d_class <- read.table("C:\\R_project\\rproject_data\\all_data.txt", sep="\t", header = TRUE)
d_class_agn <-d_class
head(d_class)
## filename phoneme duration item height voice position speed subj
## 1 tack_f T 45.338 tack low -voice final fast F1
## 2 tack_f AE1 150.627 tack low -voice final fast F1
## 3 tack_f K 88.059 tack low -voice final fast F1
## 4 tack_f1 T 47.490 tack low -voice final fast F1
## 5 tack_f1 AE1 148.429 tack low -voice final fast F1
## 6 tack_f1 K 110.553 tack low -voice final fast F1
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
table(is.na(d_class$speed))
##
## FALSE
## 4542
table(is.na(d_class$voice))
##
## FALSE
## 4542
table(is.na(d_class$duration))
##
## FALSE
## 4542
table(is.na(d_class$position))
##
## FALSE
## 4542
-> 데이터에 결측치가 없기에 전처리를 하지 않아도 된다.
vowel_speaking_rate <- d_class %>%
filter(phoneme %in% (c("AE1","EH1","IH1"))) %>%
group_by(voice, speed) %>%
summarise(vowel_duration=mean(duration))
## `summarise()` has grouped output by 'voice'. You can override using the `.groups` argument.
ggplot(data = vowel_speaking_rate, aes(x=speed, y=vowel_duration, fill=voice))+geom_col(position="dodge")
coda_speaking_rate <- d_class %>%
filter(phoneme %in% (c("G","K","T"))) %>%
group_by(voice,speed) %>%
summarise(coda_duration=mean(duration))
## `summarise()` has grouped output by 'voice'. You can override using the `.groups` argument.
ggplot(data = coda_speaking_rate, aes(x=speed, y=coda_duration, fill=voice))+geom_col(position="dodge")
vowel_position <- d_class %>%
filter(phoneme %in% (c("AE1","EH1","IH1"))) %>%
group_by(voice, position) %>%
summarise(vowel_duration=mean(duration))
## `summarise()` has grouped output by 'voice'. You can override using the `.groups` argument.
ggplot(data = vowel_position, aes(x=position, y=vowel_duration, fill=voice))+geom_col(position="dodge")
coda_position <- d_class %>%
filter(phoneme %in% (c("G","K","T"))) %>%
group_by(voice, position) %>%
summarise(vowel_duration=mean(duration))
## `summarise()` has grouped output by 'voice'. You can override using the `.groups` argument.
ggplot(data = coda_position, aes(x=position, y=vowel_duration, fill=voice))+geom_col(position="dodge")
vowel_height <- d_class %>%
filter(phoneme %in% (c("AE1","EH1","IH1"))) %>%
group_by(height, voice) %>%
summarise(vowel_duration=mean(duration))
## `summarise()` has grouped output by 'height'. You can override using the `.groups` argument.
ggplot(data=vowel_height, aes(x=height, y=vowel_duration, fill=voice))+geom_col(position="dodge")
coda_height <- d_class %>%
filter(phoneme %in% (c("G","K","T"))) %>%
group_by(height, voice) %>%
summarise(vowel_duration=mean(duration))
## `summarise()` has grouped output by 'height'. You can override using the `.groups` argument.
ggplot(data=coda_height, aes(x=height, y=vowel_duration, fill=voice))+geom_col(position="dodge")