rm(list = ls())
date()
## [1] "Sun May 9 18:06:17 2021"
sessionInfo()
## R version 4.0.5 (2021-03-31)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 10.16
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] digest_0.6.27 R6_2.5.0 jsonlite_1.7.2 magrittr_2.0.1
## [5] evaluate_0.14 rlang_0.4.11 stringi_1.5.3 jquerylib_0.1.4
## [9] bslib_0.2.4 rmarkdown_2.7 tools_4.0.5 stringr_1.4.0
## [13] xfun_0.22 yaml_2.2.1 compiler_4.0.5 htmltools_0.5.1.1
## [17] knitr_1.33 sass_0.3.1
Библиотеки
library(stringr)
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
## format.pval, units
library(corrplot)
## corrplot 0.84 loaded
library(psych)
##
## Attaching package: 'psych'
## The following object is masked from 'package:Hmisc':
##
## describe
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
library(reshape2)
#library(xtable)
library(knitr)
#library(dplyr)
D1 - Рефлексия на морально-этические ситуации (моральная рефлексия или рефлексия актуализирующаяся в ситуациях связанных с морально-этическими коллизиями и конфликтами).
D2 - Интуиция в морально-этической сфере (нравственная интуиция).
D3 - Экзистенциальный аспект ответственности.
D4 - Альтруистические эмоции.
D5 - Морально-этические ценности.
D0 - уровень сформированности морально-этической ответственности
M1 - Забота
M2 - Справедливость
M3 - Лояльность
M4 - Уважение
M5 - Чистота
K1 - Отрицание экологических проблем
K2 - Экологическая интернальность
K3 - Биоцентризм
K4 - «Деньги» (шкала финансово-экономических приоритетов)
K0 - Общий показатель озабоченности глобальными экологическими проблемами
Импорт таблицы
Data <- read.csv2("../Moral.csv")
Data$Name <- paste0(str_sub(Data$Name, 1, 3), str_sub(Data$Name, -1, -1))
Data$Gender <- as.factor(Data$Gender)
NamesData <- names(Data)
summary(Data) %>%
kable()
| Name | D1 | D2 | D3 | D4 | D5 | D6 | D0 | M1 | M2 | M3 | M4 | M5 | K1 | K2 | K3 | K4 | K0 | Gender | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Length:51 | Min. :0.000 | Min. :1.000 | Min. :0.000 | Min. :1.000 | Min. :0.000 | Min. :0 | Min. : 7.00 | Min. :12.00 | Min. :12.00 | Min. : 1.00 | Min. : 0.00 | Min. : 3.00 | Min. :-14.000 | Min. :-9.00 | Min. :-8.000 | Min. :-12.000 | Min. :-21.00 | f:29 | |
| Class :character | 1st Qu.:2.000 | 1st Qu.:2.000 | 1st Qu.:1.000 | 1st Qu.:3.000 | 1st Qu.:2.000 | 1st Qu.:1 | 1st Qu.:11.00 | 1st Qu.:16.00 | 1st Qu.:17.00 | 1st Qu.:12.00 | 1st Qu.: 9.00 | 1st Qu.:11.00 | 1st Qu.: -8.000 | 1st Qu.:-2.00 | 1st Qu.: 2.000 | 1st Qu.: -5.500 | 1st Qu.: 5.50 | m:22 | |
| Mode :character | Median :2.000 | Median :3.000 | Median :2.000 | Median :4.000 | Median :3.000 | Median :1 | Median :14.00 | Median :19.00 | Median :19.00 | Median :15.00 | Median :12.00 | Median :15.00 | Median : -5.000 | Median : 4.00 | Median : 6.000 | Median : -2.000 | Median : 14.00 | NA | |
| NA | Mean :2.373 | Mean :2.961 | Mean :2.176 | Mean :3.647 | Mean :2.451 | Mean :1 | Mean :13.61 | Mean :19.12 | Mean :19.41 | Mean :14.37 | Mean :12.08 | Mean :14.78 | Mean : -4.333 | Mean : 3.02 | Mean : 5.627 | Mean : -2.196 | Mean : 15.18 | NA | |
| NA | 3rd Qu.:3.000 | 3rd Qu.:4.000 | 3rd Qu.:3.000 | 3rd Qu.:4.000 | 3rd Qu.:3.000 | 3rd Qu.:1 | 3rd Qu.:16.00 | 3rd Qu.:21.50 | 3rd Qu.:22.00 | 3rd Qu.:17.00 | 3rd Qu.:16.00 | 3rd Qu.:17.00 | 3rd Qu.: -1.500 | 3rd Qu.: 7.00 | 3rd Qu.:11.000 | 3rd Qu.: 2.000 | 3rd Qu.: 26.50 | NA | |
| NA | Max. :5.000 | Max. :5.000 | Max. :5.000 | Max. :5.000 | Max. :5.000 | Max. :2 | Max. :20.00 | Max. :31.00 | Max. :28.00 | Max. :24.00 | Max. :21.00 | Max. :25.00 | Max. : 8.000 | Max. :15.00 | Max. :14.000 | Max. : 10.000 | Max. : 47.00 | NA |
describe(Data, skew = FALSE) %>%
kable()
| vars | n | mean | sd | min | max | range | se | |
|---|---|---|---|---|---|---|---|---|
| Name* | 1 | 51 | 26.000000 | 14.866069 | 1 | 51 | 50 | 2.0816660 |
| D1 | 2 | 51 | 2.372549 | 1.094729 | 0 | 5 | 5 | 0.1532927 |
| D2 | 3 | 51 | 2.960784 | 1.182553 | 1 | 5 | 4 | 0.1655905 |
| D3 | 4 | 51 | 2.176471 | 1.071557 | 0 | 5 | 5 | 0.1500481 |
| D4 | 5 | 51 | 3.647059 | 1.073751 | 1 | 5 | 4 | 0.1503552 |
| D5 | 6 | 51 | 2.450980 | 1.082843 | 0 | 5 | 5 | 0.1516284 |
| D6 | 7 | 51 | 1.000000 | 0.663325 | 0 | 2 | 2 | 0.0928841 |
| D0 | 8 | 51 | 13.607843 | 3.219183 | 7 | 20 | 13 | 0.4507757 |
| M1 | 9 | 51 | 19.117647 | 4.510641 | 12 | 31 | 19 | 0.6316161 |
| M2 | 10 | 51 | 19.411765 | 3.965736 | 12 | 28 | 16 | 0.5553141 |
| M3 | 11 | 51 | 14.372549 | 4.467486 | 1 | 24 | 23 | 0.6255732 |
| M4 | 12 | 51 | 12.078431 | 4.840839 | 0 | 21 | 21 | 0.6778531 |
| M5 | 13 | 51 | 14.784314 | 5.041086 | 3 | 25 | 22 | 0.7058932 |
| K1 | 14 | 51 | -4.333333 | 5.256108 | -14 | 8 | 22 | 0.7360023 |
| K2 | 15 | 51 | 3.019608 | 5.633792 | -9 | 15 | 24 | 0.7888886 |
| K3 | 16 | 51 | 5.627451 | 5.942931 | -8 | 14 | 22 | 0.8321768 |
| K4 | 17 | 51 | -2.196078 | 5.063673 | -12 | 10 | 22 | 0.7090560 |
| K0 | 18 | 51 | 15.176471 | 16.582769 | -21 | 47 | 68 | 2.3220521 |
| Gender* | 19 | 51 | 1.431372 | 0.500196 | 1 | 2 | 1 | 0.0700415 |
Распределение по полу f - женский m - мужской
table(Data$Gender) %>%
kable()
| Var1 | Freq |
|---|---|
| f | 29 |
| m | 22 |
describe(Data ~ Gender, skew = FALSE, ranges = FALSE)
##
## Descriptive statistics by group
## group: f
## vars n mean sd se
## Name* 1 29 15.00 8.51 1.58
## D1 2 29 2.52 1.06 0.20
## D2 3 29 3.00 1.10 0.20
## D3 4 29 2.17 1.14 0.21
## D4 5 29 3.79 1.01 0.19
## D5 6 29 2.55 0.95 0.18
## D6 7 29 1.10 0.67 0.13
## D0 8 29 14.03 3.34 0.62
## M1 9 29 20.10 3.99 0.74
## M2 10 29 20.00 3.30 0.61
## M3 11 29 15.03 4.03 0.75
## M4 12 29 12.07 5.38 1.00
## M5 13 29 15.97 4.70 0.87
## K1 14 29 -4.86 4.88 0.91
## K2 15 29 4.62 4.87 0.90
## K3 16 29 7.24 5.13 0.95
## K4 17 29 -3.31 5.03 0.93
## K0 18 29 20.03 14.10 2.62
## Gender* 19 29 1.00 0.00 0.00
## ------------------------------------------------------------
## group: m
## vars n mean sd se
## Name* 1 22 11.50 6.49 1.38
## D1 2 22 2.18 1.14 0.24
## D2 3 22 2.91 1.31 0.28
## D3 4 22 2.18 1.01 0.21
## D4 5 22 3.45 1.14 0.24
## D5 6 22 2.32 1.25 0.27
## D6 7 22 0.86 0.64 0.14
## D0 8 22 13.05 3.03 0.65
## M1 9 22 17.82 4.91 1.05
## M2 10 22 18.64 4.68 1.00
## M3 11 22 13.50 4.94 1.05
## M4 12 22 12.09 4.15 0.88
## M5 13 22 13.23 5.15 1.10
## K1 14 22 -3.64 5.76 1.23
## K2 15 22 0.91 5.98 1.27
## K3 16 22 3.50 6.38 1.36
## K4 17 22 -0.73 4.83 1.03
## K0 18 22 8.77 17.72 3.78
## Gender* 19 22 2.00 0.00 0.00
ggplot(Data, aes(Gender, D0)) +
geom_boxplot()
Data %>%
melt(id.vars = c("Name", "Gender"), measure.vars = c("D1", "D2", "D3", "D4", "D5")) %>%
ggplot( aes(Gender, value, col = variable)) +
geom_boxplot()
### Моральные основания
Data %>%
melt(id.vars = c("Name", "Gender"), measure.vars = c("M1", "M2", "M3", "M4", "M5")) %>%
ggplot( aes(Gender, value, col = variable)) +
geom_boxplot()
ggplot(Data, aes(Gender, K0)) +
geom_boxplot()
Data %>%
melt(id.vars = c("Name", "Gender"), measure.vars = c("K1", "K2", "K3", "K4")) %>%
ggplot( aes(Gender, value, col = variable)) +
geom_boxplot()
# Значимость различий между М и Ж
for (i in 2:18) {
w <- wilcox.test(Data[Data$Gender == "f", i]
, Data[Data$Gender == "m", i]
, exact=FALSE)
print(names(Data[i]))
print(w)
}
## [1] "D1"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 374, p-value = 0.2805
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "D2"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 335, p-value = 0.7607
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "D3"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 317.5, p-value = 0.9842
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "D4"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 373.5, p-value = 0.2813
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "D5"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 358.5, p-value = 0.4378
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "D6"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 379, p-value = 0.2048
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "D0"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 377.5, p-value = 0.2678
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "M1"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 427, p-value = 0.0401
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "M2"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 395, p-value = 0.1494
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "M3"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 387, p-value = 0.1971
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "M4"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 326, p-value = 0.9012
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "M5"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 402.5, p-value = 0.113
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "K1"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 271, p-value = 0.3647
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "K2"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 440, p-value = 0.02161
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "K3"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 431, p-value = 0.03347
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "K4"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 236, p-value = 0.1159
## alternative hypothesis: true location shift is not equal to 0
##
## [1] "K0"
##
## Wilcoxon rank sum test with continuity correction
##
## data: Data[Data$Gender == "f", i] and Data[Data$Gender == "m", i]
## W = 435, p-value = 0.02796
## alternative hypothesis: true location shift is not equal to 0
Список значимых различий между М и Ж (* <.05) и средние значения
for (i in 2:18) {
w <- wilcox.test(Data[Data$Gender == "f", i]
, Data[Data$Gender == "m", i]
, exact=FALSE)
if (w$p.value <= 0.05) {
print(paste("Шкала: ", c(NamesData[i])
, round(w$p.value, 4)
, t(aggregate(Data[i]
, by = list(Data$Gender)
, FUN = mean))
, " "))
}
}
## [1] "Шкала: M1 0.0401 f " "Шкала: M1 0.0401 20.10345 "
## [3] "Шкала: M1 0.0401 m " "Шкала: M1 0.0401 17.81818 "
## [1] "Шкала: K2 0.0216 f " "Шкала: K2 0.0216 4.6206897 "
## [3] "Шкала: K2 0.0216 m " "Шкала: K2 0.0216 0.9090909 "
## [1] "Шкала: K3 0.0335 f " "Шкала: K3 0.0335 7.241379 "
## [3] "Шкала: K3 0.0335 m " "Шкала: K3 0.0335 3.500000 "
## [1] "Шкала: K0 0.028 f " "Шкала: K0 0.028 20.034483 "
## [3] "Шкала: K0 0.028 m " "Шкала: K0 0.028 8.772727 "
corPlot(Data[2:18])
corr.test(Data[2:18], method = "spearman")
## Call:corr.test(x = Data[2:18], method = "spearman")
## Correlation matrix
## D1 D2 D3 D4 D5 D6 D0 M1 M2 M3 M4 M5
## D1 1.00 0.23 0.55 0.13 0.02 -0.08 0.59 0.01 0.19 -0.01 0.01 -0.10
## D2 0.23 1.00 0.19 0.20 0.03 0.08 0.62 0.04 0.16 0.00 0.00 -0.14
## D3 0.55 0.19 1.00 -0.10 0.36 -0.13 0.65 -0.21 -0.01 0.00 0.04 -0.13
## D4 0.13 0.20 -0.10 1.00 0.01 0.15 0.45 0.26 0.23 -0.23 -0.19 -0.09
## D5 0.02 0.03 0.36 0.01 1.00 -0.05 0.51 0.19 0.13 0.27 0.19 0.15
## D6 -0.08 0.08 -0.13 0.15 -0.05 1.00 -0.02 0.07 0.08 0.16 -0.05 0.30
## D0 0.59 0.62 0.65 0.45 0.51 -0.02 1.00 0.15 0.28 0.04 0.00 -0.08
## M1 0.01 0.04 -0.21 0.26 0.19 0.07 0.15 1.00 0.44 0.29 0.04 0.39
## M2 0.19 0.16 -0.01 0.23 0.13 0.08 0.28 0.44 1.00 0.20 0.08 0.30
## M3 -0.01 0.00 0.00 -0.23 0.27 0.16 0.04 0.29 0.20 1.00 0.72 0.65
## M4 0.01 0.00 0.04 -0.19 0.19 -0.05 0.00 0.04 0.08 0.72 1.00 0.49
## M5 -0.10 -0.14 -0.13 -0.09 0.15 0.30 -0.08 0.39 0.30 0.65 0.49 1.00
## K1 -0.22 -0.04 0.05 -0.13 0.21 0.11 -0.03 0.08 0.05 0.17 0.13 0.14
## K2 0.09 0.02 -0.27 0.22 0.07 0.27 0.07 0.46 0.51 0.08 -0.06 0.24
## K3 0.32 0.09 -0.13 0.31 -0.11 0.11 0.18 0.31 0.30 -0.19 -0.36 0.07
## K4 -0.18 -0.06 -0.08 -0.20 -0.17 0.13 -0.23 -0.02 0.03 0.14 0.24 0.20
## K0 0.27 0.05 -0.13 0.28 -0.02 0.08 0.16 0.25 0.25 -0.12 -0.27 0.05
## K1 K2 K3 K4 K0
## D1 -0.22 0.09 0.32 -0.18 0.27
## D2 -0.04 0.02 0.09 -0.06 0.05
## D3 0.05 -0.27 -0.13 -0.08 -0.13
## D4 -0.13 0.22 0.31 -0.20 0.28
## D5 0.21 0.07 -0.11 -0.17 -0.02
## D6 0.11 0.27 0.11 0.13 0.08
## D0 -0.03 0.07 0.18 -0.23 0.16
## M1 0.08 0.46 0.31 -0.02 0.25
## M2 0.05 0.51 0.30 0.03 0.25
## M3 0.17 0.08 -0.19 0.14 -0.12
## M4 0.13 -0.06 -0.36 0.24 -0.27
## M5 0.14 0.24 0.07 0.20 0.05
## K1 1.00 -0.12 -0.42 0.45 -0.61
## K2 -0.12 1.00 0.58 -0.24 0.66
## K3 -0.42 0.58 1.00 -0.57 0.89
## K4 0.45 -0.24 -0.57 1.00 -0.74
## K0 -0.61 0.66 0.89 -0.74 1.00
## Sample Size
## [1] 51
## Probability values (Entries above the diagonal are adjusted for multiple tests.)
## D1 D2 D3 D4 D5 D6 D0 M1 M2 M3 M4 M5 K1 K2 K3
## D1 0.00 1.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
## D2 0.10 0.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
## D3 0.00 0.18 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
## D4 0.36 0.15 0.51 0.00 1.00 1.00 0.12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
## D5 0.91 0.83 0.01 0.95 0.00 1.00 0.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
## D6 0.58 0.57 0.37 0.28 0.74 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
## D0 0.00 0.00 0.00 0.00 0.00 0.90 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
## M1 0.93 0.79 0.14 0.07 0.18 0.62 0.30 0.00 0.13 1.00 1.00 0.59 1.00 0.07 1.00
## M2 0.19 0.27 0.95 0.11 0.35 0.59 0.05 0.00 0.00 1.00 1.00 1.00 1.00 0.01 1.00
## M3 0.96 0.99 1.00 0.10 0.05 0.27 0.79 0.04 0.15 0.00 0.00 0.00 1.00 1.00 1.00
## M4 0.94 0.97 0.80 0.19 0.19 0.74 0.98 0.76 0.57 0.00 0.00 0.04 1.00 1.00 1.00
## M5 0.49 0.32 0.35 0.51 0.28 0.03 0.59 0.01 0.03 0.00 0.00 0.00 1.00 1.00 1.00
## K1 0.12 0.77 0.71 0.35 0.14 0.43 0.85 0.60 0.74 0.24 0.37 0.34 0.00 1.00 0.27
## K2 0.55 0.90 0.05 0.13 0.65 0.06 0.63 0.00 0.00 0.56 0.70 0.10 0.38 0.00 0.00
## K3 0.02 0.51 0.38 0.03 0.45 0.43 0.21 0.03 0.03 0.19 0.01 0.62 0.00 0.00 0.00
## K4 0.21 0.66 0.59 0.17 0.24 0.35 0.10 0.91 0.83 0.34 0.09 0.17 0.00 0.08 0.00
## K0 0.06 0.73 0.37 0.05 0.91 0.59 0.25 0.08 0.07 0.40 0.06 0.70 0.00 0.00 0.00
## K4 K0
## D1 1.00 1
## D2 1.00 1
## D3 1.00 1
## D4 1.00 1
## D5 1.00 1
## D6 1.00 1
## D0 1.00 1
## M1 1.00 1
## M2 1.00 1
## M3 1.00 1
## M4 1.00 1
## M5 1.00 1
## K1 0.12 0
## K2 1.00 0
## K3 0.00 0
## K4 0.00 0
## K0 0.00 0
##
## To see confidence intervals of the correlations, print with the short=FALSE option
Графики ##ДУМЭОЛП х ЭкО
CorMatrix <- cor(Data[c(2:6, 8, 14:18)], method = "spearman")
#round(CorMatrix, 2)
plot(Data[c(2:6, 8, 14:18)], pch = ".", cex = 0.5)
#pairs(x, ...) есть спецфункция для матриц диаграмм рассеивания
CorMatrix <- cor(Data[9:18], method = "spearman")
round(CorMatrix, 2)
## M1 M2 M3 M4 M5 K1 K2 K3 K4 K0
## M1 1.00 0.44 0.29 0.04 0.39 0.08 0.46 0.31 -0.02 0.25
## M2 0.44 1.00 0.20 0.08 0.30 0.05 0.51 0.30 0.03 0.25
## M3 0.29 0.20 1.00 0.72 0.65 0.17 0.08 -0.19 0.14 -0.12
## M4 0.04 0.08 0.72 1.00 0.49 0.13 -0.06 -0.36 0.24 -0.27
## M5 0.39 0.30 0.65 0.49 1.00 0.14 0.24 0.07 0.20 0.05
## K1 0.08 0.05 0.17 0.13 0.14 1.00 -0.12 -0.42 0.45 -0.61
## K2 0.46 0.51 0.08 -0.06 0.24 -0.12 1.00 0.58 -0.24 0.66
## K3 0.31 0.30 -0.19 -0.36 0.07 -0.42 0.58 1.00 -0.57 0.89
## K4 -0.02 0.03 0.14 0.24 0.20 0.45 -0.24 -0.57 1.00 -0.74
## K0 0.25 0.25 -0.12 -0.27 0.05 -0.61 0.66 0.89 -0.74 1.00
plot(Data[c(9:18)], pch = ".", cex = 0.5)
Матрицы
M1 <- Data[c(2:6, 8, 14:18)] %>%
as.matrix() %>%
rcorr(type = c("spearman"))
M1$r %>%
corrplot.mixed(p.mat = M1$P
, sig.level = 0.05
, insig = "label_sig"#"pch" #
, pch.cex = 1
, lower.col = "black"
, number.cex = 0.7)
ДУМЭОЛП х ЭкО
Data[c(2:6, 8, 14:18)] %>%
as.matrix() %>%
rcorr(type = c("spearman"))
## D1 D2 D3 D4 D5 D0 K1 K2 K3 K4 K0
## D1 1.00 0.23 0.55 0.13 0.02 0.59 -0.22 0.09 0.32 -0.18 0.27
## D2 0.23 1.00 0.19 0.20 0.03 0.62 -0.04 0.02 0.09 -0.06 0.05
## D3 0.55 0.19 1.00 -0.10 0.36 0.65 0.05 -0.27 -0.13 -0.08 -0.13
## D4 0.13 0.20 -0.10 1.00 0.01 0.45 -0.13 0.22 0.31 -0.20 0.28
## D5 0.02 0.03 0.36 0.01 1.00 0.51 0.21 0.07 -0.11 -0.17 -0.02
## D0 0.59 0.62 0.65 0.45 0.51 1.00 -0.03 0.07 0.18 -0.23 0.16
## K1 -0.22 -0.04 0.05 -0.13 0.21 -0.03 1.00 -0.12 -0.42 0.45 -0.61
## K2 0.09 0.02 -0.27 0.22 0.07 0.07 -0.12 1.00 0.58 -0.24 0.66
## K3 0.32 0.09 -0.13 0.31 -0.11 0.18 -0.42 0.58 1.00 -0.57 0.89
## K4 -0.18 -0.06 -0.08 -0.20 -0.17 -0.23 0.45 -0.24 -0.57 1.00 -0.74
## K0 0.27 0.05 -0.13 0.28 -0.02 0.16 -0.61 0.66 0.89 -0.74 1.00
##
## n= 51
##
##
## P
## D1 D2 D3 D4 D5 D0 K1 K2 K3 K4 K0
## D1 0.1000 0.0000 0.3596 0.9064 0.0000 0.1217 0.5513 0.0203 0.2104 0.0575
## D2 0.1000 0.1820 0.1529 0.8341 0.0000 0.7738 0.9017 0.5134 0.6565 0.7297
## D3 0.0000 0.1820 0.5066 0.0089 0.0000 0.7088 0.0526 0.3804 0.5911 0.3727
## D4 0.3596 0.1529 0.5066 0.9531 0.0010 0.3453 0.1297 0.0259 0.1685 0.0492
## D5 0.9064 0.8341 0.0089 0.9531 0.0001 0.1422 0.6504 0.4494 0.2364 0.9091
## D0 0.0000 0.0000 0.0000 0.0010 0.0001 0.8488 0.6252 0.2062 0.1003 0.2549
## K1 0.1217 0.7738 0.7088 0.3453 0.1422 0.8488 0.3827 0.0023 0.0010 0.0000
## K2 0.5513 0.9017 0.0526 0.1297 0.6504 0.6252 0.3827 0.0000 0.0838 0.0000
## K3 0.0203 0.5134 0.3804 0.0259 0.4494 0.2062 0.0023 0.0000 0.0000 0.0000
## K4 0.2104 0.6565 0.5911 0.1685 0.2364 0.1003 0.0010 0.0838 0.0000 0.0000
## K0 0.0575 0.7297 0.3727 0.0492 0.9091 0.2549 0.0000 0.0000 0.0000 0.0000
M1 <- Data[c(9:18)] %>%
as.matrix() %>%
rcorr(type = c("spearman"))
M1$r %>%
corrplot.mixed(p.mat = M1$P
, sig.level = 0.05
, insig = "label_sig"
, pch.cex = 1
, lower.col = "black"
, number.cex = .7)
Моральные основания х ЭкО
Data[c(9:18)] %>%
as.matrix() %>%
rcorr(type = c("spearman"))
## M1 M2 M3 M4 M5 K1 K2 K3 K4 K0
## M1 1.00 0.44 0.29 0.04 0.39 0.08 0.46 0.31 -0.02 0.25
## M2 0.44 1.00 0.20 0.08 0.30 0.05 0.51 0.30 0.03 0.25
## M3 0.29 0.20 1.00 0.72 0.65 0.17 0.08 -0.19 0.14 -0.12
## M4 0.04 0.08 0.72 1.00 0.49 0.13 -0.06 -0.36 0.24 -0.27
## M5 0.39 0.30 0.65 0.49 1.00 0.14 0.24 0.07 0.20 0.05
## K1 0.08 0.05 0.17 0.13 0.14 1.00 -0.12 -0.42 0.45 -0.61
## K2 0.46 0.51 0.08 -0.06 0.24 -0.12 1.00 0.58 -0.24 0.66
## K3 0.31 0.30 -0.19 -0.36 0.07 -0.42 0.58 1.00 -0.57 0.89
## K4 -0.02 0.03 0.14 0.24 0.20 0.45 -0.24 -0.57 1.00 -0.74
## K0 0.25 0.25 -0.12 -0.27 0.05 -0.61 0.66 0.89 -0.74 1.00
##
## n= 51
##
##
## P
## M1 M2 M3 M4 M5 K1 K2 K3 K4 K0
## M1 0.0011 0.0404 0.7588 0.0051 0.5989 0.0006 0.0283 0.9083 0.0813
## M2 0.0011 0.1499 0.5656 0.0344 0.7405 0.0001 0.0330 0.8251 0.0732
## M3 0.0404 0.1499 0.0000 0.0000 0.2409 0.5641 0.1916 0.3356 0.3989
## M4 0.7588 0.5656 0.0000 0.0003 0.3734 0.6991 0.0095 0.0906 0.0567
## M5 0.0051 0.0344 0.0000 0.0003 0.3379 0.0963 0.6245 0.1655 0.7022
## K1 0.5989 0.7405 0.2409 0.3734 0.3379 0.3827 0.0023 0.0010 0.0000
## K2 0.0006 0.0001 0.5641 0.6991 0.0963 0.3827 0.0000 0.0838 0.0000
## K3 0.0283 0.0330 0.1916 0.0095 0.6245 0.0023 0.0000 0.0000 0.0000
## K4 0.9083 0.8251 0.3356 0.0906 0.1655 0.0010 0.0838 0.0000 0.0000
## K0 0.0813 0.0732 0.3989 0.0567 0.7022 0.0000 0.0000 0.0000 0.0000
Data[c(2:6, 8, 14:18)] %>%
pairs.panels(method = "spearman",
hist.col = "cornflowerblue",
density = T, ellipses = F,
pch=".",
stars=TRUE,
gap = 0)
Data[c(9:18)] %>%
pairs.panels(method = "spearman",
hist.col = "cornflowerblue",
density = T, ellipses = F,
pch=".",
stars=TRUE,
gap = 0)
Data[c(2:6,9:13)] %>%
pairs.panels(method = "spearman",
hist.col = "cornflowerblue",
density = T, ellipses = F,
pch=".",
stars=TRUE,
gap = 0)
###Влияние пола на Кряж
lm(K0 ~ Gender, Data) %>%
summary()
##
## Call:
## lm(formula = K0 ~ Gender, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.773 -10.034 -2.773 10.096 33.227
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.034 2.926 6.848 1.14e-08 ***
## Genderm -11.262 4.454 -2.528 0.0147 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.76 on 49 degrees of freedom
## Multiple R-squared: 0.1154, Adjusted R-squared: 0.09734
## F-statistic: 6.392 on 1 and 49 DF, p-value: 0.01474
Влияние пола на Думеолпа
lm(D0 ~ Gender, Data) %>%
summary()
##
## Call:
## lm(formula = D0 ~ Gender, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.0345 -2.0455 -0.0345 1.9655 5.9655
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.0345 0.5967 23.521 <2e-16 ***
## Genderm -0.9890 0.9085 -1.089 0.282
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.213 on 49 degrees of freedom
## Multiple R-squared: 0.02362, Adjusted R-squared: 0.00369
## F-statistic: 1.185 on 1 and 49 DF, p-value: 0.2816
m1
lm(M1 ~ Gender, Data) %>%
summary()
##
## Call:
## lm(formula = M1 ~ Gender, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.1034 -2.8182 -0.1034 2.1818 13.1818
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.1034 0.8185 24.562 <2e-16 ***
## Genderm -2.2853 1.2462 -1.834 0.0728 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.408 on 49 degrees of freedom
## Multiple R-squared: 0.06422, Adjusted R-squared: 0.04512
## F-statistic: 3.363 on 1 and 49 DF, p-value: 0.07276
m2
lm(M2 ~ Gender, Data) %>%
summary()
##
## Call:
## lm(formula = M2 ~ Gender, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.0000 -2.3182 -0.6364 2.0000 9.3636
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.0000 0.7328 27.292 <2e-16 ***
## Genderm -1.3636 1.1157 -1.222 0.227
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.946 on 49 degrees of freedom
## Multiple R-squared: 0.02958, Adjusted R-squared: 0.009778
## F-statistic: 1.494 on 1 and 49 DF, p-value: 0.2275
m3
lm(M3 ~ Gender, Data) %>%
summary()
##
## Call:
## lm(formula = M3 ~ Gender, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.5000 -2.5345 0.9655 2.7328 10.5000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.0345 0.8256 18.211 <2e-16 ***
## Genderm -1.5345 1.2570 -1.221 0.228
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.446 on 49 degrees of freedom
## Multiple R-squared: 0.02952, Adjusted R-squared: 0.009712
## F-statistic: 1.49 on 1 and 49 DF, p-value: 0.228
M4
lm(M4 ~ Gender, Data) %>%
summary()
##
## Call:
## lm(formula = M4 ~ Gender, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.0690 -3.0690 -0.0909 3.9091 8.9310
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.06897 0.90805 13.291 <2e-16 ***
## Genderm 0.02194 1.38255 0.016 0.987
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.89 on 49 degrees of freedom
## Multiple R-squared: 5.141e-06, Adjusted R-squared: -0.0204
## F-statistic: 0.0002519 on 1 and 49 DF, p-value: 0.9874
M5
lm(M5 ~ Gender, Data) %>%
summary()
##
## Call:
## lm(formula = M5 ~ Gender, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.2273 -2.2273 -0.2273 3.2727 9.0345
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.966 0.910 17.544 <2e-16 ***
## Genderm -2.738 1.386 -1.976 0.0538 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.901 on 49 degrees of freedom
## Multiple R-squared: 0.07382, Adjusted R-squared: 0.05492
## F-statistic: 3.906 on 1 and 49 DF, p-value: 0.05377
lm(K0 ~ . -Name -K1 -K2 -K3 -K4, Data) %>%
summary()
##
## Call:
## lm(formula = K0 ~ . - Name - K1 - K2 - K3 - K4, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.073 -7.409 -1.342 6.052 33.024
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.4161 15.6791 0.473 0.6389
## D1 6.3033 2.3356 2.699 0.0103 *
## D2 0.4368 1.9543 0.223 0.8244
## D3 -6.2039 2.6350 -2.354 0.0238 *
## D4 2.8217 2.2619 1.247 0.2199
## D5 1.0982 2.2876 0.480 0.6339
## D6 -1.5495 3.4927 -0.444 0.6598
## D0 NA NA NA NA
## M1 -0.3275 0.6244 -0.524 0.6030
## M2 0.3251 0.5849 0.556 0.5815
## M3 0.6163 0.7193 0.857 0.3969
## M4 -1.2843 0.5864 -2.190 0.0347 *
## M5 0.2153 0.6341 0.340 0.7360
## Genderm -6.9507 4.4482 -1.563 0.1264
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.4 on 38 degrees of freedom
## Multiple R-squared: 0.4269, Adjusted R-squared: 0.246
## F-statistic: 2.359 on 12 and 38 DF, p-value: 0.02209
lm(K0 ~ . -Name -K1 -K2 -K3 -K4, Data) %>%
step() %>%
summary()
## Start: AIC=283.05
## K0 ~ (Name + D1 + D2 + D3 + D4 + D5 + D6 + D0 + M1 + M2 + M3 +
## M4 + M5 + K1 + K2 + K3 + K4 + Gender) - Name - K1 - K2 -
## K3 - K4
##
##
## Step: AIC=283.05
## K0 ~ D1 + D2 + D3 + D4 + D5 + D6 + M1 + M2 + M3 + M4 + M5 + Gender
##
## Df Sum of Sq RSS AIC
## - D2 1 10.36 7889.8 281.12
## - M5 1 23.91 7903.4 281.20
## - D6 1 40.81 7920.3 281.31
## - D5 1 47.79 7927.2 281.36
## - M1 1 57.03 7936.5 281.42
## - M2 1 64.08 7943.5 281.46
## - M3 1 152.23 8031.7 282.02
## <none> 7879.4 283.05
## - D4 1 322.69 8202.1 283.10
## - Gender 1 506.29 8385.7 284.23
## - M4 1 994.60 8874.1 287.11
## - D3 1 1149.47 9028.9 287.99
## - D1 1 1510.31 9389.8 289.99
##
## Step: AIC=281.12
## K0 ~ D1 + D3 + D4 + D5 + D6 + M1 + M2 + M3 + M4 + M5 + Gender
##
## Df Sum of Sq RSS AIC
## - M5 1 17.63 7907.4 279.23
## - D6 1 35.28 7925.1 279.34
## - D5 1 45.24 7935.0 279.41
## - M1 1 49.64 7939.4 279.44
## - M2 1 66.06 7955.9 279.54
## - M3 1 152.61 8042.4 280.09
## <none> 7889.8 281.12
## - D4 1 351.88 8241.7 281.34
## - Gender 1 506.09 8395.9 282.29
## - M4 1 991.28 8881.1 285.15
## - D3 1 1142.52 9032.3 286.01
## - D1 1 1555.73 9445.5 288.30
##
## Step: AIC=279.23
## K0 ~ D1 + D3 + D4 + D5 + D6 + M1 + M2 + M3 + M4 + Gender
##
## Df Sum of Sq RSS AIC
## - D6 1 22.63 7930.1 277.38
## - M1 1 37.83 7945.3 277.47
## - D5 1 54.99 7962.4 277.58
## - M2 1 75.29 7982.7 277.71
## - M3 1 190.40 8097.8 278.44
## <none> 7907.4 279.23
## - D4 1 334.45 8241.9 279.34
## - Gender 1 555.47 8462.9 280.69
## - M4 1 989.50 8896.9 283.24
## - D3 1 1206.28 9113.7 284.47
## - D1 1 1542.43 9449.9 286.32
##
## Step: AIC=277.38
## K0 ~ D1 + D3 + D4 + D5 + M1 + M2 + M3 + M4 + Gender
##
## Df Sum of Sq RSS AIC
## - M1 1 35.77 7965.8 275.61
## - D5 1 64.10 7994.2 275.79
## - M2 1 73.69 8003.8 275.85
## - M3 1 173.77 8103.8 276.48
## - D4 1 316.01 8246.1 277.37
## <none> 7930.1 277.38
## - Gender 1 534.57 8464.6 278.70
## - M4 1 968.60 8898.7 281.25
## - D3 1 1206.61 9136.7 282.60
## - D1 1 1589.65 9519.7 284.69
##
## Step: AIC=275.61
## K0 ~ D1 + D3 + D4 + D5 + M2 + M3 + M4 + Gender
##
## Df Sum of Sq RSS AIC
## - M2 1 51.63 8017.5 273.94
## - D5 1 56.10 8021.9 273.96
## - M3 1 138.34 8104.2 274.48
## - D4 1 282.17 8248.0 275.38
## <none> 7965.8 275.61
## - Gender 1 513.21 8479.0 276.79
## - M4 1 932.84 8898.7 279.25
## - D3 1 1179.33 9145.2 280.65
## - D1 1 1575.51 9541.3 282.81
##
## Step: AIC=273.94
## K0 ~ D1 + D3 + D4 + D5 + M3 + M4 + Gender
##
## Df Sum of Sq RSS AIC
## - D5 1 71.02 8088.5 272.38
## - M3 1 168.74 8186.2 273.00
## <none> 8017.5 273.94
## - D4 1 336.95 8354.4 274.04
## - Gender 1 534.86 8552.3 275.23
## - M4 1 945.62 8963.1 277.62
## - D3 1 1293.47 9310.9 279.56
## - D1 1 1777.30 9794.8 282.15
##
## Step: AIC=272.38
## K0 ~ D1 + D3 + D4 + M3 + M4 + Gender
##
## Df Sum of Sq RSS AIC
## - M3 1 244.72 8333.2 271.90
## <none> 8088.5 272.38
## - D4 1 416.01 8504.5 272.94
## - Gender 1 567.67 8656.1 273.84
## - M4 1 944.90 9033.4 276.02
## - D3 1 1286.58 9375.1 277.91
## - D1 1 1707.64 9796.1 280.15
##
## Step: AIC=271.91
## K0 ~ D1 + D3 + D4 + M4 + Gender
##
## Df Sum of Sq RSS AIC
## <none> 8333.2 271.90
## - D4 1 359.73 8692.9 272.06
## - M4 1 713.84 9047.0 274.10
## - Gender 1 800.65 9133.9 274.58
## - D3 1 1196.16 9529.4 276.75
## - D1 1 1680.51 10013.7 279.27
##
## Call:
## lm(formula = K0 ~ D1 + D3 + D4 + M4 + Gender, data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.807 -7.571 -1.646 7.899 33.042
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.4944 10.9008 1.421 0.16209
## D1 6.2526 2.0756 3.012 0.00424 **
## D3 -5.3055 2.0875 -2.542 0.01455 *
## D4 2.6393 1.8937 1.394 0.17024
## M4 -0.8024 0.4087 -1.963 0.05580 .
## Genderm -8.2034 3.9452 -2.079 0.04332 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.61 on 45 degrees of freedom
## Multiple R-squared: 0.3939, Adjusted R-squared: 0.3266
## F-statistic: 5.85 on 5 and 45 DF, p-value: 0.0003032
lm(K0 ~ Gender : (D1 + D2 + D3+ D4 + D5 + M1 + M2 + M3 + M4 + M5), Data) %>%
#step() %>%
summary()
##
## Call:
## lm(formula = K0 ~ Gender:(D1 + D2 + D3 + D4 + D5 + M1 + M2 +
## M3 + M4 + M5), data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -20.3180 -8.2884 -0.9959 6.6143 27.9784
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.9907 19.5548 -0.255 0.80030
## Genderf:D1 -0.3202 4.1352 -0.077 0.93880
## Genderm:D1 4.1706 3.5984 1.159 0.25559
## Genderf:D2 2.8149 2.6696 1.054 0.30011
## Genderm:D2 4.7230 3.4507 1.369 0.18126
## Genderf:D3 -3.0999 3.5989 -0.861 0.39589
## Genderm:D3 -10.1017 4.5385 -2.226 0.03369 *
## Genderf:D4 4.4345 3.0973 1.432 0.16255
## Genderm:D4 6.4033 4.0583 1.578 0.12509
## Genderf:D5 1.2108 3.3657 0.360 0.72155
## Genderm:D5 2.0224 4.4442 0.455 0.65234
## Genderf:M1 1.6406 0.9914 1.655 0.10837
## Genderm:M1 -3.4656 1.2361 -2.804 0.00877 **
## Genderf:M2 -0.1994 0.9180 -0.217 0.82951
## Genderm:M2 0.3876 0.7222 0.537 0.59547
## Genderf:M3 0.4840 1.0989 0.440 0.66277
## Genderm:M3 2.4345 1.1147 2.184 0.03691 *
## Genderf:M4 -0.9222 0.9519 -0.969 0.34040
## Genderm:M4 -0.2760 1.0654 -0.259 0.79738
## Genderf:M5 -1.3288 1.1486 -1.157 0.25646
## Genderm:M5 0.8716 1.0527 0.828 0.41423
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.56 on 30 degrees of freedom
## Multiple R-squared: 0.5987, Adjusted R-squared: 0.3312
## F-statistic: 2.238 on 20 and 30 DF, p-value: 0.02234
lm(K0 ~ (Gender + D0 + M1 + M2 + M3 + M4 + M5), Data) %>%
#step() %>%
summary()
##
## Call:
## lm(formula = K0 ~ (Gender + D0 + M1 + M2 + M3 + M4 + M5), data = Data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -32.306 -8.877 0.153 9.386 28.383
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.96717 15.99906 0.373 0.7110
## Genderm -8.94388 4.69322 -1.906 0.0634 .
## D0 0.53610 0.72674 0.738 0.4647
## M1 0.22525 0.60346 0.373 0.7108
## M2 0.64053 0.61745 1.037 0.3054
## M3 0.12645 0.73145 0.173 0.8636
## M4 -1.13916 0.60403 -1.886 0.0661 .
## M5 0.06589 0.61329 0.107 0.9149
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.41 on 43 degrees of freedom
## Multiple R-squared: 0.2569, Adjusted R-squared: 0.1359
## F-statistic: 2.124 on 7 and 43 DF, p-value: 0.06126
Gender + D1 + D2 + D3+ D4 + D5 + M1 + M2 + M3 + M4 + M5
setCor(K0 ~ D0 + M1 + M2 + M3 + M4 + M5, data = Data, std = FALSE)
## Call: setCor(y = K0 ~ D0 + M1 + M2 + M3 + M4 + M5, data = Data, std = FALSE)
##
## Multiple Regression from raw data
##
## DV = K0
## slope se t p lower.ci upper.ci VIF
## (Intercept) -5.76 15.20 -0.38 0.710 -36.40 24.88 46.81
## D0 0.75 0.74 1.02 0.310 -0.74 2.24 21.60
## M1 0.31 0.62 0.50 0.620 -0.94 1.56 29.96
## M2 0.67 0.64 1.06 0.290 -0.61 1.96 32.07
## M3 0.18 0.75 0.24 0.810 -1.33 1.70 25.93
## M4 -1.29 0.62 -2.10 0.041 -2.54 -0.05 12.98
## M5 0.32 0.62 0.52 0.610 -0.92 1.56 18.75
##
## Residual Standard Error = 15.87 with 44 degrees of freedom
##
## Multiple Regression
## R R2 Ruw R2uw Shrunken R2 SE of R2 overall F df1 df2 p
## K0 0.44 0.19 0.08 0.01 0.08 0.08 1.77 6 44 0.128
DataNum <- Data
DataNum$Gender <- as.integer(DataNum$Gender)
DataNum$Gender
## [1] 2 1 1 2 1 1 2 2 1 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1 2 1 1 1 1 2 2 1 1 1 2 1 2 1
## [39] 2 1 2 1 2 1 1 1 1 1 1 2 1
Нужно вводить корреляционную матрицу с корреляциями дихотомических величин.
CorMatrix <- mixedCor(Data, d = "Gender", c = NamesData[2:18])
#setCor(y = K0 ~ Gender, data = CorMatrix, n.obs = 51)
# setCor(y = 1, x = 2:18, data = CorMatrix, n.obs = 51)