
##                                         
##  Mcnemar's Test P-Value : 0.2113        
##                                         
##             Sensitivity : 0.6154        
##             Specificity : 0.6071        
##          Pos Pred Value : 0.4211        
##          Neg Pred Value : 0.7727        
##              Prevalence : 0.3171        
##          Detection Rate : 0.1951        
##    Detection Prevalence : 0.4634        
##       Balanced Accuracy : 0.6113        
##                                         
##        'Positive' Class : Yes           
## 
print("oversample train set:")
## [1] "oversample train set:"
cm_svm_lin2
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Yes No
##        Yes   7  7
##        No    6 21
##                                           
##                Accuracy : 0.6829          
##                  95% CI : (0.5191, 0.8192)
##     No Information Rate : 0.6829          
##     P-Value [Acc > NIR] : 0.5744          
##                                           
##                   Kappa : 0.2826          
##                                           
##  Mcnemar's Test P-Value : 1.0000          
##                                           
##             Sensitivity : 0.5385          
##             Specificity : 0.7500          
##          Pos Pred Value : 0.5000          
##          Neg Pred Value : 0.7778          
##              Prevalence : 0.3171          
##          Detection Rate : 0.1707          
##    Detection Prevalence : 0.3415          
##       Balanced Accuracy : 0.6442          
##                                           
##        'Positive' Class : Yes             
## 

SVM non-linear

To build a non-linear SVM classifier, we can use either radial kernel or polynomial kernel function. The caret package automatically chooses the optimal values for the model tuning parameters based on values that maximize the model accuracy.

non-linear: radial kernel

set.seed(12)
svm_k <- caret::train(suicide_X1 ~., 
                      data = trainSet, 
                      method = "svmRadial", 
                      trControl = trainSet.control,
                      # tuneGrid = expand.grid(sigma = 2^c(-25, -20, -15,-10, -5, 0), 
                      #                        C = 2^c(0:5))
                      tuneLength = 10,
                      metric = "ROC")

svm_k2 <- caret::train(suicide_X1 ~., 
                      data = trainSet2, 
                      method = "svmRadial", 
                      trControl = trainSet.control,
                      # tuneGrid = expand.grid(sigma = 2^c(-25, -20, -15,-10, -5, 0), 
                      #                        C = 2^c(0:5))
                      tuneLength = 10,
                      metric = "ROC")

# overview of the model
print("regular train set:")
## [1] "regular train set:"
svm_k
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 121 samples
## 141 predictors
##   2 classes: 'Yes', 'No' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times) 
## Summary of sample sizes: 109, 109, 109, 109, 109, 109, ... 
## Resampling results across tuning parameters:
## 
##   C       ROC        Sens       Spec     
##     0.25  0.7408565  0.2000000  0.8958333
##     0.50  0.7408565  0.3583333  0.8722222
##     1.00  0.7408565  0.2166667  0.8958333
##     2.00  0.7535880  0.2833333  0.9208333
##     4.00  0.7466435  0.1333333  0.9319444
##     8.00  0.7378472  0.1750000  0.9194444
##    16.00  0.7378472  0.2250000  0.9333333
##    32.00  0.7378472  0.1500000  0.9444444
##    64.00  0.7378472  0.2500000  0.9444444
##   128.00  0.7378472  0.2000000  0.9666667
## 
## Tuning parameter 'sigma' was held constant at a value of 0.003861466
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.003861466 and C = 2.
print("oversample train set:")
## [1] "oversample train set:"
svm_k2
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 139 samples
## 141 predictors
##   2 classes: 'Yes', 'No' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times) 
## Summary of sample sizes: 125, 125, 125, 125, 125, 124, ... 
## Resampling results across tuning parameters:
## 
##   C       ROC        Sens       Spec     
##     0.25  0.8919444  0.7433333  0.7791667
##     0.50  0.8919444  0.7833333  0.8277778
##     1.00  0.9040278  0.7233333  0.8361111
##     2.00  0.9278704  0.7600000  0.8944444
##     4.00  0.9333333  0.8133333  0.9305556
##     8.00  0.9407407  0.8133333  0.9416667
##    16.00  0.9407407  0.8133333  0.9305556
##    32.00  0.9407407  0.8300000  0.9430556
##    64.00  0.9407407  0.8133333  0.9430556
##   128.00  0.9407407  0.8300000  0.9305556
## 
## Tuning parameter 'sigma' was held constant at a value of 0.003823617
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.003823617 and C = 8.

confusion matrix: radial kernel

cm_svm_k = caret::confusionMatrix(predict(svm_k, testSet, type = "raw"), testSet$suicide_X1)
cm_svm_k2 = caret::confusionMatrix(predict(svm_k2, testSet, type = "raw"), testSet$suicide_X1)

print("regular train set:")
## [1] "regular train set:"
cm_svm_k
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Yes No
##        Yes   1  1
##        No   12 27
##                                           
##                Accuracy : 0.6829          
##                  95% CI : (0.5191, 0.8192)
##     No Information Rate : 0.6829          
##     P-Value [Acc > NIR] : 0.574381        
##                                           
##                   Kappa : 0.0533          
##                                           
##  Mcnemar's Test P-Value : 0.005546        
##                                           
##             Sensitivity : 0.07692         
##             Specificity : 0.96429         
##          Pos Pred Value : 0.50000         
##          Neg Pred Value : 0.69231         
##              Prevalence : 0.31707         
##          Detection Rate : 0.02439         
##    Detection Prevalence : 0.04878         
##       Balanced Accuracy : 0.52060         
##                                           
##        'Positive' Class : Yes             
## 
print("oversamle train set:")
## [1] "oversamle train set:"
cm_svm_k2
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Yes No
##        Yes   3  3
##        No   10 25
##                                           
##                Accuracy : 0.6829          
##                  95% CI : (0.5191, 0.8192)
##     No Information Rate : 0.6829          
##     P-Value [Acc > NIR] : 0.57438         
##                                           
##                   Kappa : 0.1445          
##                                           
##  Mcnemar's Test P-Value : 0.09609         
##                                           
##             Sensitivity : 0.23077         
##             Specificity : 0.89286         
##          Pos Pred Value : 0.50000         
##          Neg Pred Value : 0.71429         
##              Prevalence : 0.31707         
##          Detection Rate : 0.07317         
##    Detection Prevalence : 0.14634         
##       Balanced Accuracy : 0.56181         
##                                           
##        'Positive' Class : Yes             
## 

non-linear: polynomial kernel

set.seed(12)
svm_p <- caret::train(suicide_X1 ~., 
                      data = trainSet, 
                      method = "svmPoly", 
                      trControl = trainSet.control,
                      tuneLength = 5,
                      metric = "ROC")

svm_p2 <- caret::train(suicide_X1 ~., 
                       data = trainSet2, 
                       method = "svmPoly", 
                       trControl = trainSet.control,
                       tuneLength = 5,
                       metric = "ROC")

# overview of the model
print("regular train set:")
## [1] "regular train set:"
svm_p
## Support Vector Machines with Polynomial Kernel 
## 
## 121 samples
## 141 predictors
##   2 classes: 'Yes', 'No' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times) 
## Summary of sample sizes: 109, 109, 109, 109, 109, 109, ... 
## Resampling results across tuning parameters:
## 
##   degree  scale  C     ROC        Sens        Spec     
##   1       1e-03  0.25  0.7733796  0.35833333  0.8722222
##   1       1e-03  0.50  0.7733796  0.26666667  0.8847222
##   1       1e-03  1.00  0.7733796  0.45000000  0.8361111
##   1       1e-03  2.00  0.7733796  0.33333333  0.8972222
##   1       1e-03  4.00  0.7702546  0.25000000  0.9097222
##   1       1e-02  0.25  0.7733796  0.32500000  0.8597222
##   1       1e-02  0.50  0.7671296  0.18333333  0.9333333
##   1       1e-02  1.00  0.7586806  0.32500000  0.8847222
##   1       1e-02  2.00  0.7444444  0.13333333  0.8861111
##   1       1e-02  4.00  0.7505787  0.12500000  0.9083333
##   1       1e-01  0.25  0.7459491  0.16666667  0.9000000
##   1       1e-01  0.50  0.7244213  0.20833333  0.9305556
##   1       1e-01  1.00  0.7236111  0.13333333  0.9541667
##   1       1e-01  2.00  0.7204861  0.20000000  0.9291667
##   1       1e-01  4.00  0.7204861  0.15833333  0.9180556
##   1       1e+00  0.25  0.7204861  0.10833333  0.9541667
##   1       1e+00  0.50  0.7204861  0.10833333  0.9305556
##   1       1e+00  1.00  0.7204861  0.12500000  0.9291667
##   1       1e+00  2.00  0.7204861  0.15000000  0.9291667
##   1       1e+00  4.00  0.7204861  0.10833333  0.9416667
##   1       1e+01  0.25  0.7204861  0.21666667  0.9305556
##   1       1e+01  0.50  0.7204861  0.24166667  0.9180556
##   1       1e+01  1.00  0.7204861  0.13333333  0.9305556
##   1       1e+01  2.00  0.7204861  0.07500000  0.9416667
##   1       1e+01  4.00  0.7204861  0.18333333  0.9069444
##   2       1e-03  0.25  0.7770833  0.33333333  0.8722222
##   2       1e-03  0.50  0.7802083  0.38333333  0.8597222
##   2       1e-03  1.00  0.7802083  0.36666667  0.8972222
##   2       1e-03  2.00  0.7739583  0.35000000  0.8958333
##   2       1e-03  4.00  0.7618056  0.21666667  0.9083333
##   2       1e-02  0.25  0.7408565  0.17500000  0.9208333
##   2       1e-02  0.50  0.7409722  0.16666667  0.8958333
##   2       1e-02  1.00  0.7310185  0.10000000  0.9541667
##   2       1e-02  2.00  0.7310185  0.15000000  0.9333333
##   2       1e-02  4.00  0.7310185  0.10833333  0.9444444
##   2       1e-01  0.25  0.6812500  0.02500000  0.9666667
##   2       1e-01  0.50  0.6812500  0.00000000  0.9777778
##   2       1e-01  1.00  0.6125000  0.03333333  0.9666667
##   2       1e-01  2.00  0.6812500  0.14166667  0.9652778
##   2       1e-01  4.00  0.6812500  0.05000000  0.9666667
##   2       1e+00  0.25  0.4487269  0.00000000  1.0000000
##   2       1e+00  0.50  0.4646991  0.00000000  1.0000000
##   2       1e+00  1.00  0.4973380  0.00000000  1.0000000
##   2       1e+00  2.00  0.5535880  0.00000000  0.9888889
##   2       1e+00  4.00  0.4376157  0.00000000  0.9888889
##   2       1e+01  0.25  0.4878472  0.02500000  1.0000000
##   2       1e+01  0.50  0.4450231  0.00000000  0.9750000
##   2       1e+01  1.00  0.4526620  0.00000000  1.0000000
##   2       1e+01  2.00  0.4241898  0.03333333  0.9888889
##   2       1e+01  4.00  0.4276620  0.00000000  1.0000000
##   3       1e-03  0.25  0.7807870  0.25833333  0.8847222
##   3       1e-03  0.50  0.7839120  0.32500000  0.8847222
##   3       1e-03  1.00  0.7807870  0.38333333  0.8597222
##   3       1e-03  2.00  0.7518519  0.32500000  0.8722222
##   3       1e-03  4.00  0.7496528  0.18333333  0.9069444
##   3       1e-02  0.25  0.7223380  0.22500000  0.9291667
##   3       1e-02  0.50  0.7182870  0.21666667  0.8972222
##   3       1e-02  1.00  0.7182870  0.17500000  0.9555556
##   3       1e-02  2.00  0.7182870  0.10000000  0.9305556
##   3       1e-02  4.00  0.7182870  0.16666667  0.9541667
##   3       1e-01  0.25  0.6633102  0.14166667  0.9541667
##   3       1e-01  0.50  0.6633102  0.10833333  0.9666667
##   3       1e-01  1.00  0.6633102  0.05000000  0.9652778
##   3       1e-01  2.00  0.6633102  0.08333333  0.9541667
##   3       1e-01  4.00  0.6633102  0.08333333  0.9666667
##   3       1e+00  0.25  0.6875000  0.08333333  0.9666667
##   3       1e+00  0.50  0.6875000  0.08333333  0.9666667
##   3       1e+00  1.00  0.6875000  0.14166667  0.9416667
##   3       1e+00  2.00  0.6875000  0.05833333  0.9666667
##   3       1e+00  4.00  0.6875000  0.08333333  0.9763889
##   3       1e+01  0.25  0.6875000  0.08333333  0.9541667
##   3       1e+01  0.50  0.6875000  0.05833333  0.9527778
##   3       1e+01  1.00  0.6875000  0.13333333  0.9291667
##   3       1e+01  2.00  0.6875000  0.05000000  0.9638889
##   3       1e+01  4.00  0.6875000  0.14166667  0.9541667
## 
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were degree = 3, scale = 0.001 and C = 0.5.
print("oversample train set:")
## [1] "oversample train set:"
svm_p2
## Support Vector Machines with Polynomial Kernel 
## 
## 139 samples
## 141 predictors
##   2 classes: 'Yes', 'No' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times) 
## Summary of sample sizes: 126, 124, 124, 125, 125, 126, ... 
## Resampling results across tuning parameters:
## 
##   degree  scale  C     ROC        Sens       Spec     
##   1       1e-03  0.25  0.8583333  0.6966667  0.7500000
##   1       1e-03  0.50  0.8583333  0.7333333  0.7625000
##   1       1e-03  1.00  0.8583333  0.6933333  0.7388889
##   1       1e-03  2.00  0.8583333  0.7500000  0.7388889
##   1       1e-03  4.00  0.8633796  0.6300000  0.8222222
##   1       1e-02  0.25  0.8565278  0.6633333  0.7736111
##   1       1e-02  0.50  0.8606481  0.6100000  0.8347222
##   1       1e-02  1.00  0.8526389  0.6266667  0.8222222
##   1       1e-02  2.00  0.8526852  0.7533333  0.8013889
##   1       1e-02  4.00  0.8655556  0.8300000  0.8250000
##   1       1e-01  0.25  0.8563426  0.7700000  0.8472222
##   1       1e-01  0.50  0.8727778  0.8300000  0.8250000
##   1       1e-01  1.00  0.8742593  0.8300000  0.8472222
##   1       1e-01  2.00  0.8742593  0.8300000  0.8472222
##   1       1e-01  4.00  0.8742593  0.8300000  0.8361111
##   1       1e+00  0.25  0.8742593  0.8300000  0.8583333
##   1       1e+00  0.50  0.8742593  0.8300000  0.8597222
##   1       1e+00  1.00  0.8742593  0.8300000  0.8472222
##   1       1e+00  2.00  0.8742593  0.8300000  0.8597222
##   1       1e+00  4.00  0.8742593  0.8300000  0.8472222
##   1       1e+01  0.25  0.8742593  0.8300000  0.8472222
##   1       1e+01  0.50  0.8742593  0.8300000  0.8486111
##   1       1e+01  1.00  0.8742593  0.8300000  0.8472222
##   1       1e+01  2.00  0.8742593  0.8300000  0.8486111
##   1       1e+01  4.00  0.8742593  0.8300000  0.8486111
##   2       1e-03  0.25  0.8583333  0.7133333  0.7611111
##   2       1e-03  0.50  0.8583333  0.7333333  0.7263889
##   2       1e-03  1.00  0.8583333  0.6966667  0.7611111
##   2       1e-03  2.00  0.8679630  0.6300000  0.8097222
##   2       1e-03  4.00  0.8665278  0.6633333  0.8347222
##   2       1e-02  0.25  0.9162963  0.7533333  0.8805556
##   2       1e-02  0.50  0.9178241  0.8300000  0.9402778
##   2       1e-02  1.00  0.9221759  0.8300000  0.9291667
##   2       1e-02  2.00  0.9221759  0.8300000  0.9402778
##   2       1e-02  4.00  0.9221759  0.8300000  0.9402778
##   2       1e-01  0.25  0.9306019  0.7633333  0.9750000
##   2       1e-01  0.50  0.9306019  0.7633333  0.9750000
##   2       1e-01  1.00  0.9306019  0.7633333  0.9750000
##   2       1e-01  2.00  0.9306019  0.7633333  0.9763889
##   2       1e-01  4.00  0.9306019  0.7633333  0.9750000
##   2       1e+00  0.25  0.9224537  0.7633333  0.9875000
##   2       1e+00  0.50  0.9224537  0.7633333  0.9875000
##   2       1e+00  1.00  0.9224537  0.7633333  1.0000000
##   2       1e+00  2.00  0.9224537  0.7633333  0.9875000
##   2       1e+00  4.00  0.9224537  0.7633333  1.0000000
##   2       1e+01  0.25  0.9144444  0.7633333  1.0000000
##   2       1e+01  0.50  0.9144444  0.7633333  1.0000000
##   2       1e+01  1.00  0.9144444  0.7633333  1.0000000
##   2       1e+01  2.00  0.9144444  0.7633333  1.0000000
##   2       1e+01  4.00  0.9144444  0.7633333  0.9875000
##   3       1e-03  0.25  0.8583333  0.7333333  0.7500000
##   3       1e-03  0.50  0.8562500  0.7333333  0.7500000
##   3       1e-03  1.00  0.8682407  0.6633333  0.7986111
##   3       1e-03  2.00  0.8793981  0.6466667  0.8347222
##   3       1e-03  4.00  0.8849074  0.7533333  0.8347222
##   3       1e-02  0.25  0.9233796  0.8300000  0.9513889
##   3       1e-02  0.50  0.9233796  0.8300000  0.9388889
##   3       1e-02  1.00  0.9233796  0.8300000  0.9513889
##   3       1e-02  2.00  0.9233796  0.8300000  0.9402778
##   3       1e-02  4.00  0.9233796  0.8300000  0.9388889
##   3       1e-01  0.25  0.9302315  0.7633333  0.9875000
##   3       1e-01  0.50  0.9302315  0.7633333  1.0000000
##   3       1e-01  1.00  0.9302315  0.7633333  1.0000000
##   3       1e-01  2.00  0.9302315  0.7633333  1.0000000
##   3       1e-01  4.00  0.9302315  0.7633333  1.0000000
##   3       1e+00  0.25  0.9299537  0.7633333  1.0000000
##   3       1e+00  0.50  0.9299537  0.7633333  1.0000000
##   3       1e+00  1.00  0.9299537  0.7633333  1.0000000
##   3       1e+00  2.00  0.9299537  0.7633333  1.0000000
##   3       1e+00  4.00  0.9299537  0.7633333  1.0000000
##   3       1e+01  0.25  0.9299537  0.7633333  1.0000000
##   3       1e+01  0.50  0.9299537  0.7633333  1.0000000
##   3       1e+01  1.00  0.9299537  0.7633333  1.0000000
##   3       1e+01  2.00  0.9299537  0.7633333  1.0000000
##   3       1e+01  4.00  0.9299537  0.7633333  1.0000000
## 
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were degree = 2, scale = 0.1 and C = 0.25.

confusion matrix: polynomial kernel

cm_svm_p = caret::confusionMatrix(predict(svm_p, testSet, type = "raw"), testSet$suicide_X1)
cm_svm_p2 = caret::confusionMatrix(predict(svm_p2, testSet, type = "raw"), testSet$suicide_X1)

print("regular train set:")
## [1] "regular train set:"
cm_svm_p
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Yes No
##        Yes   5 10
##        No    8 18
##                                           
##                Accuracy : 0.561           
##                  95% CI : (0.3975, 0.7153)
##     No Information Rate : 0.6829          
##     P-Value [Acc > NIR] : 0.9648          
##                                           
##                   Kappa : 0.0264          
##                                           
##  Mcnemar's Test P-Value : 0.8137          
##                                           
##             Sensitivity : 0.3846          
##             Specificity : 0.6429          
##          Pos Pred Value : 0.3333          
##          Neg Pred Value : 0.6923          
##              Prevalence : 0.3171          
##          Detection Rate : 0.1220          
##    Detection Prevalence : 0.3659          
##       Balanced Accuracy : 0.5137          
##                                           
##        'Positive' Class : Yes             
## 
print("oversample train set:")
## [1] "oversample train set:"
cm_svm_p2
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Yes No
##        Yes   1  0
##        No   12 28
##                                           
##                Accuracy : 0.7073          
##                  95% CI : (0.5446, 0.8387)
##     No Information Rate : 0.6829          
##     P-Value [Acc > NIR] : 0.441471        
##                                           
##                   Kappa : 0.1022          
##                                           
##  Mcnemar's Test P-Value : 0.001496        
##                                           
##             Sensitivity : 0.07692         
##             Specificity : 1.00000         
##          Pos Pred Value : 1.00000         
##          Neg Pred Value : 0.70000         
##              Prevalence : 0.31707         
##          Detection Rate : 0.02439         
##    Detection Prevalence : 0.02439         
##       Balanced Accuracy : 0.53846         
##                                           
##        'Positive' Class : Yes             
## 

SVM result (without PCA)

First of all, the result of “oversample” strategy (denoted by “2”) seems to work well only with linear method and in the case of polynomial kernel (where it brings precision to 100% but lower sensitivity to 8%). Second, the best performing model is the SVM linear model based on f1 score. Next, we will rebuild the SVM models without the “oversample” strategy and with the help of PCA to see if there is any improvement.

cmResultList = list(cm_svm_lin, cm_svm_lin2, cm_svm_k, cm_svm_k2, cm_svm_p, cm_svm_p2)
names(cmResultList) <- wrapr::qc(cm_svm_lin, cm_svm_lin2, cm_svm_k, cm_svm_k2, cm_svm_p, cm_svm_p2)

cmResultDf = lapply(1:length(cmResultList), function(x) broom::tidy(cmResultList[[x]]) %>%
                        dplyr::mutate(type = names(cmResultList)[x]) %>%
                        dplyr::filter(term != "mcnemar") %>%
                        dplyr::select(type, term, estimate)) %>%
    dplyr::bind_rows() %>%
    tidyr::spread(type, estimate) %>%
    dplyr::select(term, cm_svm_lin, cm_svm_lin2, cm_svm_k, cm_svm_k2, cm_svm_p, cm_svm_p2)

cmResultDf %>% mutate_if(is.numeric, round, digits = 2) %>% kable()
term cm_svm_lin cm_svm_lin2 cm_svm_k cm_svm_k2 cm_svm_p cm_svm_p2
accuracy 0.61 0.68 0.68 0.68 0.56 0.71
balanced_accuracy 0.61 0.64 0.52 0.56 0.51 0.54
detection_prevalence 0.46 0.34 0.05 0.15 0.37 0.02
detection_rate 0.20 0.17 0.02 0.07 0.12 0.02
f1 0.50 0.52 0.13 0.32 0.36 0.14
kappa 0.20 0.28 0.05 0.14 0.03 0.10
neg_pred_value 0.77 0.78 0.69 0.71 0.69 0.70
pos_pred_value 0.42 0.50 0.50 0.50 0.33 1.00
precision 0.42 0.50 0.50 0.50 0.33 1.00
prevalence 0.32 0.32 0.32 0.32 0.32 0.32
recall 0.62 0.54 0.08 0.23 0.38 0.08
sensitivity 0.62 0.54 0.08 0.23 0.38 0.08
specificity 0.61 0.75 0.96 0.89 0.64 1.00

SVM with PCA

PCA

Let’s apply PCA on entire data set (minus the initial, suicide and psych_meds variables). Two things to bear in mind. First, we should not combine the train and test set to obtain PCA components of entire data set at once for building a model. This would violate the assumption of generalization since test data would be part of the training set. Second, we should not perform PCA on test and train data sets separately. It’s because the resultant vectors from train and test PCA will have different directions due to unequal variance. We would end up comparing data registered on different axes. The resulting vectors from train and test data should have same axes.

Below, we perform PCA on entire data using the train set only. Subsequently, we use it to “predict” or generate the scores vector using the test set. We extract the first 42 PC only - the standard deviations above 1 and together they explain more than 82% of the total variance in the entire data.

In other words, we use these 42 principal components extracted from the original data set to generate new train and test set to classify attempted suicide.

allPCA <- prcomp(trainSet %>% dplyr::select(-suicide_X1))
summary(allPCA)
## Importance of components:
##                           PC1     PC2     PC3     PC4     PC5     PC6     PC7
## Standard deviation     4.0942 2.97246 2.62241 2.35121 2.06964 1.95840 1.90525
## Proportion of Variance 0.1196 0.06306 0.04908 0.03945 0.03057 0.02737 0.02591
## Cumulative Proportion  0.1196 0.18268 0.23176 0.27122 0.30178 0.32916 0.35506
##                            PC8     PC9    PC10    PC11    PC12    PC13    PC14
## Standard deviation     1.85771 1.79661 1.75481 1.74476 1.68986 1.62378 1.60874
## Proportion of Variance 0.02463 0.02304 0.02198 0.02173 0.02038 0.01882 0.01847
## Cumulative Proportion  0.37969 0.40273 0.42470 0.44643 0.46681 0.48562 0.50409
##                           PC15    PC16   PC17    PC18    PC19    PC20    PC21
## Standard deviation     1.55995 1.54894 1.5341 1.49389 1.48107 1.44552 1.43752
## Proportion of Variance 0.01737 0.01712 0.0168 0.01593 0.01565 0.01491 0.01475
## Cumulative Proportion  0.52146 0.53858 0.5554 0.57130 0.58696 0.60187 0.61662
##                           PC22    PC23    PC24    PC25    PC26    PC27    PC28
## Standard deviation     1.39840 1.37149 1.34159 1.33747 1.32528 1.28853 1.27217
## Proportion of Variance 0.01396 0.01342 0.01284 0.01277 0.01253 0.01185 0.01155
## Cumulative Proportion  0.63057 0.64400 0.65684 0.66961 0.68214 0.69399 0.70554
##                           PC29   PC30    PC31    PC32    PC33    PC34    PC35
## Standard deviation     1.23957 1.2186 1.21005 1.19935 1.17526 1.17023 1.15915
## Proportion of Variance 0.01097 0.0106 0.01045 0.01027 0.00986 0.00977 0.00959
## Cumulative Proportion  0.71651 0.7271 0.73756 0.74782 0.75768 0.76745 0.77704
##                          PC36    PC37    PC38    PC39    PC40    PC41    PC42
## Standard deviation     1.1356 1.11785 1.09176 1.07148 1.06702 1.04077 1.02170
## Proportion of Variance 0.0092 0.00892 0.00851 0.00819 0.00813 0.00773 0.00745
## Cumulative Proportion  0.7862 0.79516 0.80367 0.81186 0.81999 0.82772 0.83517
##                           PC43    PC44   PC45   PC46    PC47    PC48    PC49
## Standard deviation     0.99524 0.98927 0.9690 0.9469 0.94174 0.92200 0.90368
## Proportion of Variance 0.00707 0.00698 0.0067 0.0064 0.00633 0.00607 0.00583
## Cumulative Proportion  0.84223 0.84922 0.8559 0.8623 0.86865 0.87471 0.88054
##                           PC50    PC51    PC52    PC53    PC54    PC55    PC56
## Standard deviation     0.89555 0.88769 0.87526 0.84160 0.81559 0.81206 0.80074
## Proportion of Variance 0.00572 0.00562 0.00547 0.00505 0.00475 0.00471 0.00458
## Cumulative Proportion  0.88627 0.89189 0.89736 0.90241 0.90716 0.91186 0.91644
##                          PC57   PC58    PC59    PC60    PC61    PC62    PC63
## Standard deviation     0.7855 0.7761 0.76094 0.74308 0.71082 0.69707 0.69135
## Proportion of Variance 0.0044 0.0043 0.00413 0.00394 0.00361 0.00347 0.00341
## Cumulative Proportion  0.9208 0.9251 0.92927 0.93321 0.93682 0.94029 0.94370
##                           PC64   PC65    PC66   PC67    PC68   PC69   PC70
## Standard deviation     0.68536 0.6479 0.64605 0.6377 0.62308 0.6031 0.5914
## Proportion of Variance 0.00335 0.0030 0.00298 0.0029 0.00277 0.0026 0.0025
## Cumulative Proportion  0.94705 0.9500 0.95303 0.9559 0.95870 0.9613 0.9638
##                           PC71    PC72    PC73   PC74    PC75    PC76    PC77
## Standard deviation     0.55791 0.54650 0.54064 0.5299 0.51449 0.50642 0.49452
## Proportion of Variance 0.00222 0.00213 0.00209 0.0020 0.00189 0.00183 0.00175
## Cumulative Proportion  0.96601 0.96814 0.97023 0.9722 0.97412 0.97595 0.97770
##                           PC78    PC79    PC80    PC81    PC82    PC83    PC84
## Standard deviation     0.49365 0.48217 0.46327 0.45529 0.43640 0.42225 0.40629
## Proportion of Variance 0.00174 0.00166 0.00153 0.00148 0.00136 0.00127 0.00118
## Cumulative Proportion  0.97944 0.98110 0.98263 0.98411 0.98547 0.98674 0.98792
##                           PC85   PC86    PC87    PC88    PC89   PC90    PC91
## Standard deviation     0.38483 0.3735 0.37012 0.35665 0.35065 0.3340 0.31761
## Proportion of Variance 0.00106 0.0010 0.00098 0.00091 0.00088 0.0008 0.00072
## Cumulative Proportion  0.98897 0.9900 0.99095 0.99185 0.99273 0.9935 0.99425
##                           PC92    PC93    PC94    PC95    PC96    PC97    PC98
## Standard deviation     0.30869 0.29987 0.27601 0.27127 0.25265 0.23832 0.23143
## Proportion of Variance 0.00068 0.00064 0.00054 0.00053 0.00046 0.00041 0.00038
## Cumulative Proportion  0.99493 0.99557 0.99611 0.99664 0.99709 0.99750 0.99788
##                           PC99  PC100   PC101   PC102   PC103   PC104   PC105
## Standard deviation     0.22356 0.2057 0.18717 0.16468 0.15958 0.15394 0.13917
## Proportion of Variance 0.00036 0.0003 0.00025 0.00019 0.00018 0.00017 0.00014
## Cumulative Proportion  0.99824 0.9985 0.99879 0.99898 0.99917 0.99934 0.99947
##                          PC106   PC107   PC108   PC109   PC110   PC111   PC112
## Standard deviation     0.12832 0.12216 0.09780 0.08741 0.08355 0.06800 0.06586
## Proportion of Variance 0.00012 0.00011 0.00007 0.00005 0.00005 0.00003 0.00003
## Cumulative Proportion  0.99959 0.99970 0.99977 0.99982 0.99987 0.99990 0.99993
##                          PC113   PC114   PC115   PC116   PC117   PC118    PC119
## Standard deviation     0.05453 0.04987 0.03901 0.03488 0.02293 0.01987 0.009912
## Proportion of Variance 0.00002 0.00002 0.00001 0.00001 0.00000 0.00000 0.000000
## Cumulative Proportion  0.99996 0.99997 0.99998 0.99999 1.00000 1.00000 1.000000
##                           PC120     PC121
## Standard deviation     0.005238 1.818e-15
## Proportion of Variance 0.000000 0.000e+00
## Cumulative Proportion  1.000000 1.000e+00
# Creating new train, test set
new_trainSet = trainSet %>% 
  dplyr::select(class = suicide_X1) %>%
  dplyr::bind_cols(., allPCA$x[, 1:42] %>% as.data.frame())

new_testSet = dplyr::bind_cols(class = testSet$suicide_X1, 
                               predict(allPCA, newdata = testSet)[, 1:42] %>% as.data.frame())

head(new_trainSet) %>% kable() %>% scroll_box()
class PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 PC27 PC28 PC29 PC30 PC31 PC32 PC33 PC34 PC35 PC36 PC37 PC38 PC39 PC40 PC41 PC42
No -3.6760325 0.9025737 -0.8533614 -0.6424059 3.1404945 -2.4068625 2.5936024 -0.2752442 2.4375080 -3.5732779 0.3636365 -1.3158427 -0.0253694 3.510257 -0.3404633 1.1484560 -1.1293488 1.1807501 -1.0785017 0.0940768 -2.6457249 2.6009260 -1.6474473 2.4467312 -0.2766032 3.3520441 -1.6244012 0.8968699 -1.8947154 2.4027638 -0.0004491 -1.0238150 1.8196947 1.6549014 -3.6845214 -0.0269056 2.1386896 -1.3882513 0.1928197 1.0612874 0.2075085 -0.5139661
No 3.9395325 1.0781653 -2.3074429 -1.4227203 0.5726469 2.3669185 1.1115195 0.6420161 -0.0626763 -0.6175299 -2.0395076 -0.1053947 -0.9344130 3.182997 -1.3869283 0.8050877 1.2263981 -1.2139514 -1.6364863 -1.4750159 0.7620168 -0.0810030 0.5340579 -1.6900442 -1.4331840 -0.7600603 0.7988899 0.4667923 0.3129791 -0.5156734 -1.9255055 3.4346250 0.3798470 0.6850176 -0.3731715 0.4432640 1.2892005 -0.3877060 -0.3608281 -0.6497708 1.0060947 1.0705738
No 2.3783464 4.0906301 1.9318383 -1.2607047 2.7874379 1.0125659 0.9692229 -0.6408011 1.3695497 1.9401024 -2.3517277 -0.6695541 0.4496061 1.582119 -0.5478429 1.2775160 -3.2914848 -2.6385285 -0.1657286 0.0223252 -1.0119377 1.9005591 -0.6078274 -0.6369560 3.7283715 2.8320924 0.7623110 1.0137766 -0.0739318 -0.4408706 0.1068603 0.7342944 0.6564882 1.8262730 -1.4769750 1.8162498 1.3648236 0.4048534 -1.6270029 -2.1293583 -1.1156072 -0.1100390
Yes -2.8919297 0.8055935 -1.6445421 -2.6898423 -0.9577633 2.0986306 -3.1745759 -1.8499688 0.6409800 -1.8248527 3.2954261 3.5352988 0.3961642 1.858608 3.3373951 -1.8453842 -1.0037627 -1.2223489 0.3350823 -3.0509225 0.8523294 -0.2325066 0.2237014 -0.4234234 -0.9219221 -1.2227752 -0.6988169 0.5957703 1.2152458 0.1038987 0.5018692 -2.5656516 -0.0177448 1.6269256 -1.7299599 0.1643659 -0.7624430 -1.4897233 0.6412257 1.7893603 0.6475501 0.9415988
Yes 1.9202998 -3.9688377 0.6654366 4.0675281 1.1069558 2.2004685 -0.4839410 1.3459804 -1.3149672 -1.5532784 0.9128973 -2.6286473 -2.2295664 1.076575 1.7195983 0.0685811 -0.3019210 -0.4820657 -0.9069369 2.4854417 0.3608066 -2.7600764 -1.0126209 1.3659258 -0.4923310 1.7730725 -0.9884306 0.7261298 -0.8708647 -0.6920853 2.8925601 -2.0563556 0.7478301 0.8236524 0.0938796 -1.8355687 0.0075126 1.6072333 -0.6553765 -0.0575589 0.0662918 -1.9323539
No -0.1707352 -3.7124216 0.6111994 0.1622702 2.6143553 -0.3541141 -1.1687355 3.7354806 0.7721244 0.3320192 0.7727093 -0.9442291 -0.9183544 -2.267558 1.9535308 1.6630558 0.6133752 -1.3685033 -1.1261747 0.0011286 2.6344394 -0.4900578 0.1695124 -0.0260289 2.0287634 -0.0590538 1.1855477 2.1977099 -1.5934112 0.0940799 1.9945181 -0.3115092 1.2672327 -1.9115179 -0.4490479 -0.7643531 0.3487716 -0.7786838 1.6980071 0.3109486 -0.3658115 0.4889991

linear

set.seed(12)
svm_lin_new <- caret::train(class ~., 
                            data = new_trainSet, 
                            method = "svmLinear", 
                            trControl = trainSet.control,
                            tuneGrid = expand.grid(C = seq(0.1, 2, length = 20)),
                            metric = "ROC")
svm_lin_new
## Support Vector Machines with Linear Kernel 
## 
## 121 samples
##  42 predictor
##   2 classes: 'Yes', 'No' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times) 
## Summary of sample sizes: 109, 109, 109, 109, 109, 109, ... 
## Resampling results across tuning parameters:
## 
##   C    ROC        Sens       Spec     
##   0.1  0.6510417  0.0500000  0.9416667
##   0.2  0.6726852  0.1833333  0.9180556
##   0.3  0.6922454  0.1250000  0.9416667
##   0.4  0.7000000  0.1500000  0.9638889
##   0.5  0.7062500  0.1750000  0.9416667
##   0.6  0.7068287  0.1833333  0.9277778
##   0.7  0.7099537  0.1583333  0.9541667
##   0.8  0.7093750  0.2083333  0.9166667
##   0.9  0.7125000  0.1583333  0.9291667
##   1.0  0.7152778  0.1583333  0.9166667
##   1.1  0.7109954  0.1916667  0.9291667
##   1.2  0.7135417  0.2666667  0.9055556
##   1.3  0.7041667  0.1833333  0.9291667
##   1.4  0.7004630  0.2333333  0.9291667
##   1.5  0.7041667  0.2916667  0.8958333
##   1.6  0.7032407  0.2666667  0.9055556
##   1.7  0.7104167  0.2333333  0.9166667
##   1.8  0.7131944  0.2333333  0.9166667
##   1.9  0.7159722  0.2333333  0.9180556
##   2.0  0.7230324  0.2416667  0.9083333
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was C = 2.
cm_svm_lin_new = caret::confusionMatrix(predict(svm_lin_new, new_testSet, type = "raw"), new_testSet$class)
cm_svm_lin_new
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Yes No
##        Yes   5  4
##        No    8 24
##                                           
##                Accuracy : 0.7073          
##                  95% CI : (0.5446, 0.8387)
##     No Information Rate : 0.6829          
##     P-Value [Acc > NIR] : 0.4415          
##                                           
##                   Kappa : 0.2635          
##                                           
##  Mcnemar's Test P-Value : 0.3865          
##                                           
##             Sensitivity : 0.3846          
##             Specificity : 0.8571          
##          Pos Pred Value : 0.5556          
##          Neg Pred Value : 0.7500          
##              Prevalence : 0.3171          
##          Detection Rate : 0.1220          
##    Detection Prevalence : 0.2195          
##       Balanced Accuracy : 0.6209          
##                                           
##        'Positive' Class : Yes             
## 

radial kernel

set.seed(12)
svm_k_new <- caret::train(class ~., 
                          data = new_trainSet, 
                          method = "svmRadial", 
                          trControl = trainSet.control,
                          # tuneGrid = expand.grid(sigma = 2^c(-25, -20, -15,-10, -5, 0), 
                          #                    C = 2^c(0:5)),
                          tuneLength = 5,
                          metric = "ROC")
svm_k_new
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 121 samples
##  42 predictor
##   2 classes: 'Yes', 'No' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times) 
## Summary of sample sizes: 109, 109, 109, 109, 109, 109, ... 
## Resampling results across tuning parameters:
## 
##   C     ROC        Sens       Spec     
##   0.25  0.7379630  0.2666667  0.8833333
##   0.50  0.7379630  0.1750000  0.9083333
##   1.00  0.7379630  0.2333333  0.9055556
##   2.00  0.7503472  0.1916667  0.9083333
##   4.00  0.7284722  0.2083333  0.9180556
## 
## Tuning parameter 'sigma' was held constant at a value of 0.01281921
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.01281921 and C = 2.
cm_svm_k_new = caret::confusionMatrix(predict(svm_k_new, new_testSet, type = "raw"), new_testSet$class)
cm_svm_k_new
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Yes No
##        Yes   3  4
##        No   10 24
##                                           
##                Accuracy : 0.6585          
##                  95% CI : (0.4941, 0.7992)
##     No Information Rate : 0.6829          
##     P-Value [Acc > NIR] : 0.6978          
##                                           
##                   Kappa : 0.1003          
##                                           
##  Mcnemar's Test P-Value : 0.1814          
##                                           
##             Sensitivity : 0.23077         
##             Specificity : 0.85714         
##          Pos Pred Value : 0.42857         
##          Neg Pred Value : 0.70588         
##              Prevalence : 0.31707         
##          Detection Rate : 0.07317         
##    Detection Prevalence : 0.17073         
##       Balanced Accuracy : 0.54396         
##                                           
##        'Positive' Class : Yes             
## 

polynomial kernel

set.seed(12)
svm_p_new <- caret::train(class ~., 
                          data = new_trainSet,
                          method = "svmPoly", 
                          trControl = trainSet.control,
                          tuneLength = 5,
                          metric = "ROC")
svm_p_new
## Support Vector Machines with Polynomial Kernel 
## 
## 121 samples
##  42 predictor
##   2 classes: 'Yes', 'No' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times) 
## Summary of sample sizes: 109, 109, 109, 109, 109, 109, ... 
## Resampling results across tuning parameters:
## 
##   degree  scale  C     ROC        Sens        Spec     
##   1       1e-03  0.25  0.7484954  0.26666667  0.8944444
##   1       1e-03  0.50  0.7438657  0.21666667  0.9194444
##   1       1e-03  1.00  0.7438657  0.35833333  0.8611111
##   1       1e-03  2.00  0.7401620  0.22500000  0.9083333
##   1       1e-03  4.00  0.7401620  0.25833333  0.8847222
##   1       1e-02  0.25  0.7438657  0.27500000  0.9180556
##   1       1e-02  0.50  0.7438657  0.30833333  0.8722222
##   1       1e-02  1.00  0.7438657  0.30833333  0.8833333
##   1       1e-02  2.00  0.7457176  0.22500000  0.9194444
##   1       1e-02  4.00  0.7093750  0.23333333  0.8944444
##   1       1e-01  0.25  0.7553241  0.28333333  0.8861111
##   1       1e-01  0.50  0.6994213  0.12500000  0.9527778
##   1       1e-01  1.00  0.6510417  0.15000000  0.9291667
##   1       1e-01  2.00  0.6726852  0.08333333  0.9541667
##   1       1e-01  4.00  0.7000000  0.18333333  0.9541667
##   1       1e+00  0.25  0.6896991  0.18333333  0.9402778
##   1       1e+00  0.50  0.7062500  0.15833333  0.9430556
##   1       1e+00  1.00  0.7152778  0.18333333  0.9402778
##   1       1e+00  2.00  0.7193287  0.26666667  0.9180556
##   1       1e+00  4.00  0.7025463  0.20833333  0.8930556
##   1       1e+01  0.25  0.7130787  0.29166667  0.8833333
##   1       1e+01  0.50  0.6994213  0.42500000  0.8833333
##   1       1e+01  1.00  0.7156250  0.36666667  0.9069444
##   1       1e+01  2.00  0.7187500  0.32500000  0.9291667
##   1       1e+01  4.00  0.7187500  0.40000000  0.8944444
##   2       1e-03  0.25  0.7432870  0.29166667  0.8986111
##   2       1e-03  0.50  0.7401620  0.26666667  0.8833333
##   2       1e-03  1.00  0.7432870  0.23333333  0.8638889
##   2       1e-03  2.00  0.7432870  0.21666667  0.9055556
##   2       1e-03  4.00  0.7432870  0.22500000  0.9194444
##   2       1e-02  0.25  0.7432870  0.28333333  0.8861111
##   2       1e-02  0.50  0.7432870  0.16666667  0.8944444
##   2       1e-02  1.00  0.7506944  0.21666667  0.8833333
##   2       1e-02  2.00  0.7252315  0.13333333  0.9430556
##   2       1e-02  4.00  0.7310185  0.15833333  0.9430556
##   2       1e-01  0.25  0.7002315  0.30000000  0.9180556
##   2       1e-01  0.50  0.7002315  0.10833333  0.9305556
##   2       1e-01  1.00  0.7002315  0.14166667  0.9069444
##   2       1e-01  2.00  0.7002315  0.20833333  0.8944444
##   2       1e-01  4.00  0.7002315  0.13333333  0.9055556
##   2       1e+00  0.25  0.5392361  0.02500000  0.9541667
##   2       1e+00  0.50  0.4642361  0.00000000  1.0000000
##   2       1e+00  1.00  0.6151620  0.02500000  0.9875000
##   2       1e+00  2.00  0.4623843  0.03333333  0.9777778
##   2       1e+00  4.00  0.6096065  0.00000000  0.9652778
##   2       1e+01  0.25  0.4268519  0.00000000  1.0000000
##   2       1e+01  0.50  0.4020833  0.00000000  1.0000000
##   2       1e+01  1.00  0.3898148  0.00000000  1.0000000
##   2       1e+01  2.00  0.3877315  0.00000000  1.0000000
##   2       1e+01  4.00  0.4081019  0.00000000  0.9777778
##   3       1e-03  0.25  0.7432870  0.10833333  0.9083333
##   3       1e-03  0.50  0.7432870  0.26666667  0.8944444
##   3       1e-03  1.00  0.7395833  0.26666667  0.8944444
##   3       1e-03  2.00  0.7432870  0.30833333  0.8847222
##   3       1e-03  4.00  0.7432870  0.27500000  0.8833333
##   3       1e-02  0.25  0.7556713  0.30000000  0.9055556
##   3       1e-02  0.50  0.7565972  0.24166667  0.9069444
##   3       1e-02  1.00  0.7494213  0.18333333  0.9194444
##   3       1e-02  2.00  0.7387731  0.15833333  0.9305556
##   3       1e-02  4.00  0.6564815  0.15833333  0.9652778
##   3       1e-01  0.25  0.6806713  0.08333333  0.9305556
##   3       1e-01  0.50  0.6806713  0.15000000  0.9541667
##   3       1e-01  1.00  0.6806713  0.13333333  0.9305556
##   3       1e-01  2.00  0.6806713  0.07500000  0.9319444
##   3       1e-01  4.00  0.6806713  0.08333333  0.9416667
##   3       1e+00  0.25  0.5888889  0.00000000  0.9777778
##   3       1e+00  0.50  0.6581019  0.00000000  0.9541667
##   3       1e+00  1.00  0.6581019  0.05833333  0.9777778
##   3       1e+00  2.00  0.6581019  0.00000000  0.9888889
##   3       1e+00  4.00  0.6581019  0.05833333  0.9666667
##   3       1e+01  0.25  0.5601852  0.05833333  0.9555556
##   3       1e+01  0.50  0.6414352  0.00000000  0.9652778
##   3       1e+01  1.00  0.6414352  0.05000000  0.9541667
##   3       1e+01  2.00  0.6414352  0.05000000  1.0000000
##   3       1e+01  4.00  0.6414352  0.14166667  0.9430556
## 
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were degree = 3, scale = 0.01 and C = 0.5.
cm_svm_p_new = caret::confusionMatrix(predict(svm_p_new, new_testSet, type = "raw"), new_testSet$class)
cm_svm_p_new
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Yes No
##        Yes   6  6
##        No    7 22
##                                           
##                Accuracy : 0.6829          
##                  95% CI : (0.5191, 0.8192)
##     No Information Rate : 0.6829          
##     P-Value [Acc > NIR] : 0.5744          
##                                           
##                   Kappa : 0.2525          
##                                           
##  Mcnemar's Test P-Value : 1.0000          
##                                           
##             Sensitivity : 0.4615          
##             Specificity : 0.7857          
##          Pos Pred Value : 0.5000          
##          Neg Pred Value : 0.7586          
##              Prevalence : 0.3171          
##          Detection Rate : 0.1463          
##    Detection Prevalence : 0.2927          
##       Balanced Accuracy : 0.6236          
##                                           
##        'Positive' Class : Yes             
## 

SVM result final

Unfortunately, PCA does not seem to bring significant help. The SVM linear is still the best method among all based on f1 score. The SVM polynomial with “oversampling” strategy does help to bring precision to 100% but lower sensitivity to 8%. Overall, the linear model (especially with oversampling) achieves moderate success in terms of accuracy, sensitivity, and precision.

cmResultList2 = list(cm_svm_lin_new, cm_svm_k_new, cm_svm_p_new)
names(cmResultList2) <- wrapr::qc(cm_svm_lin_new, cm_svm_k_new, cm_svm_p_new)

cmResultDf2 = lapply(1:length(cmResultList2), function(x) broom::tidy(cmResultList2[[x]]) %>%
                        dplyr::mutate(type = names(cmResultList2)[x]) %>%
                        dplyr::filter(term != "mcnemar") %>%
                        dplyr::select(type, term, estimate)) %>%
    dplyr::bind_rows() %>%
    tidyr::spread(type, estimate) %>%
    dplyr::select(term, cm_svm_lin_new, cm_svm_k_new, cm_svm_p_new)


finalComparison = dplyr::inner_join(cmResultDf, cmResultDf2, by = "term") %>%
    dplyr::select(term, 
                  cm_svm_lin, cm_svm_lin2, cm_svm_lin_new,
                  cm_svm_k, cm_svm_k2, cm_svm_k_new,
                  cm_svm_p, cm_svm_p2, cm_svm_p_new)

finalComparison %>% mutate_if(is.numeric, round, digits = 2) %>% kable()
term cm_svm_lin cm_svm_lin2 cm_svm_lin_new cm_svm_k cm_svm_k2 cm_svm_k_new cm_svm_p cm_svm_p2 cm_svm_p_new
accuracy 0.61 0.68 0.71 0.68 0.68 0.66 0.56 0.71 0.68
balanced_accuracy 0.61 0.64 0.62 0.52 0.56 0.54 0.51 0.54 0.62
detection_prevalence 0.46 0.34 0.22 0.05 0.15 0.17 0.37 0.02 0.29
detection_rate 0.20 0.17 0.12 0.02 0.07 0.07 0.12 0.02 0.15
f1 0.50 0.52 0.45 0.13 0.32 0.30 0.36 0.14 0.48
kappa 0.20 0.28 0.26 0.05 0.14 0.10 0.03 0.10 0.25
neg_pred_value 0.77 0.78 0.75 0.69 0.71 0.71 0.69 0.70 0.76
pos_pred_value 0.42 0.50 0.56 0.50 0.50 0.43 0.33 1.00 0.50
precision 0.42 0.50 0.56 0.50 0.50 0.43 0.33 1.00 0.50
prevalence 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32
recall 0.62 0.54 0.38 0.08 0.23 0.23 0.38 0.08 0.46
sensitivity 0.62 0.54 0.38 0.08 0.23 0.23 0.38 0.08 0.46
specificity 0.61 0.75 0.86 0.96 0.89 0.86 0.64 1.00 0.79