library(readxl)
setwd("d:/DATA2021/ThuySan.VECM/data5.5.21")
solieu <-read_excel("data.ca.5.5.21.xlsx")
congthuc1 <-LnGDP ~ LnFEX + LnLAB + REER + LnOPEN + LnFDI
congthuc2 <-LnFGDP ~ LnFEX + LnLAB + REER + LnOPEN + LnFDI
lm(data=solieu,congthuc1) -> hoiquy1
lm(data=solieu,congthuc2) -> hoiquy2
summary(hoiquy1)
##
## Call:
## lm(formula = congthuc1, data = solieu)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.210940 -0.058072 0.003733 0.039472 0.269841
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.35330 4.89950 4.766 9.14e-06 ***
## LnFEX 0.40039 0.06716 5.962 7.86e-08 ***
## LnLAB -2.96920 0.63490 -4.677 1.28e-05 ***
## REER -1.00061 0.53801 -1.860 0.06688 .
## LnOPEN 0.53708 0.08649 6.210 2.81e-08 ***
## LnFDI 0.13661 0.04067 3.359 0.00124 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09556 on 74 degrees of freedom
## Multiple R-squared: 0.9455, Adjusted R-squared: 0.9418
## F-statistic: 256.6 on 5 and 74 DF, p-value: < 2.2e-16
summary(hoiquy2)
##
## Call:
## lm(formula = congthuc2, data = solieu)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8529 -0.1832 0.0617 0.2316 1.0591
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3754 21.8932 -0.017 0.986364
## LnFEX -0.5312 0.3001 -1.770 0.080796 .
## LnLAB -1.4912 2.8370 -0.526 0.600712
## REER -2.4703 2.4041 -1.028 0.307505
## LnOPEN 1.3723 0.3865 3.551 0.000672 ***
## LnFDI 0.4846 0.1817 2.667 0.009406 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.427 on 74 degrees of freedom
## Multiple R-squared: 0.87, Adjusted R-squared: 0.8612
## F-statistic: 99.03 on 5 and 74 DF, p-value: < 2.2e-16
library(dynlm)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
hoiquy3 <-dynlm(data=solieu,congthuc1)
summary(hoiquy3)
##
## Time series regression with "numeric" data:
## Start = 1, End = 80
##
## Call:
## dynlm(formula = congthuc1, data = solieu)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.210940 -0.058072 0.003733 0.039472 0.269841
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.35330 4.89950 4.766 9.14e-06 ***
## LnFEX 0.40039 0.06716 5.962 7.86e-08 ***
## LnLAB -2.96920 0.63490 -4.677 1.28e-05 ***
## REER -1.00061 0.53801 -1.860 0.06688 .
## LnOPEN 0.53708 0.08649 6.210 2.81e-08 ***
## LnFDI 0.13661 0.04067 3.359 0.00124 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09556 on 74 degrees of freedom
## Multiple R-squared: 0.9455, Adjusted R-squared: 0.9418
## F-statistic: 256.6 on 5 and 74 DF, p-value: < 2.2e-16
library(AER)
## Loading required package: car
## Loading required package: carData
## Loading required package: lmtest
## Loading required package: sandwich
## Loading required package: survival
durbinWatsonTest(hoiquy3)
## lag Autocorrelation D-W Statistic p-value
## 1 0.2013972 1.481443 0.008
## Alternative hypothesis: rho != 0
durbinWatsonTest(hoiquy1)
## lag Autocorrelation D-W Statistic p-value
## 1 0.2013972 1.481443 0.004
## Alternative hypothesis: rho != 0
durbinWatsonTest(hoiquy3,max.lag = 4)
## lag Autocorrelation D-W Statistic p-value
## 1 0.2013972 1.4814433 0.004
## 2 0.2333388 1.4167328 0.000
## 3 0.0380467 1.8058170 0.372
## 4 0.5300794 0.8149223 0.000
## Alternative hypothesis: rho[lag] != 0
library(lmtest)
dwtest(hoiquy3)
##
## Durbin-Watson test
##
## data: hoiquy3
## DW = 1.4814, p-value = 0.00283
## alternative hypothesis: true autocorrelation is greater than 0
dwtest(hoiquy1)
##
## Durbin-Watson test
##
## data: hoiquy1
## DW = 1.4814, p-value = 0.00283
## alternative hypothesis: true autocorrelation is greater than 0
library(lmtest)
bgtest(hoiquy1)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: hoiquy1
## LM test = 5.0263, df = 1, p-value = 0.02497
bgtest(hoiquy3)
##
## Breusch-Godfrey test for serial correlation of order up to 1
##
## data: hoiquy3
## LM test = 5.0263, df = 1, p-value = 0.02497
#Chưa kiếm được gói chạy
#B Khắc phục ## 1. White HC Robust Standard Errors
library(sandwich)
coeftest(hoiquy1, vcov = vcovHC(hoiquy1, type = "HC1"))
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.353300 3.713228 6.2892 2.013e-08 ***
## LnFEX 0.400395 0.075047 5.3352 1.001e-06 ***
## LnLAB -2.969203 0.476508 -6.2312 2.567e-08 ***
## REER -1.000614 0.500219 -2.0004 0.049132 *
## LnOPEN 0.537083 0.067648 7.9394 1.686e-11 ***
## LnFDI 0.136611 0.046514 2.9370 0.004416 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
coeftest(hoiquy1, vcov = NeweyWest(hoiquy1))
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.353300 3.180194 7.3434 2.240e-10 ***
## LnFEX 0.400395 0.086639 4.6214 1.579e-05 ***
## LnLAB -2.969203 0.447932 -6.6287 4.800e-09 ***
## REER -1.000614 0.707773 -1.4137 0.1616286
## LnOPEN 0.537083 0.068042 7.8935 2.059e-11 ***
## LnFDI 0.136611 0.036895 3.7026 0.0004083 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(orcutt)
## Warning: package 'orcutt' was built under R version 4.0.5
cochrane.orcutt(hoiquy1) -> khacphuc3
khacphuc3
## Cochrane-orcutt estimation for first order autocorrelation
##
## Call:
## lm(formula = congthuc1, data = solieu)
##
## number of interaction: 20
## rho 0.927267
##
## Durbin-Watson statistic
## (original): 1.48144 , p-value: 2.83e-03
## (transformed): 2.33073 , p-value: 9.337e-01
##
## coefficients:
## (Intercept) LnFEX LnLAB REER LnOPEN LnFDI
## 8.417480 0.339173 -1.504980 0.898420 0.305399 0.495587
summary(khacphuc3)
## Call:
## lm(formula = congthuc1, data = solieu)
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.417480 7.778457 1.082 0.28275
## LnFEX 0.339173 0.081144 4.180 7.998e-05 ***
## LnLAB -1.504980 0.692349 -2.174 0.03297 *
## REER 0.898420 1.195323 0.752 0.45470
## LnOPEN 0.305399 0.101249 3.016 0.00352 **
## LnFDI 0.495587 0.060966 8.129 8.061e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0825 on 73 degrees of freedom
## Multiple R-squared: 0.9024 , Adjusted R-squared: 0.8957
## F-statistic: 135 on 5 and 73 DF, p-value: < 1.94e-35
##
## Durbin-Watson statistic
## (original): 1.48144 , p-value: 2.83e-03
## (transformed): 2.33073 , p-value: 9.337e-01
library(prais)
## Warning: package 'prais' was built under R version 4.0.5
prais_winsten(hoiquy1, data = solieu) -> khacphuc4
## Iteration 0: rho = 0
## Iteration 1: rho = 0.2257
## Iteration 2: rho = 0.3798
## Iteration 3: rho = 0.493
## Iteration 4: rho = 0.5885
## Iteration 5: rho = 0.6782
## Iteration 6: rho = 0.7656
## Iteration 7: rho = 0.8448
## Iteration 8: rho = 0.9006
## Iteration 9: rho = 0.9283
## Iteration 10: rho = 0.9399
## Iteration 11: rho = 0.9449
## Iteration 12: rho = 0.9472
## Iteration 13: rho = 0.9482
## Iteration 14: rho = 0.9487
## Iteration 15: rho = 0.9489
## Iteration 16: rho = 0.949
## Iteration 17: rho = 0.9491
## Iteration 18: rho = 0.9491
## Iteration 19: rho = 0.9491
## Iteration 20: rho = 0.9491
## Iteration 21: rho = 0.9491
## Iteration 22: rho = 0.9491
## Iteration 23: rho = 0.9491
khacphuc4
##
## Call:
## prais_winsten(formula = hoiquy1, data = solieu)
##
## Coefficients:
## (Intercept) LnFEX LnLAB REER LnOPEN LnFDI
## 11.7417 0.3395 -1.7494 1.0689 0.2693 0.5035
##
## AR(1) coefficient rho: 0.9491
summary(khacphuc4)
##
## Call:
## prais_winsten(formula = hoiquy1, data = solieu)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.41998 -0.22901 -0.14571 0.03467 0.39260
##
## AR(1) coefficient rho after 23 Iterations: 0.9491
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.74169 6.38098 1.840 0.06976 .
## LnFEX 0.33952 0.08018 4.235 6.50e-05 ***
## LnLAB -1.74943 0.60317 -2.900 0.00490 **
## REER 1.06895 1.19783 0.892 0.37507
## LnOPEN 0.26928 0.09718 2.771 0.00706 **
## LnFDI 0.50354 0.06043 8.333 3.03e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08211 on 74 degrees of freedom
## Multiple R-squared: 0.9672, Adjusted R-squared: 0.965
## F-statistic: 437 on 5 and 74 DF, p-value: < 2.2e-16
##
## Durbin-Watson statistic (original): 1.481
## Durbin-Watson statistic (transformed): 2.336